1 /* This file is part of libDAI - http://www.libdai.org/
3 * libDAI is licensed under the terms of the GNU General Public License version
4 * 2, or (at your option) any later version. libDAI is distributed without any
5 * warranty. See the file COPYING for more details.
7 * Copyright (C) 2009 Frederik Eaton [frederik at ofb dot net]
12 /// \brief Defines class BBP [\ref EaG09]
13 /// \todo Fit more closely into libDAI framework
14 /// \todo Improve documentation
15 /// \author Frederik Eaton
18 #ifndef ___defined_libdai_bbp_h
19 #define ___defined_libdai_bbp_h
26 #include <dai/daialg.h>
27 #include <dai/factorgraph.h>
29 #include <dai/bp_dual.h>
35 /// Computes the adjoint of the unnormed probability vector from the normalizer and the adjoint of the normalized probability vector @see eqn. (13) in [\ref EaG09]
36 Prob
unnormAdjoint( const Prob
&w
, Real Z_w
, const Prob
&adj_w
);
38 /// Runs Gibbs sampling for \a iters iterations on ia.fg(), and returns state
39 std::vector
<size_t> getGibbsState( const InfAlg
&ia
, size_t iters
);
42 /// Implements BBP (Back-Belief-Propagation) [\ref EaG09]
43 /** \author Frederik Eaton
50 const FactorGraph
*_fg
;
54 /// Number of iterations done
59 /// Variable factor adjoints
60 std::vector
<Prob
> _adj_psi_V
;
62 std::vector
<Prob
> _adj_psi_F
;
63 /// Variable->factor message adjoints (indexed [i][_I])
64 std::vector
<std::vector
<Prob
> > _adj_n
;
65 /// Factor->variable message adjoints (indexed [i][_I])
66 std::vector
<std::vector
<Prob
> > _adj_m
;
67 /// Normalized variable belief adjoints
68 std::vector
<Prob
> _adj_b_V
;
69 /// Normalized factor belief adjoints
70 std::vector
<Prob
> _adj_b_F
;
73 /// \name Helper quantities computed from the BP messages
75 /// _T[i][_I] (see eqn. (41) in [\ref EaG09])
76 std::vector
<std::vector
<Prob
> > _T
;
77 /// _U[I][_i] (see eqn. (42) in [\ref EaG09])
78 std::vector
<std::vector
<Prob
> > _U
;
79 /// _S[i][_I][_j] (see eqn. (43) in [\ref EaG09])
80 std::vector
<std::vector
<std::vector
<Prob
> > > _S
;
81 /// _R[I][_i][_J] (see eqn. (44) in [\ref EaG09])
82 std::vector
<std::vector
<std::vector
<Prob
> > > _R
;
85 /// Unnormalized variable belief adjoints
86 std::vector
<Prob
> _adj_b_V_unnorm
;
87 /// Unnormalized factor belief adjoints
88 std::vector
<Prob
> _adj_b_F_unnorm
;
90 /// Initial variable factor adjoints
91 std::vector
<Prob
> _init_adj_psi_V
;
92 /// Initial factor adjoints
93 std::vector
<Prob
> _init_adj_psi_F
;
95 /// Unnormalized variable->factor message adjoint (indexed [i][_I])
96 std::vector
<std::vector
<Prob
> > _adj_n_unnorm
;
97 /// Unnormalized factor->variable message adjoint (indexed [i][_I])
98 std::vector
<std::vector
<Prob
> > _adj_m_unnorm
;
99 /// Updated normalized variable->factor message adjoint (indexed [i][_I])
100 std::vector
<std::vector
<Prob
> > _new_adj_n
;
101 /// Updated normalized factor->variable message adjoint (indexed [i][_I])
102 std::vector
<std::vector
<Prob
> > _new_adj_m
;
104 /// \name Optimized indexing (for performance)
106 /// Calculates _indices, which is a cache of IndexFor @see bp.cpp
107 void RegenerateInds();
110 typedef std::vector
<size_t> _ind_t
;
111 /// Cached indices (indexed [i][_I])
112 std::vector
<std::vector
<_ind_t
> > _indices
;
113 /// Returns an index from the cache
114 const _ind_t
& _index(size_t i
, size_t _I
) const { return _indices
[i
][_I
]; }
117 /// \name Initialization
119 /// Calculate T values; see eqn. (41) in [\ref EaG09]
121 /// Calculate U values; see eqn. (42) in [\ref EaG09]
123 /// Calculate S values; see eqn. (43) in [\ref EaG09]
125 /// Calculate R values; see eqn. (44) in [\ref EaG09]
127 /// Calculate _adj_b_V_unnorm and _adj_b_F_unnorm from _adj_b_V and _adj_b_F
128 void RegenerateInputs();
129 /// Initialise members for factor adjoints (call after RegenerateInputs)
130 void RegeneratePsiAdjoints();
131 /// Initialise members for message adjoints (call after RegenerateInputs) for parallel algorithm
132 void RegenerateParMessageAdjoints();
133 /// Initialise members for message adjoints (call after RegenerateInputs) for sequential algorithm
134 /** Same as RegenerateMessageAdjoints, but calls sendSeqMsgN rather
135 * than updating _adj_n (and friends) which are unused in the sequential algorithm.
137 void RegenerateSeqMessageAdjoints();
140 /// Returns reference to T value; see eqn. (41) in [\ref EaG09]
141 Prob
& T(size_t i
, size_t _I
) { return _T
[i
][_I
]; }
142 /// Returns constant reference to T value; see eqn. (41) in [\ref EaG09]
143 const Prob
& T(size_t i
, size_t _I
) const { return _T
[i
][_I
]; }
144 /// Returns reference to U value; see eqn. (42) in [\ref EaG09]
145 Prob
& U(size_t I
, size_t _i
) { return _U
[I
][_i
]; }
146 /// Returns constant reference to U value; see eqn. (42) in [\ref EaG09]
147 const Prob
& U(size_t I
, size_t _i
) const { return _U
[I
][_i
]; }
148 /// Returns reference to S value; see eqn. (43) in [\ref EaG09]
149 Prob
& S(size_t i
, size_t _I
, size_t _j
) { return _S
[i
][_I
][_j
]; }
150 /// Returns constant reference to S value; see eqn. (43) in [\ref EaG09]
151 const Prob
& S(size_t i
, size_t _I
, size_t _j
) const { return _S
[i
][_I
][_j
]; }
152 /// Returns reference to R value; see eqn. (44) in [\ref EaG09]
153 Prob
& R(size_t I
, size_t _i
, size_t _J
) { return _R
[I
][_i
][_J
]; }
154 /// Returns constant reference to R value; see eqn. (44) in [\ref EaG09]
155 const Prob
& R(size_t I
, size_t _i
, size_t _J
) const { return _R
[I
][_i
][_J
]; }
157 /// \name Parallel algorithm
159 /// Calculates new variable->factor message adjoint
160 /** Increases variable factor adjoint according to eqn. (27) in [\ref EaG09] and
161 * calculates the new variable->factor message adjoint according to eqn. (29) in [\ref EaG09].
163 void calcNewN( size_t i
, size_t _I
);
164 /// Calculates new factor->variable message adjoint
165 /** Increases factor adjoint according to eqn. (28) in [\ref EaG09] and
166 * calculates the new factor->variable message adjoint according to the r.h.s. of eqn. (30) in [\ref EaG09].
168 void calcNewM( size_t i
, size_t _I
);
169 /// Calculates unnormalized variable->factor message adjoint from the normalized one
170 void calcUnnormMsgN( size_t i
, size_t _I
);
171 /// Calculates unnormalized factor->variable message adjoint from the normalized one
172 void calcUnnormMsgM( size_t i
, size_t _I
);
173 /// Updates (un)normalized variable->factor message adjoints
174 void upMsgN( size_t i
, size_t _I
);
175 /// Updates (un)normalized factor->variable message adjoints
176 void upMsgM( size_t i
, size_t _I
);
177 /// Do one parallel update of all message adjoints
181 /// \name Sequential algorithm
183 /// Helper function for sendSeqMsgM: increases factor->variable message adjoint by p and calculates the corresponding unnormalized adjoint
184 void incrSeqMsgM( size_t i
, size_t _I
, const Prob
& p
);
185 // DISABLED BECAUSE IT IS BUGGY:
186 // void updateSeqMsgM( size_t i, size_t _I );
187 /// Sets normalized factor->variable message adjoint and calculates the corresponding unnormalized adjoint
188 void setSeqMsgM( size_t i
, size_t _I
, const Prob
&p
);
189 /// Implements routine Send-n in Figure 5 in [\ref EaG09]
190 void sendSeqMsgN( size_t i
, size_t _I
, const Prob
&f
);
191 /// Implements routine Send-m in Figure 5 in [\ref EaG09]
192 void sendSeqMsgM( size_t i
, size_t _I
);
195 /// Calculates averaged L-1 norm of unnormalized message adjoints
197 /// Calculates averaged L-1 norms of current and new normalized message adjoints
198 void getMsgMags( Real
&s
, Real
&new_s
);
200 /// Sets all vectors _adj_b_F to zero
201 void zero_adj_b_F() {
203 _adj_b_F
.reserve( _fg
->nrFactors() );
204 for( size_t I
= 0; I
< _fg
->nrFactors(); I
++ )
205 _adj_b_F
.push_back( Prob( _fg
->factor(I
).states(), Real( 0.0 ) ) );
208 /// Returns indices and magnitude of the largest normalized factor->variable message adjoint
209 void getArgmaxMsgM( size_t &i
, size_t &_I
, Real
&mag
);
210 /// Returns magnitude of the largest (in L1-norm) normalized factor->variable message adjoint
212 /// Calculates sum of L1 norms of all normalized factor->variable message adjoints
214 /// Calculates sum of L1 norms of all updated normalized factor->variable message adjoints
215 Real
getTotalNewMsgM();
216 /// Calculates sum of L1 norms of all normalized variable->factor message adjoints
220 /// Called by \a init, recalculates intermediate values
224 BBP( const InfAlg
*ia
, const PropertySet
&opts
) : _bp_dual(ia
), _fg(&(ia
->fg())), _ia(ia
) {
228 /// Returns a vector of Probs (filled with zeroes) with state spaces corresponding to the factors in the factor graph fg
229 std::vector
<Prob
> getZeroAdjF( const FactorGraph
&fg
);
230 /// Returns a vector of Probs (filled with zeroes) with state spaces corresponding to the variables in the factor graph fg
231 std::vector
<Prob
> getZeroAdjV( const FactorGraph
&fg
);
233 /// Initializes belief adjoints and initial factor adjoints and regenerates
234 void init( const std::vector
<Prob
> &adj_b_V
, const std::vector
<Prob
> &adj_b_F
, const std::vector
<Prob
> &adj_psi_V
, const std::vector
<Prob
> &adj_psi_F
) {
237 _init_adj_psi_V
= adj_psi_V
;
238 _init_adj_psi_F
= adj_psi_F
;
242 /// Initializes belief adjoints and with zero initial factor adjoints and regenerates
243 void init( const std::vector
<Prob
> &adj_b_V
, const std::vector
<Prob
> &adj_b_F
) {
244 init( adj_b_V
, adj_b_F
, getZeroAdjV(*_fg
), getZeroAdjF(*_fg
) );
247 /// Initializes variable belief adjoints (and sets factor belief adjoints to zero) and with zero initial factor adjoints and regenerates
248 void init( const std::vector
<Prob
> &adj_b_V
) {
249 init(adj_b_V
, getZeroAdjF(*_fg
));
252 /// Run until change is less than given tolerance
255 /// Return number of iterations done so far
256 size_t doneIters() { return _iters
; }
258 /// Returns reference to variable factor adjoint
259 Prob
& adj_psi_V(size_t i
) { return _adj_psi_V
[i
]; }
260 /// Returns constant reference to variable factor adjoint
261 const Prob
& adj_psi_V(size_t i
) const { return _adj_psi_V
[i
]; }
262 /// Returns reference to factor adjoint
263 Prob
& adj_psi_F(size_t I
) { return _adj_psi_F
[I
]; }
264 /// Returns constant reference to factor adjoint
265 const Prob
& adj_psi_F(size_t I
) const { return _adj_psi_F
[I
]; }
266 /// Returns reference to variable belief adjoint
267 Prob
& adj_b_V(size_t i
) { return _adj_b_V
[i
]; }
268 /// Returns constant reference to variable belief adjoint
269 const Prob
& adj_b_V(size_t i
) const { return _adj_b_V
[i
]; }
270 /// Returns reference to factor belief adjoint
271 Prob
& adj_b_F(size_t I
) { return _adj_b_F
[I
]; }
272 /// Returns constant reference to factor belief adjoint
273 const Prob
& adj_b_F(size_t I
) const { return _adj_b_F
[I
]; }
276 /// Returns reference to variable->factor message adjoint
277 Prob
& adj_n(size_t i
, size_t _I
) { return _adj_n
[i
][_I
]; }
278 /// Returns constant reference to variable->factor message adjoint
279 const Prob
& adj_n(size_t i
, size_t _I
) const { return _adj_n
[i
][_I
]; }
280 /// Returns reference to factor->variable message adjoint
281 Prob
& adj_m(size_t i
, size_t _I
) { return _adj_m
[i
][_I
]; }
282 /// Returns constant reference to factor->variable message adjoint
283 const Prob
& adj_m(size_t i
, size_t _I
) const { return _adj_m
[i
][_I
]; }
286 /// Parameters of this algorithm
287 /* PROPERTIES(props,BBP) {
288 /// Enumeration of possible update schedules
289 DAI_ENUM(UpdateType,SEQ_FIX,SEQ_MAX,SEQ_BP_REV,SEQ_BP_FWD,PAR);
294 /// Maximum number of iterations
297 /// Tolerance (not used for updates = SEQ_BP_REV, SEQ_BP_FWD)
300 /// Damping constant (0 for none); damping = 1 - lambda where lambda is the damping constant used in [\ref EaG09]
306 // DISABLED BECAUSE IT IS BUGGY:
307 // bool clean_updates;
310 /* {{{ GENERATED CODE: DO NOT EDIT. Created by
311 ./scripts/regenerate-properties include/dai/bbp.h src/bbp.cpp
314 /// Enumeration of possible update schedules
315 DAI_ENUM(UpdateType
,SEQ_FIX
,SEQ_MAX
,SEQ_BP_REV
,SEQ_BP_FWD
,PAR
);
318 /// Maximum number of iterations
320 /// Tolerance (not used for updates = SEQ_BP_REV, SEQ_BP_FWD)
322 /// Damping constant (0 for none); damping = 1 - lambda where lambda is the damping constant used in [\ref EaG09]
327 /// Set members from PropertySet
328 void set(const PropertySet
&opts
);
329 /// Get members into PropertySet
330 PropertySet
get() const;
331 /// Convert to a string which can be parsed as a PropertySet
332 std::string
toString() const;
334 /* }}} END OF GENERATED CODE */
338 /// Enumeration of several cost functions that can be used with BBP.
339 DAI_ENUM(bbp_cfn_t
,CFN_GIBBS_B
,CFN_GIBBS_B2
,CFN_GIBBS_EXP
,CFN_GIBBS_B_FACTOR
,CFN_GIBBS_B2_FACTOR
,CFN_GIBBS_EXP_FACTOR
,CFN_VAR_ENT
,CFN_FACTOR_ENT
,CFN_BETHE_ENT
);
341 /// Initialise BBP using InfAlg, cost function, and stateP
342 /** Calls bbp.init with adjoints calculated from ia.beliefV and
343 * ia.beliefF. stateP is a Gibbs state and can be NULL, it will be
344 * initialised using a Gibbs run of 2*fg.Iterations() iterations.
346 void initBBPCostFnAdj( BBP
&bbp
, const InfAlg
&ia
, bbp_cfn_t cfn_type
, const std::vector
<size_t> *stateP
);
348 /// Answers question: does the given cost function depend on having a Gibbs state?
349 bool needGibbsState( bbp_cfn_t cfn
);
351 /// Calculate actual value of cost function (cfn_type, stateP)
352 /** This function returns the actual value of the cost function whose
353 * gradient with respect to singleton beliefs is given by
354 * gibbsToB1Adj on the same arguments
356 Real
getCostFn( const InfAlg
&fg
, bbp_cfn_t cfn_type
, const std::vector
<size_t> *stateP
);
358 /// Function to test the validity of adjoints computed by BBP given a state for each variable using numerical derivatives.
359 /** Factors containing a variable are multiplied by psi_1 adjustments to verify accuracy of _adj_psi_V.
360 * \param bp BP object.
361 * \param state Global state of all variables.
362 * \param bbp_props BBP Properties.
363 * \param cfn Cost function to be used.
364 * \param h controls size of perturbation.
366 Real
numericBBPTest( const InfAlg
&bp
, const std::vector
<size_t> *state
, const PropertySet
&bbp_props
, bbp_cfn_t cfn
, Real h
);
369 } // end of namespace dai