1 /* This file is part of libDAI - http://www.libdai.org/
3 * libDAI is licensed under the terms of the GNU General Public License version
4 * 2, or (at your option) any later version. libDAI is distributed without any
5 * warranty. See the file COPYING for more details.
7 * Copyright (C) 2006-2010 Joris Mooij [joris dot mooij at libdai dot org]
8 * Copyright (C) 2006-2007 Radboud University Nijmegen, The Netherlands
13 /// \brief Defines class BP, which implements (Loopy) Belief Propagation
14 /// \todo Consider using a priority_queue for maximum residual schedule
17 #ifndef __defined_libdai_bp_h
18 #define __defined_libdai_bp_h
22 #include <dai/daialg.h>
23 #include <dai/factorgraph.h>
24 #include <dai/properties.h>
31 /// Approximate inference algorithm "(Loopy) Belief Propagation"
32 /** The Loopy Belief Propagation algorithm uses message passing
33 * to approximate marginal probability distributions ("beliefs") for variables
34 * and factors (more precisely, for the subset of variables depending on the factor).
35 * There are two variants, the sum-product algorithm (corresponding to
36 * finite temperature) and the max-product algorithm (corresponding to
39 * The messages \f$m_{I\to i}(x_i)\f$ are passed from factors \f$I\f$ to variables \f$i\f$.
40 * In case of the sum-product algorith, the update equation is:
41 * \f[ m_{I\to i}(x_i) \propto \sum_{x_{N_I\setminus\{i\}}} f_I(x_I) \prod_{j\in N_I\setminus\{i\}} \prod_{J\in N_j\setminus\{I\}} m_{J\to j}\f]
42 * and in case of the max-product algorithm:
43 * \f[ m_{I\to i}(x_i) \propto \max_{x_{N_I\setminus\{i\}}} f_I(x_I) \prod_{j\in N_I\setminus\{i\}} \prod_{J\in N_j\setminus\{I\}} m_{J\to j}\f]
44 * In order to improve convergence, the updates can be damped. For improved numerical stability,
45 * the updates can be done in the log-domain alternatively.
47 * After convergence, the variable beliefs are calculated by:
48 * \f[ b_i(x_i) \propto \prod_{I\in N_i} m_{I\to i}(x_i)\f]
49 * and the factor beliefs are calculated by:
50 * \f[ b_I(x_I) \propto f_I(x_I) \prod_{j\in N_I} \prod_{J\in N_j\setminus\{I\}} m_{J\to j}(x_j) \f]
51 * The logarithm of the partition sum is calculated by:
52 * \f[ \log Z = \sum_i (1 - |N_i|) \sum_{x_i} b_i(x_i) \log b_i(x_i) - \sum_I \sum_{x_I} b_I(x_I) \log \frac{b_I(x_I)}{f_I(x_I)} \f]
54 * For the max-product algorithm, a heuristic way of finding the MAP state (the
55 * joint configuration of all variables which has maximum probability) is provided
56 * by the findMaximum() method, which can be called after convergence.
58 * \note There are two implementations, an optimized one (the default) which caches IndexFor objects,
59 * and a slower, less complicated one which is easier to maintain/understand. The slower one can be
60 * enabled by defining DAI_BP_FAST as false in the source file.
62 class BP
: public DAIAlgFG
{
64 /// Type used for index cache
65 typedef std::vector
<size_t> ind_t
;
66 /// Type used for storing edge properties
68 /// Index cached for this edge
70 /// Old message living on this edge
72 /// New message living on this edge
74 /// Residual for this edge
77 /// Stores all edge properties
78 std::vector
<std::vector
<EdgeProp
> > _edges
;
79 /// Type of lookup table (only used for maximum-residual BP)
80 typedef std::multimap
<Real
, std::pair
<std::size_t, std::size_t> > LutType
;
81 /// Lookup table (only used for maximum-residual BP)
82 std::vector
<std::vector
<LutType::iterator
> > _edge2lut
;
83 /// Lookup table (only used for maximum-residual BP)
85 /// Maximum difference between variable beliefs encountered so far
87 /// Number of iterations needed
89 /// The history of message updates (only recorded if \a recordSentMessages is \c true)
90 std::vector
<std::pair
<std::size_t, std::size_t> > _sentMessages
;
95 /// Enumeration of possible update schedules
96 /** The following update schedules have been defined:
97 * - PARALL parallel updates
98 * - SEQFIX sequential updates using a fixed sequence
99 * - SEQRND sequential updates using a random sequence
100 * - SEQMAX maximum-residual updates [\ref EMK06]
102 DAI_ENUM(UpdateType
,SEQFIX
,SEQRND
,SEQMAX
,PARALL
);
104 /// Enumeration of inference variants
105 /** There are two inference variants:
106 * - SUMPROD Sum-Product
107 * - MAXPROD Max-Product (equivalent to Min-Sum)
109 DAI_ENUM(InfType
,SUMPROD
,MAXPROD
);
111 /// Verbosity (amount of output sent to stderr)
114 /// Maximum number of iterations
117 /// Maximum time (in seconds)
120 /// Tolerance for convergence test
123 /// Whether updates should be done in logarithmic domain or not
126 /// Damping constant (0.0 means no damping, 1.0 is maximum damping)
129 /// Message update schedule
132 /// Inference variant
136 /// Name of this inference algorithm
137 static const char *Name
;
139 /// Specifies whether the history of message updates should be recorded
140 bool recordSentMessages
;
142 /// Stores variable beliefs of previous iteration
143 std::vector
<Factor
> oldBeliefsV
;
145 /// Stores factor beliefs of previous iteration
146 std::vector
<Factor
> oldBeliefsF
;
148 /// Stores the update schedule
149 std::vector
<Edge
> updateSeq
;
152 /// \name Constructors/destructors
154 /// Default constructor
155 BP() : DAIAlgFG(), _edges(), _edge2lut(), _lut(), _maxdiff(0.0), _iters(0U), _sentMessages(), props(), recordSentMessages(false) {}
157 /// Construct from FactorGraph \a fg and PropertySet \a opts
158 /** \param fg Factor graph.
159 * \param opts Parameters @see Properties
161 BP( const FactorGraph
& fg
, const PropertySet
&opts
) : DAIAlgFG(fg
), _edges(), _maxdiff(0.0), _iters(0U), _sentMessages(), props(), recordSentMessages(false) {
162 setProperties( opts
);
167 BP( const BP
&x
) : DAIAlgFG(x
), _edges(x
._edges
), _edge2lut(x
._edge2lut
),
168 _lut(x
._lut
), _maxdiff(x
._maxdiff
), _iters(x
._iters
), _sentMessages(x
._sentMessages
),
169 props(x
.props
), recordSentMessages(x
.recordSentMessages
)
171 for( LutType::iterator l
= _lut
.begin(); l
!= _lut
.end(); ++l
)
172 _edge2lut
[l
->second
.first
][l
->second
.second
] = l
;
175 /// Assignment operator
176 BP
& operator=( const BP
&x
) {
178 DAIAlgFG::operator=( x
);
181 for( LutType::iterator l
= _lut
.begin(); l
!= _lut
.end(); ++l
)
182 _edge2lut
[l
->second
.first
][l
->second
.second
] = l
;
183 _maxdiff
= x
._maxdiff
;
185 _sentMessages
= x
._sentMessages
;
187 recordSentMessages
= x
.recordSentMessages
;
193 /// \name General InfAlg interface
195 virtual BP
* clone() const { return new BP(*this); }
196 virtual std::string
identify() const;
197 virtual Factor
belief( const Var
&v
) const { return beliefV( findVar( v
) ); }
198 virtual Factor
belief( const VarSet
&vs
) const;
199 virtual Factor
beliefV( size_t i
) const;
200 virtual Factor
beliefF( size_t I
) const;
201 virtual std::vector
<Factor
> beliefs() const;
202 virtual Real
logZ() const;
204 virtual void init( const VarSet
&ns
);
206 virtual Real
maxDiff() const { return _maxdiff
; }
207 virtual size_t Iterations() const { return _iters
; }
208 virtual void setProperties( const PropertySet
&opts
);
209 virtual PropertySet
getProperties() const;
210 virtual std::string
printProperties() const;
213 /// \name Additional interface specific for BP
215 /// Calculates the joint state of all variables that has maximum probability
216 /** \pre Assumes that run() has been called and that \a props.inference == \c MAXPROD
218 std::vector
<std::size_t> findMaximum() const;
220 /// Returns history of which messages have been updated
221 const std::vector
<std::pair
<std::size_t, std::size_t> >& getSentMessages() const {
222 return _sentMessages
;
225 /// Clears history of which messages have been updated
226 void clearSentMessages() { _sentMessages
.clear(); }
230 /// Returns constant reference to message from the \a _I 'th neighbor of variable \a i to variable \a i
231 const Prob
& message(size_t i
, size_t _I
) const { return _edges
[i
][_I
].message
; }
232 /// Returns reference to message from the \a _I 'th neighbor of variable \a i to variable \a i
233 Prob
& message(size_t i
, size_t _I
) { return _edges
[i
][_I
].message
; }
234 /// Returns constant reference to updated message from the \a _I 'th neighbor of variable \a i to variable \a i
235 const Prob
& newMessage(size_t i
, size_t _I
) const { return _edges
[i
][_I
].newMessage
; }
236 /// Returns reference to updated message from the \a _I 'th neighbor of variable \a i to variable \a i
237 Prob
& newMessage(size_t i
, size_t _I
) { return _edges
[i
][_I
].newMessage
; }
238 /// Returns constant reference to cached index for the edge between variable \a i and its \a _I 'th neighbor
239 const ind_t
& index(size_t i
, size_t _I
) const { return _edges
[i
][_I
].index
; }
240 /// Returns reference to cached index for the edge between variable \a i and its \a _I 'th neighbor
241 ind_t
& index(size_t i
, size_t _I
) { return _edges
[i
][_I
].index
; }
242 /// Returns constant reference to residual for the edge between variable \a i and its \a _I 'th neighbor
243 const Real
& residual(size_t i
, size_t _I
) const { return _edges
[i
][_I
].residual
; }
244 /// Returns reference to residual for the edge between variable \a i and its \a _I 'th neighbor
245 Real
& residual(size_t i
, size_t _I
) { return _edges
[i
][_I
].residual
; }
247 /// Calculate the product of factor \a I and the incoming messages
248 /** If \a without_i == \c true, the message coming from variable \a i is omitted from the product
249 * \note This function is used by calcNewMessage() and calcBeliefF()
251 virtual Prob
calcIncomingMessageProduct( size_t I
, bool without_i
, size_t i
) const;
252 /// Calculate the updated message from the \a _I 'th neighbor of variable \a i to variable \a i
253 virtual void calcNewMessage( size_t i
, size_t _I
);
254 /// Replace the "old" message from the \a _I 'th neighbor of variable \a i to variable \a i by the "new" (updated) message
255 void updateMessage( size_t i
, size_t _I
);
256 /// Set the residual (difference between new and old message) for the edge between variable \a i and its \a _I 'th neighbor to \a r
257 void updateResidual( size_t i
, size_t _I
, Real r
);
258 /// Finds the edge which has the maximum residual (difference between new and old message)
259 void findMaxResidual( size_t &i
, size_t &_I
);
260 /// Calculates unnormalized belief of variable \a i
261 virtual void calcBeliefV( size_t i
, Prob
&p
) const;
262 /// Calculates unnormalized belief of factor \a I
263 virtual void calcBeliefF( size_t I
, Prob
&p
) const {
264 p
= calcIncomingMessageProduct( I
, false, 0 );
267 /// Helper function for constructors
268 virtual void construct();
272 } // end of namespace dai