1 /* This file is part of libDAI - http://www.libdai.org/
3 * libDAI is licensed under the terms of the GNU General Public License version
4 * 2, or (at your option) any later version. libDAI is distributed without any
5 * warranty. See the file COPYING for more details.
7 * Copyright (C) 2009 Charles Vaske [cvaske at soe dot ucsc dot edu]
8 * Copyright (C) 2009 University of California, Santa Cruz
12 #ifndef __defined_libdai_emalg_h
13 #define __defined_libdai_emalg_h
19 #include <dai/factor.h>
20 #include <dai/daialg.h>
21 #include <dai/evidence.h>
22 #include <dai/index.h>
23 #include <dai/properties.h>
27 /// \brief Defines classes related to Expectation Maximization (EMAlg, ParameterEstimation, CondProbEstimation and SharedParameters)
28 /// \todo Implement parameter estimation for undirected models / factor graphs.
34 /// Base class for parameter estimation methods.
35 /** This class defines the general interface of parameter estimation methods.
37 * Implementations of this interface (see e.g. CondProbEstimation) should
38 * register a factory function (virtual constructor) via the static
39 * registerMethod() function.
40 * This factory function should return a pointer to a newly constructed
41 * object, whose type is a subclass of ParameterEstimation, and gets as
42 * input a PropertySet of parameters. After a subclass has been registered,
43 * instances of it can be constructed using the construct() method.
45 * Implementations are responsible for collecting data from a probability
46 * vector passed to it from a SharedParameters container object.
48 * The default registry only contains CondProbEstimation, named
49 * "CondProbEstimation".
51 * \author Charles Vaske
53 class ParameterEstimation
{
55 /// Type of pointer to factory function.
56 typedef ParameterEstimation
* (*ParamEstFactory
)( const PropertySet
& );
58 /// Virtual destructor for deleting pointers to derived classes.
59 virtual ~ParameterEstimation() {}
61 /// Virtual copy constructor.
62 virtual ParameterEstimation
* clone() const = 0;
64 /// General factory method that constructs the desired ParameterEstimation subclass
65 /** \param method Name of the subclass that should be constructed;
66 * \param p Parameters passed to constructor of subclass.
67 * \note \a method should either be in the default registry or should be registered first using registerMethod().
68 * \throw UNKNOWN_PARAMETER_ESTIMATION_METHOD if the requested \a method is not registered.
70 static ParameterEstimation
* construct( const std::string
&method
, const PropertySet
&p
);
72 /// Register a subclass so that it can be used with construct().
73 static void registerMethod( const std::string
&method
, const ParamEstFactory
&f
) {
74 if( _registry
== NULL
)
75 loadDefaultRegistry();
76 (*_registry
)[method
] = f
;
79 /// Estimate the factor using the accumulated sufficient statistics and reset.
80 virtual Prob
estimate() = 0;
82 /// Accumulate the sufficient statistics for \a p.
83 virtual void addSufficientStatistics( const Prob
&p
) = 0;
85 /// Returns the size of the Prob that should be passed to addSufficientStatistics.
86 virtual size_t probSize() const = 0;
89 /// A static registry containing all methods registered so far.
90 static std::map
<std::string
, ParamEstFactory
> *_registry
;
92 /// Registers default ParameterEstimation subclasses (currently, only CondProbEstimation).
93 static void loadDefaultRegistry();
97 /// Estimates the parameters of a conditional probability table, using pseudocounts.
98 /** \author Charles Vaske
100 class CondProbEstimation
: private ParameterEstimation
{
102 /// Number of states of the variable of interest
104 /// Current pseudocounts
106 /// Initial pseudocounts
111 /** For a conditional probability \f$ P( X | Y ) \f$,
112 * \param target_dimension should equal \f$ | X | \f$
113 * \param pseudocounts are the initial pseudocounts, of length \f$ |X| \cdot |Y| \f$
115 CondProbEstimation( size_t target_dimension
, const Prob
&pseudocounts
);
117 /// Virtual constructor, using a PropertySet.
118 /** Some keys in the PropertySet are required.
119 * For a conditional probability \f$ P( X | Y ) \f$,
120 * - \a target_dimension should be equal to \f$ | X | \f$
121 * - \a total_dimension should be equal to \f$ |X| \cdot |Y| \f$
123 * An optional key is:
124 * - \a pseudo_count which specifies the initial counts (defaults to 1)
126 static ParameterEstimation
* factory( const PropertySet
&p
);
128 /// Virtual copy constructor
129 virtual ParameterEstimation
* clone() const { return new CondProbEstimation( _target_dim
, _initial_stats
); }
131 /// Virtual destructor
132 virtual ~CondProbEstimation() {}
134 /// Returns an estimate of the conditional probability distribution.
135 /** The format of the resulting Prob keeps all the values for
136 * \f$ P(X | Y=y) \f$ in sequential order in the array.
138 virtual Prob
estimate();
140 /// Accumulate sufficient statistics from the expectations in \a p
141 virtual void addSufficientStatistics( const Prob
&p
);
143 /// Returns the required size for arguments to addSufficientStatistics().
144 virtual size_t probSize() const { return _stats
.size(); }
148 /// Represents a single factor or set of factors whose parameters should be estimated.
149 /** To ensure that parameters can be shared between different factors during
150 * EM learning, each factor's values are reordered to match a desired variable
151 * ordering. The ordering of the variables in a factor may therefore differ
152 * from the canonical ordering used in libDAI. The SharedParameters
153 * class combines one or more factors (together with the specified orderings
154 * of the variables) with a ParameterEstimation object, taking care of the
155 * necessary permutations of the factor entries / parameters.
157 * \author Charles Vaske
159 class SharedParameters
{
161 /// Convenience label for an index of a factor in a FactorGraph.
162 typedef size_t FactorIndex
;
163 /// Convenience label for a grouping of factor orientations.
164 typedef std::map
<FactorIndex
, std::vector
<Var
> > FactorOrientations
;
167 /// Maps factor indices to the corresponding VarSets
168 std::map
<FactorIndex
, VarSet
> _varsets
;
169 /// Maps factor indices to the corresponding Permute objects that permute the canonical ordering into the desired ordering
170 std::map
<FactorIndex
, Permute
> _perms
;
171 /// Maps factor indices to the corresponding desired variable orderings
172 FactorOrientations _varorders
;
173 /// Parameter estimation method to be used
174 ParameterEstimation
*_estimation
;
175 /// Indicates whether \c *this gets ownership of _estimation
178 /// Calculates the permutation that permutes the canonical ordering into the desired ordering
179 /** \param varOrder Desired ordering of variables
180 * \param outVS Contains variables in \a varOrder represented as a VarSet
181 * \return Permute object for permuting variables in varOrder from the canonical libDAI ordering into the desired ordering
183 static Permute
calculatePermutation( const std::vector
<Var
> &varOrder
, VarSet
&outVS
);
185 /// Initializes _varsets and _perms from _varorders and checks whether their state spaces correspond with _estimation.probSize()
186 void setPermsAndVarSetsFromVarOrders();
190 /** \param varorders all the factor orientations for this parameter
191 * \param estimation a pointer to the parameter estimation method
192 * \param ownPE whether the constructed object gets ownership of \a estimation
194 SharedParameters( const FactorOrientations
&varorders
, ParameterEstimation
*estimation
, bool ownPE
=false );
196 /// Construct a SharedParameters object from an input stream \a is and a factor graph \a fg
197 /** \see \ref fileformats-emalg-sharedparameters
198 * \throw INVALID_EMALG_FILE if the input stream is not valid
200 SharedParameters( std::istream
&is
, const FactorGraph
&fg
);
203 SharedParameters( const SharedParameters
&sp
) : _varsets(sp
._varsets
), _perms(sp
._perms
), _varorders(sp
._varorders
), _estimation(sp
._estimation
), _ownEstimation(sp
._ownEstimation
) {
204 // If sp owns its _estimation object, we should clone it instead of copying the pointer
206 _estimation
= _estimation
->clone();
210 ~SharedParameters() {
211 // If we own the _estimation object, we should delete it now
216 /// Collect the sufficient statistics from expected values (beliefs) according to \a alg
217 /** For each of the relevant factors (that shares the parameters we are interested in),
218 * the corresponding belief according to \a alg is obtained and its entries are permuted
219 * such that their ordering corresponds with the shared parameters that we are estimating.
220 * Then, the parameter estimation subclass method addSufficientStatistics() is called with
221 * this vector of expected values of the parameters as input.
223 void collectSufficientStatistics( InfAlg
&alg
);
225 /// Estimate and set the shared parameters
226 /** Based on the sufficient statistics collected so far, the shared parameters are estimated
227 * using the parameter estimation subclass method estimate(). Then, each of the relevant
228 * factors in \a fg (that shares the parameters we are interested in) is set according
229 * to those parameters (permuting the parameters accordingly).
231 void setParameters( FactorGraph
&fg
);
235 /// A MaximizationStep groups together several parameter estimation tasks (SharedParameters objects) into a single unit.
236 /** \author Charles Vaske
238 class MaximizationStep
{
240 /// Vector of parameter estimation tasks of which this maximization step consists
241 std::vector
<SharedParameters
> _params
;
244 /// Default constructor
245 MaximizationStep() : _params() {}
247 /// Construct MaximizationStep from a vector of parameter estimation tasks
248 MaximizationStep( std::vector
<SharedParameters
> &maximizations
) : _params(maximizations
) {}
250 /// Constructor from an input stream and a corresponding factor graph
251 /** \see \ref fileformats-emalg-maximizationstep
253 MaximizationStep( std::istream
&is
, const FactorGraph
&fg_varlookup
);
255 /// Collect the beliefs from this InfAlg as expectations for the next Maximization step
256 void addExpectations( InfAlg
&alg
);
258 /// Using all of the currently added expectations, make new factors with maximized parameters and set them in the FactorGraph.
259 void maximize( FactorGraph
&fg
);
261 /// \name Iterator interface
263 /// Iterator over the parameter estimation tasks
264 typedef std::vector
<SharedParameters
>::iterator iterator
;
265 /// Constant iterator over the parameter estimation tasks
266 typedef std::vector
<SharedParameters
>::const_iterator const_iterator
;
268 /// Returns iterator that points to the first parameter estimation task
269 iterator
begin() { return _params
.begin(); }
270 /// Returns constant iterator that points to the first parameter estimation task
271 const_iterator
begin() const { return _params
.begin(); }
272 /// Returns iterator that points beyond the last parameter estimation task
273 iterator
end() { return _params
.end(); }
274 /// Returns constant iterator that points beyond the last parameter estimation task
275 const_iterator
end() const { return _params
.end(); }
280 /// EMAlg performs Expectation Maximization to learn factor parameters.
281 /** This requires specifying:
282 * - Evidence (instances of observations from the graphical model),
283 * - InfAlg for performing the E-step (which includes the factor graph),
284 * - a vector of MaximizationStep 's steps to be performed.
286 * This implementation can perform incremental EM by using multiple
287 * MaximizationSteps. An expectation step is performed between execution
288 * of each MaximizationStep. A call to iterate() will cycle through all
289 * MaximizationStep 's. A call to run() will call iterate() until the
290 * termination criteria have been met.
292 * Having multiple and separate maximization steps allows for maximizing some
293 * parameters, performing another E-step, and then maximizing separate
294 * parameters, which may result in faster convergence in some cases.
296 * \author Charles Vaske
300 /// All the data samples used during learning
301 const Evidence
&_evidence
;
303 /// How to do the expectation step
306 /// The maximization steps to take
307 std::vector
<MaximizationStep
> _msteps
;
309 /// Number of iterations done
312 /// History of likelihoods
313 std::vector
<Real
> _lastLogZ
;
315 /// Maximum number of iterations
318 /// Convergence tolerance
322 /// Key for setting maximum iterations
323 static const std::string MAX_ITERS_KEY
;
324 /// Default maximum iterations
325 static const size_t MAX_ITERS_DEFAULT
;
326 /// Key for setting likelihood termination condition
327 static const std::string LOG_Z_TOL_KEY
;
328 /// Default likelihood tolerance
329 static const Real LOG_Z_TOL_DEFAULT
;
331 /// Construct an EMAlg from several objects
332 /** \param evidence Specifies the observed evidence
333 * \param estep Inference algorithm to be used for the E-step
334 * \param msteps Vector of maximization steps, each of which is a group of parameter estimation tasks
335 * \param termconditions Termination conditions @see setTermConditions()
337 EMAlg( const Evidence
&evidence
, InfAlg
&estep
, std::vector
<MaximizationStep
> &msteps
, const PropertySet
&termconditions
)
338 : _evidence(evidence
), _estep(estep
), _msteps(msteps
), _iters(0), _lastLogZ(), _max_iters(MAX_ITERS_DEFAULT
), _log_z_tol(LOG_Z_TOL_DEFAULT
)
340 setTermConditions( termconditions
);
343 /// Construct an EMAlg from Evidence \a evidence, an InfAlg \a estep, and an input stream \a mstep_file
344 /** \see \ref fileformats-emalg
346 EMAlg( const Evidence
&evidence
, InfAlg
&estep
, std::istream
&mstep_file
);
348 /// Change the conditions for termination
349 /** There are two possible parameters in the PropertySet \a p:
350 * - \a max_iters maximum number of iterations
351 * - \a log_z_tol critical proportion of increase in logZ
353 * \see hasSatisifiedTermConditions()
355 void setTermConditions( const PropertySet
&p
);
357 /// Determine if the termination conditions have been met.
358 /** There are two sufficient termination conditions:
359 * -# the maximum number of iterations has been performed
360 * -# the ratio of logZ increase over previous logZ is less than the
362 * \f$ \frac{\log(Z_t) - \log(Z_{t-1})}{| \log(Z_{t-1}) | } < \mathrm{tol} \f$.
364 bool hasSatisfiedTermConditions() const;
366 /// Return the last calculated log likelihood
367 Real
logZ() const { return _lastLogZ
.back(); }
369 /// Returns number of iterations done so far
370 size_t Iterations() const { return _iters
; }
372 /// Get the E-step method used
373 const InfAlg
& eStep() const { return _estep
; }
375 /// Iterate once over all maximization steps
376 /** \return Log-likelihood after iteration
380 /// Iterate over a single MaximizationStep
381 Real
iterate( MaximizationStep
&mstep
);
383 /// Iterate until termination conditions are satisfied
386 /// \name Iterator interface
388 /// Iterator over the maximization steps
389 typedef std::vector
<MaximizationStep
>::iterator s_iterator
;
390 /// Constant iterator over the maximization steps
391 typedef std::vector
<MaximizationStep
>::const_iterator const_s_iterator
;
393 /// Returns iterator that points to the first maximization step
394 s_iterator
s_begin() { return _msteps
.begin(); }
395 /// Returns constant iterator that points to the first maximization step
396 const_s_iterator
s_begin() const { return _msteps
.begin(); }
397 /// Returns iterator that points beyond the last maximization step
398 s_iterator
s_end() { return _msteps
.end(); }
399 /// Returns constant iterator that points beyond the last maximization step
400 const_s_iterator
s_end() const { return _msteps
.end(); }
405 } // end of namespace dai
408 /** \example example_sprinkler_em.cpp
409 * This example shows how to use the EMAlg class.