1 /* Copyright (C) 2006-2008 Joris Mooij [joris dot mooij at tuebingen dot mpg dot de]
2 Radboud University Nijmegen, The Netherlands /
3 Max Planck Institute for Biological Cybernetics, Germany
5 This file is part of libDAI.
7 libDAI is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 libDAI is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with libDAI; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 /// \brief Defines the FactorGraph class
25 /// \todo Improve documentation
28 #ifndef __defined_libdai_factorgraph_h
29 #define __defined_libdai_factorgraph_h
34 #include <dai/bipgraph.h>
35 #include <dai/factor.h>
41 /// Represents a factor graph.
42 /** Both Bayesian Networks and Markov random fields can be represented in a
43 * unifying representation, called <em>factor graph</em> [\ref KFL01],
44 * implemented in libDAI by the FactorGraph class.
46 * Consider a probability distribution over \f$N\f$ discrete random variables
47 * \f$x_0,x_1,\dots,x_N\f$ that factorizes as a product of factors, each of
48 * which depends on some subset of the variables:
50 * P(x_0,x_1,\dots,x_N) = \frac{1}{Z} \prod_{I=0}^M f_I(x_I), \qquad
51 * Z = \sum_{x_0}\dots\sum_{x_N} \prod_{I=0}^M f_I(X_I).
53 * Each factor \f$f_I\f$ is a function from an associated subset
54 * of variables \f$X_I \subset \{x_0,x_1,\dots,x_N\}\f$ to the nonnegative
57 * For a Bayesian network, each factor corresponds to a (conditional)
58 * probability table, whereas for a Markov random field, each factor
59 * corresponds to a maximal clique of the undirected graph.
61 * Factor graphs explicitly express the factorization structure of the
62 * corresponding probability distribution.
66 /// Stores the neighborhood structure
69 /// Shorthand for BipartiteGraph::Neighbor
70 typedef BipartiteGraph::Neighbor Neighbor
;
72 /// Shorthand for BipartiteGraph::Neighbors
73 typedef BipartiteGraph::Neighbors Neighbors
;
75 /// Shorthand for BipartiteGraph::Edge
76 typedef BipartiteGraph::Edge Edge
;
79 std::vector
<Var
> _vars
;
80 std::vector
<Factor
> _factors
;
81 std::map
<size_t,Factor
> _backup
;
84 /// Default constructor
85 FactorGraph() : G(), _vars(), _factors(), _backup() {}
88 FactorGraph(const FactorGraph
& x
) : G(x
.G
), _vars(x
._vars
), _factors(x
._factors
), _backup(x
._backup
) {}
90 /// Assignment operator
91 FactorGraph
& operator=(const FactorGraph
& x
) {
95 _factors
= x
._factors
;
101 /// Constructs a FactorGraph from a vector of factors
102 FactorGraph(const std::vector
<Factor
> &P
);
104 /// Constructs a FactorGraph from given factor and variable iterators
105 /** \tparam FactorInputIterator Iterator with value_type Factor
106 * \tparam VarInputIterator Iterator with value_type Var
107 * \pre Assumes that the set of variables in [var_begin,var_end) is the union of the variables in the factors in [fact_begin, fact_end)
109 template<typename FactorInputIterator
, typename VarInputIterator
>
110 FactorGraph(FactorInputIterator fact_begin
, FactorInputIterator fact_end
, VarInputIterator var_begin
, VarInputIterator var_end
, size_t nr_fact_hint
= 0, size_t nr_var_hint
= 0 );
113 virtual ~FactorGraph() {}
115 /// Clone *this (virtual copy constructor)
116 virtual FactorGraph
* clone() const { return new FactorGraph(); }
118 /// Create (virtual default constructor)
119 virtual FactorGraph
* create() const { return new FactorGraph(*this); }
121 /// Returns const reference to i'th variable
122 const Var
& var(size_t i
) const { return _vars
[i
]; }
123 /// Returns const reference to all factors
124 const std::vector
<Var
> & vars() const { return _vars
; }
125 /// Returns reference to I'th factor
126 Factor
& factor(size_t I
) { return _factors
[I
]; }
127 /// Returns const reference to I'th factor
128 const Factor
& factor(size_t I
) const { return _factors
[I
]; }
129 /// Returns const reference to all factors
130 const std::vector
<Factor
> & factors() const { return _factors
; }
132 /// Returns number of variables
133 size_t nrVars() const { return vars().size(); }
134 /// Returns number of factors
135 size_t nrFactors() const { return factors().size(); }
136 /// Calculates number of edges
137 size_t nrEdges() const { return G
.nrEdges(); }
139 /// Provides read access to neighbors of variable
140 const Neighbors
& nbV( size_t i
) const { return G
.nb1(i
); }
141 /// Provides full access to neighbors of variable
142 Neighbors
& nbV( size_t i
) { return G
.nb1(i
); }
143 /// Provides read access to neighbors of factor
144 const Neighbors
& nbF( size_t I
) const { return G
.nb2(I
); }
145 /// Provides full access to neighbors of factor
146 Neighbors
& nbF( size_t I
) { return G
.nb2(I
); }
147 /// Provides read access to neighbor of variable
148 const Neighbor
& nbV( size_t i
, size_t _I
) const { return G
.nb1(i
)[_I
]; }
149 /// Provides full access to neighbor of variable
150 Neighbor
& nbV( size_t i
, size_t _I
) { return G
.nb1(i
)[_I
]; }
151 /// Provides read access to neighbor of factor
152 const Neighbor
& nbF( size_t I
, size_t _i
) const { return G
.nb2(I
)[_i
]; }
153 /// Provides full access to neighbor of factor
154 Neighbor
& nbF( size_t I
, size_t _i
) { return G
.nb2(I
)[_i
]; }
156 /// Returns the index of a particular variable
157 size_t findVar( const Var
& n
) const {
158 size_t i
= find( vars().begin(), vars().end(), n
) - vars().begin();
159 assert( i
!= nrVars() );
163 /// Returns a set of indexes corresponding to a set of variables
164 std::set
<size_t> findVars( VarSet
&ns
) const {
165 std::set
<size_t> indexes
;
166 for( VarSet::const_iterator n
= ns
.begin(); n
!= ns
.end(); n
++ )
167 indexes
.insert( findVar( *n
) );
171 /// Returns index of the first factor that depends on the variables
172 size_t findFactor(const VarSet
&ns
) const {
174 for( I
= 0; I
< nrFactors(); I
++ )
175 if( factor(I
).vars() == ns
)
177 assert( I
!= nrFactors() );
181 /// Return all variables that occur in a factor involving the i'th variable, itself included
182 VarSet
Delta( unsigned i
) const;
184 /// Return all variables that occur in a factor involving some variable in ns, ns itself included
185 VarSet
Delta( const VarSet
&ns
) const;
187 /// Return all variables that occur in a factor involving the i'th variable, n itself excluded
188 VarSet
delta( unsigned i
) const;
190 /// Return all variables that occur in a factor involving some variable in ns, ns itself excluded
191 VarSet
delta( const VarSet
& ns
) const {
192 return Delta( ns
) / ns
;
195 /// Set the content of the I'th factor and make a backup of its old content if backup == true
196 virtual void setFactor( size_t I
, const Factor
&newFactor
, bool backup
= false ) {
197 assert( newFactor
.vars() == factor(I
).vars() );
200 _factors
[I
] = newFactor
;
203 /// Set the contents of all factors as specified by facs and make a backup of the old contents if backup == true
204 virtual void setFactors( const std::map
<size_t, Factor
> & facs
, bool backup
= false ) {
205 for( std::map
<size_t, Factor
>::const_iterator fac
= facs
.begin(); fac
!= facs
.end(); fac
++ ) {
207 backupFactor( fac
->first
);
208 setFactor( fac
->first
, fac
->second
);
212 /// Clamp variable n to value i (i.e. multiply with a Kronecker delta \f$\delta_{x_n, i}\f$);
213 /// If backup == true, make a backup of all factors that are changed
214 virtual void clamp( const Var
& n
, size_t i
, bool backup
= false );
216 /// Set all factors interacting with the i'th variable 1
217 virtual void makeCavity( unsigned i
, bool backup
= false );
219 /// Backup the factors specified by indices in facs
220 virtual void backupFactors( const std::set
<size_t> & facs
);
222 /// Restore all factors to the backup copies
223 virtual void restoreFactors();
225 /// Returns true if the FactorGraph is connected
226 bool isConnected() const { return G
.isConnected(); }
228 /// Returns true if the FactorGraph is a tree
229 bool isTree() const { return G
.isTree(); }
231 /// Returns true if each factor depends on at most two variables
232 bool isPairwise() const;
234 /// Returns true if each variable has only two possible values
235 bool isBinary() const;
237 /// Reads a FactorGraph from a file
238 void ReadFromFile(const char *filename
);
240 /// Writes a FactorGraph to a file
241 void WriteToFile(const char *filename
) const;
243 /// Writes a FactorGraph to a GraphViz .dot file
244 void printDot( std::ostream
& os
) const;
246 /// Returns the cliques in this FactorGraph
247 std::vector
<VarSet
> Cliques() const;
249 /// Clamp variable v_i to value state (i.e. multiply with a Kronecker delta \f$\delta_{x_{v_i},x}\f$);
250 /** This version changes the factor graph structure and thus returns a newly constructed FactorGraph
251 * and keeps the current one constant, contrary to clamp()
253 FactorGraph
clamped( const Var
& v_i
, size_t x
) const;
255 /// Returns a copy of *this, where all factors that are subsumed by some larger factor are merged with the larger factors.
256 FactorGraph
maximalFactors() const;
258 /// Makes a backup of the I'th Factor
259 void restoreFactor( size_t I
);
261 /// Restores the I'th Factor from the backup (it should be backed up first)
262 void backupFactor( size_t I
);
264 /// Makes a backup of all factors connected to a set of variables
265 void backupFactors( const VarSet
&ns
);
266 /// Restores all factors connected to a set of variables from their backups
267 void restoreFactors( const VarSet
&ns
);
270 friend std::ostream
& operator << (std::ostream
& os
, const FactorGraph
& fg
);
271 friend std::istream
& operator >> (std::istream
& is
, FactorGraph
& fg
);
274 /// Part of constructors (creates edges, neighbors and adjacency matrix)
275 void constructGraph( size_t nrEdges
);
279 template<typename FactorInputIterator
, typename VarInputIterator
>
280 FactorGraph::FactorGraph(FactorInputIterator fact_begin
, FactorInputIterator fact_end
, VarInputIterator var_begin
, VarInputIterator var_end
, size_t nr_fact_hint
, size_t nr_var_hint
) : G(), _backup() {
283 _factors
.reserve( nr_fact_hint
);
284 for( FactorInputIterator p2
= fact_begin
; p2
!= fact_end
; ++p2
) {
285 _factors
.push_back( *p2
);
286 nrEdges
+= p2
->vars().size();
290 _vars
.reserve( nr_var_hint
);
291 for( VarInputIterator p1
= var_begin
; p1
!= var_end
; ++p1
)
292 _vars
.push_back( *p1
);
294 // create graph structure
295 constructGraph( nrEdges
);
299 } // end of namespace dai