1 /* This file is part of libDAI - http://www.libdai.org/
3 * libDAI is licensed under the terms of the GNU General Public License version
4 * 2, or (at your option) any later version. libDAI is distributed without any
5 * warranty. See the file COPYING for more details.
7 * Copyright (C) 2009 Frederik Eaton
12 /// \brief Defines class FBP, which implements Fractional Belief Propagation
15 #ifndef __defined_libdai_fbp_h
16 #define __defined_libdai_fbp_h
20 #include <dai/daialg.h>
21 #include <dai/factorgraph.h>
22 #include <dai/properties.h>
30 /// Approximate inference algorithm "Fractional Belief Propagation" [\ref WiH03]
31 /** The Fractional Belief Propagation algorithm is like Belief
32 * Propagation, but associates each factor with a scale parameter
33 * which controls the divergence measure being minimized. Standard
34 * Belief Propagation corresponds to the case of FBP where each scale
35 * parameter is 1. When cast as an EP algorithm, BP (and EP) minimize
36 * the inclusive KL-divergence, i.e. \f$\min_q KL(p||q)\f$ (note that the
37 * Bethe free energy is typically derived from \f$ KL(q||p) \f$). If each
38 * factor \a I has scale parameter \f$ c_I \f$, then FBP minimizes the
39 * alpha-divergence with \f$ \alpha=1/c_I \f$ for that factor, which also
40 * corresponds to Power EP [\ref Min05].
42 * The messages \f$m_{I\to i}(x_i)\f$ are passed from factors \f$I\f$ to variables \f$i\f$.
43 * The update equation is given by:
44 * \f[ m_{I\to i}(x_i) \propto \left( \sum_{x_{N_I\setminus\{i\}}} f_I(x_I)^{1/c_I} \prod_{j\in N_I\setminus\{i\}} m_{I\to j}^{1-1/c_I}\right)^{c_I} \prod_{J\in N_j\setminus\{I\}} m_{J\to j} \f]
45 * After convergence, the variable beliefs are calculated by:
46 * \f[ b_i(x_i) \propto \prod_{I\in N_i} m_{I\to i} \f]
47 * and the factor beliefs are calculated by:
48 * \f[ b_I(x_I) \propto f_I(x_I)^{1/c_I} \prod_{j \in N_I} m_{I\to j}^{1-1/c_I} \prod_{J\in N_j\setminus\{I\}} m_{J\to j} \f]
50 * \todo Implement logZ
51 * \todo Why are the _scale_var necessary?
52 * \todo Add nice way to set scale parameters
54 * \author Frederik Eaton
56 class FBP
: public BP
{
58 /// Factor scale parameters (indexed by factor ID)
59 std::vector
<Real
> _scale_factor
;
60 /// Variable scale parameters (indexed by variable ID)
61 /** \note Equal to sum of scale parameters of neighboring factors
63 std::vector
<Real
> _scale_var
;
66 /// Name of this inference algorithm
67 static const char *Name
;
70 /// \name Constructors/destructors
72 /// Default constructor
73 FBP() : BP(), _scale_factor(), _scale_var() {}
75 /// Construct from FactorGraph \a fg and PropertySet \a opts
76 /** \param opts Parameters @see BP::Properties
78 FBP( const FactorGraph
&fg
, const PropertySet
&opts
) : BP(fg
, opts
), _scale_factor(), _scale_var() {
79 setProperties( opts
);
84 /// \name General InfAlg interface
86 virtual FBP
* clone() const { return new FBP(*this); }
87 virtual std::string
identify() const;
90 /// \name FBP accessors/mutators for scale parameters
92 /// Returns scale parameter of the \a I 'th factor
93 Real
scaleF( size_t I
) const { return _scale_factor
[I
]; }
95 /// Returns constant reference to vector of all factor scale parameters
96 const std::vector
<Real
>& scaleFs() const { return _scale_factor
; }
98 /// Returns scale parameter of the \a i 'th variable
99 Real
scaleV( size_t i
) const { return _scale_var
[i
]; }
101 /// Returns constant reference to vector of all variable scale parameters
102 const std::vector
<Real
>& scaleVs() const { return _scale_var
; }
104 /// Sets the scale parameter of the \a I 'th factor to \a c
105 void setScaleF( size_t I
, Real c
) {
106 _scale_factor
[I
] = c
;
107 foreach( const Neighbor
&i
, nbF(I
) )
111 /// Sets the scale parameters of all factors simultaenously
112 /** \note Faster than calling setScaleF(size_t,Real) for each factor
114 void setScaleFs( const std::vector
<Real
> &c
) {
119 /// Recalculates all variable scale parameters
120 /** \note For each variable, its scale parameter is set to
121 * the sum of the scale parameters of its neighboring factors.
123 void recalcScaleVs() {
124 for( size_t i
= 0; i
< nrVars(); i
++ )
128 /// Recalculates the scale parameter of the \a i 'th variable
129 /** \note The scale parameter is set to the sum of the scale parameters of its neighboring factors.
131 void recalcScaleV( size_t i
) {
132 // Set _scale_var[i] to the sum of its neighbors
134 foreach( const Neighbor
&I
, nbV(i
) )
140 // Calculate the updated message from the \a _I 'th neighbor of variable \a i to variable \a i
141 virtual void calcNewMessage( size_t i
, size_t _I
);
143 // Calculates unnormalized belief of factor \a I
144 virtual void calcBeliefF( size_t I
, Prob
&p
) const;
146 // Helper function for constructors
147 virtual void construct();
149 /// (Re)constructs the scale parameters data structures
150 void constructScaleParams() {
151 _scale_factor
.resize( nrFactors(), 1.0 );
152 _scale_var
.resize( nrVars() );
158 } // end of namespace dai