1 /* Copyright (C) 2006-2008 Joris Mooij [j dot mooij at science dot ru dot nl]
2 Radboud University Nijmegen, The Netherlands
4 This file is part of libDAI.
6 libDAI is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 libDAI is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with libDAI; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 #ifndef __defined_libdai_hak_h
23 #define __defined_libdai_hak_h
27 #include <dai/daialg.h>
28 #include <dai/regiongraph.h>
30 #include <dai/properties.h>
36 /// HAK provides an implementation of the single and double-loop algorithms by Heskes, Albers and Kappen
37 class HAK
: public DAIAlgRG
{
39 std::vector
<Factor
> _Qa
;
40 std::vector
<Factor
> _Qb
;
41 std::vector
<std::vector
<Factor
> > _muab
;
42 std::vector
<std::vector
<Factor
> > _muba
;
43 /// Maximum difference encountered so far
45 /// Number of iterations needed
54 DAI_ENUM(ClustersType
,MIN
,DELTA
,LOOP
)
55 ClustersType clusters
;
59 /// Name of this inference method
60 static const char *Name
;
63 /// Default constructor
64 HAK() : DAIAlgRG(), _Qa(), _Qb(), _muab(), _muba(), _maxdiff(0.0), _iters(0U), props() {}
66 /// Construct from FactorGraph fg and PropertySet opts
67 HAK( const FactorGraph
&fg
, const PropertySet
&opts
);
69 /// Construct from RegionGraph rg and PropertySet opts
70 HAK( const RegionGraph
&rg
, const PropertySet
&opts
);
73 HAK( const HAK
&x
) : DAIAlgRG(x
), _Qa(x
._Qa
), _Qb(x
._Qb
), _muab(x
._muab
), _muba(x
._muba
), _maxdiff(x
._maxdiff
), _iters(x
._iters
), props(x
.props
) {}
75 /// Clone *this (virtual copy constructor)
76 virtual HAK
* clone() const { return new HAK(*this); }
78 /// Create (virtual default constructor)
79 virtual HAK
* create() const { return new HAK(); }
81 /// Assignment operator
82 HAK
& operator=( const HAK
&x
) {
84 DAIAlgRG::operator=( x
);
89 _maxdiff
= x
._maxdiff
;
96 /// Identifies itself for logging purposes
97 virtual std::string
identify() const;
99 /// Get single node belief
100 virtual Factor
belief( const Var
&n
) const;
102 /// Get general belief
103 virtual Factor
belief( const VarSet
&ns
) const;
106 virtual std::vector
<Factor
> beliefs() const;
108 /// Get log partition sum
109 virtual Real
logZ() const;
111 /// Clear messages and beliefs
114 /// Clear messages and beliefs corresponding to the nodes in ns
115 virtual void init( const VarSet
&ns
);
117 /// The actual approximate inference algorithm
118 virtual double run();
120 /// Return maximum difference between single node beliefs in the last pass
121 virtual double maxDiff() const { return _maxdiff
; }
123 /// Return number of passes over the factorgraph
124 virtual size_t Iterations() const { return _iters
; }
127 Factor
& muab( size_t alpha
, size_t _beta
) { return _muab
[alpha
][_beta
]; }
128 Factor
& muba( size_t alpha
, size_t _beta
) { return _muba
[alpha
][_beta
]; }
129 const Factor
& Qa( size_t alpha
) const { return _Qa
[alpha
]; };
130 const Factor
& Qb( size_t beta
) const { return _Qb
[beta
]; };
133 double doDoubleLoop();
135 void setProperties( const PropertySet
&opts
);
136 PropertySet
getProperties() const;
137 std::string
printProperties() const;
140 void constructMessages();
141 void findLoopClusters( const FactorGraph
&fg
, std::set
<VarSet
> &allcl
, VarSet newcl
, const Var
& root
, size_t length
, VarSet vars
);
145 } // end of namespace dai