1 /* This file is part of libDAI - http://www.libdai.org/
3 * libDAI is licensed under the terms of the GNU General Public License version
4 * 2, or (at your option) any later version. libDAI is distributed without any
5 * warranty. See the file COPYING for more details.
7 * Copyright (C) 2006-2009 Joris Mooij [joris dot mooij at libdai dot org]
8 * Copyright (C) 2006-2007 Radboud University Nijmegen, The Netherlands
13 /// \brief Defines class HAK, which implements a variant of Generalized Belief Propagation.
14 /// \todo Implement Bethe approximation as a standard region graph choice in HAK.
15 /// \idea Implement more general region graphs and corresponding Generalized Belief Propagation updates as described in [\ref YFW05].
18 #ifndef __defined_libdai_hak_h
19 #define __defined_libdai_hak_h
23 #include <dai/daialg.h>
24 #include <dai/regiongraph.h>
26 #include <dai/properties.h>
32 /// Approximate inference algorithm: implementation of single-loop ("Generalized Belief Propagation") and double-loop algorithms by Heskes, Albers and Kappen [\ref HAK03]
33 class HAK
: public DAIAlgRG
{
35 /// Outer region beliefs
36 std::vector
<Factor
> _Qa
;
37 /// Inner region beliefs
38 std::vector
<Factor
> _Qb
;
39 /// Messages from outer to inner regions
40 std::vector
<std::vector
<Factor
> > _muab
;
41 /// Messages from inner to outer regions
42 std::vector
<std::vector
<Factor
> > _muba
;
43 /// Maximum difference encountered so far
45 /// Number of iterations needed
49 /// Parameters for HAK
51 /// Enumeration of possible cluster choices
52 /** The following cluster choices are defined:
53 * - MIN minimal clusters, i.e., one outer region for each maximal factor
54 * - DELTA one outer region for each variable and its Markov blanket
55 * - LOOP one cluster for each loop of length at most \a Properties::loopdepth, and in addition one cluster for each maximal factor
57 DAI_ENUM(ClustersType
,MIN
,DELTA
,LOOP
);
59 /// Enumeration of possible message initializations
60 DAI_ENUM(InitType
,UNIFORM
,RANDOM
);
62 /// Verbosity (amount of output sent to stderr)
65 /// Maximum number of iterations
68 /// Tolerance for convergence test
71 /// Damping constant (0.0 means no damping, 1.0 is maximum damping)
74 /// How to choose the outer regions
75 ClustersType clusters
;
77 /// How to initialize the messages
80 /// Use single-loop (GBP) or double-loop (HAK)
83 /// Depth of loops (only relevant for \a clusters == \c ClustersType::LOOP)
87 /// Name of this inference algorithm
88 static const char *Name
;
91 /// \name Constructors/destructors
93 /// Default constructor
94 HAK() : DAIAlgRG(), _Qa(), _Qb(), _muab(), _muba(), _maxdiff(0.0), _iters(0U), props() {}
96 /// Construct from FactorGraph \a fg and PropertySet \a opts
97 /** \param opts Parameters @see Properties
99 HAK( const FactorGraph
&fg
, const PropertySet
&opts
);
101 /// Construct from RegionGraph \a rg and PropertySet \a opts
102 HAK( const RegionGraph
&rg
, const PropertySet
&opts
);
106 /// \name General InfAlg interface
108 virtual HAK
* clone() const { return new HAK(*this); }
109 virtual std::string
identify() const;
110 virtual Factor
belief( const VarSet
&vs
) const;
111 virtual std::vector
<Factor
> beliefs() const;
112 virtual Real
logZ() const;
114 virtual void init( const VarSet
&vs
);
116 virtual Real
maxDiff() const { return _maxdiff
; }
117 virtual size_t Iterations() const { return _iters
; }
118 virtual void setProperties( const PropertySet
&opts
);
119 virtual PropertySet
getProperties() const;
120 virtual std::string
printProperties() const;
124 /// \name Additional interface specific for HAK
126 /// Returns reference to message from outer region \a alpha to its \a _beta 'th neighboring inner region
127 Factor
& muab( size_t alpha
, size_t _beta
) { return _muab
[alpha
][_beta
]; }
128 /// Returns reference to message the \a _beta 'th neighboring inner region of outer region \a alpha to that outer region
129 Factor
& muba( size_t alpha
, size_t _beta
) { return _muba
[alpha
][_beta
]; }
130 /// Returns belief of outer region \a alpha
131 const Factor
& Qa( size_t alpha
) const { return _Qa
[alpha
]; };
132 /// Returns belief of inner region \a beta
133 const Factor
& Qb( size_t beta
) const { return _Qb
[beta
]; };
135 /// Runs single-loop algorithm (algorithm 1 in [\ref HAK03])
137 /// Runs double-loop algorithm (as described in section 4.2 of [\ref HAK03]), which always convergences
142 /// Helper function for constructors
144 /// Recursive procedure for finding clusters of variables containing loops of length at most \a length
145 /** \param fg the factor graph
146 * \param allcl the clusters found so far
147 * \param newcl partial candidate cluster
148 * \param root start (and end) point of the loop
149 * \param length number of variables that may be added to \a newcl
150 * \param vars neighboring variables of \a newcl
151 * \return allcl all clusters of variables with loops of length at most \a length passing through root
153 void findLoopClusters( const FactorGraph
&fg
, std::set
<VarSet
> &allcl
, VarSet newcl
, const Var
& root
, size_t length
, VarSet vars
);
157 } // end of namespace dai