1 /* This file is part of libDAI - http://www.libdai.org/
3 * libDAI is licensed under the terms of the GNU General Public License version
4 * 2, or (at your option) any later version. libDAI is distributed without any
5 * warranty. See the file COPYING for more details.
7 * Copyright (C) 2006-2009 Joris Mooij [joris dot mooij at libdai dot org]
8 * Copyright (C) 2006-2007 Radboud University Nijmegen, The Netherlands
13 /// \brief Defines class JTree, which implements the junction tree algorithm
16 #ifndef __defined_libdai_jtree_h
17 #define __defined_libdai_jtree_h
22 #include <dai/daialg.h>
23 #include <dai/varset.h>
24 #include <dai/regiongraph.h>
25 #include <dai/factorgraph.h>
26 #include <dai/clustergraph.h>
27 #include <dai/weightedgraph.h>
29 #include <dai/properties.h>
35 /// Exact inference algorithm using junction tree
36 /** The junction tree algorithm uses message passing on a junction tree to calculate
37 * exact marginal probability distributions ("beliefs") for specified cliques
38 * (outer regions) and separators (intersections of pairs of cliques).
40 * There are two variants, the sum-product algorithm (corresponding to
41 * finite temperature) and the max-product algorithm (corresponding to
44 class JTree
: public DAIAlgRG
{
46 /// Stores the messages
47 std::vector
<std::vector
<Factor
> > _mes
;
49 /// Stores the logarithm of the partition sum
53 /// The junction tree (stored as a rooted tree)
56 /// Outer region beliefs
57 std::vector
<Factor
> Qa
;
59 /// Inner region beliefs
60 std::vector
<Factor
> Qb
;
62 /// Parameters for JTree
64 /// Enumeration of possible JTree updates
65 /** There are two types of updates:
66 * - HUGIN similar to those in HUGIN
67 * - SHSH Shafer-Shenoy type
69 DAI_ENUM(UpdateType
,HUGIN
,SHSH
);
71 /// Enumeration of inference variants
72 /** There are two inference variants:
73 * - SUMPROD Sum-Product
74 * - MAXPROD Max-Product (equivalent to Min-Sum)
76 DAI_ENUM(InfType
,SUMPROD
,MAXPROD
);
78 /// Verbosity (amount of output sent to stderr)
88 /// Name of this inference algorithm
89 static const char *Name
;
92 /// \name Constructors/destructors
94 /// Default constructor
95 JTree() : DAIAlgRG(), _mes(), _logZ(), RTree(), Qa(), Qb(), props() {}
97 /// Construct from FactorGraph \a fg and PropertySet \a opts
98 /** \param fg factor graph (which has to be connected);
99 ** \param opts Parameters @see Properties
100 * \param automatic if \c true, construct the junction tree automatically, using the MinFill heuristic.
101 * \throw FACTORGRAPH_NOT_CONNECTED if \a fg is not connected
103 JTree( const FactorGraph
&fg
, const PropertySet
&opts
, bool automatic
=true );
107 /// \name General InfAlg interface
109 virtual JTree
* clone() const { return new JTree(*this); }
110 virtual std::string
identify() const;
111 virtual Factor
belief( const VarSet
&vs
) const;
112 virtual std::vector
<Factor
> beliefs() const;
113 virtual Real
logZ() const;
114 virtual void init() {}
115 virtual void init( const VarSet
&/*ns*/ ) {}
117 virtual Real
maxDiff() const { return 0.0; }
118 virtual size_t Iterations() const { return 1UL; }
119 virtual void setProperties( const PropertySet
&opts
);
120 virtual PropertySet
getProperties() const;
121 virtual std::string
printProperties() const;
125 /// \name Additional interface specific for JTree
127 /// Constructs a junction tree based on the cliques \a cl (corresponding to some elimination sequence).
128 /** First, constructs a weighted graph, where the nodes are the elements of \a cl, and
129 * each edge is weighted with the cardinality of the intersection of the state spaces of the nodes.
130 * Then, a maximal spanning tree for this weighted graph is calculated.
131 * Finally, a corresponding region graph is built:
132 * - the outer regions correspond with the cliques and have counting number 1;
133 * - the inner regions correspond with the seperators, i.e., the intersections of two
134 * cliques that are neighbors in the spanning tree, and have counting number -1;
135 * - inner and outer regions are connected by an edge if the inner region is a
136 * seperator for the outer region.
138 void GenerateJT( const std::vector
<VarSet
> &cl
);
140 /// Returns constant reference to the message from outer region \a alpha to its \a _beta 'th neighboring inner region
141 const Factor
& message( size_t alpha
, size_t _beta
) const { return _mes
[alpha
][_beta
]; }
142 /// Returns reference to the message from outer region \a alpha to its \a _beta 'th neighboring inner region
143 Factor
& message( size_t alpha
, size_t _beta
) { return _mes
[alpha
][_beta
]; }
145 /// Runs junction tree algorithm using HUGIN updates
146 /** \note The initial messages may be arbitrary.
150 /// Runs junction tree algorithm using Shafer-Shenoy updates
151 /** \note The initial messages may be arbitrary.
153 void runShaferShenoy();
155 /// Finds an efficient subtree for calculating the marginal of the variables in \a vs
156 /** First, the current junction tree is reordered such that it gets as root the clique
157 * that has maximal state space overlap with \a vs. Then, the minimal subtree
158 * (starting from the root) is identified that contains all the variables in \a vs
159 * and also the outer region with index \a PreviousRoot (if specified). Finally,
160 * the current junction tree is reordered such that this minimal subtree comes
161 * before the other edges, and the size of the minimal subtree is returned.
163 size_t findEfficientTree( const VarSet
& vs
, RootedTree
&Tree
, size_t PreviousRoot
=(size_t)-1 ) const;
165 /// Calculates the marginal of a set of variables (using cutset conditioning, if necessary)
166 /** \pre assumes that run() has been called already
168 Factor
calcMarginal( const VarSet
& vs
);
170 /// Calculates the joint state of all variables that has maximum probability
171 /** \pre Assumes that run() has been called and that \a props.inference == \c MAXPROD
173 std::vector
<std::size_t> findMaximum() const;
178 /// Calculates upper bound to the treewidth of a FactorGraph, using the MinFill heuristic
180 * \return a pair (number of variables in largest clique, number of states in largest clique)
182 std::pair
<size_t,size_t> boundTreewidth( const FactorGraph
& fg
);
185 } // end of namespace dai