87fc45bce6bc3c9f44f1b6f5c6f92648c00535e8
1 /* This file is part of libDAI - http://www.libdai.org/
3 * libDAI is licensed under the terms of the GNU General Public License version
4 * 2, or (at your option) any later version. libDAI is distributed without any
5 * warranty. See the file COPYING for more details.
7 * Copyright (C) 2006-2009 Joris Mooij [joris dot mooij at libdai dot org]
8 * Copyright (C) 2006-2007 Radboud University Nijmegen, The Netherlands
15 #include <dai/exceptions.h>
24 const char *HAK::Name
= "HAK";
28 /// Sets factor entries that lie between 0 and \a epsilon to \a epsilon
30 TFactor
<T
>& makePositive( TFactor
<T
> &f
, T epsilon
) {
31 for( size_t t
= 0; t
< f
.states(); t
++ )
32 if( (0 < f
[t
]) && (f
[t
] < epsilon
) )
37 /// Sets factor entries that are smaller (in absolute value) than \a epsilon to 0
39 TFactor
<T
>& makeZero( TFactor
<T
> &f
, T epsilon
) {
40 for( size_t t
= 0; t
< f
.states(); t
++ )
41 if( f
[t
] < epsilon
&& f
[t
] > -epsilon
)
47 void HAK::setProperties( const PropertySet
&opts
) {
48 DAI_ASSERT( opts
.hasKey("tol") );
49 DAI_ASSERT( opts
.hasKey("maxiter") );
50 DAI_ASSERT( opts
.hasKey("verbose") );
51 DAI_ASSERT( opts
.hasKey("doubleloop") );
52 DAI_ASSERT( opts
.hasKey("clusters") );
54 props
.tol
= opts
.getStringAs
<double>("tol");
55 props
.maxiter
= opts
.getStringAs
<size_t>("maxiter");
56 props
.verbose
= opts
.getStringAs
<size_t>("verbose");
57 props
.doubleloop
= opts
.getStringAs
<bool>("doubleloop");
58 props
.clusters
= opts
.getStringAs
<Properties::ClustersType
>("clusters");
60 if( opts
.hasKey("loopdepth") )
61 props
.loopdepth
= opts
.getStringAs
<size_t>("loopdepth");
63 DAI_ASSERT( props
.clusters
!= Properties::ClustersType::LOOP
);
64 if( opts
.hasKey("damping") )
65 props
.damping
= opts
.getStringAs
<double>("damping");
68 if( opts
.hasKey("init") )
69 props
.init
= opts
.getStringAs
<Properties::InitType
>("init");
71 props
.init
= Properties::InitType::UNIFORM
;
75 PropertySet
HAK::getProperties() const {
77 opts
.Set( "tol", props
.tol
);
78 opts
.Set( "maxiter", props
.maxiter
);
79 opts
.Set( "verbose", props
.verbose
);
80 opts
.Set( "doubleloop", props
.doubleloop
);
81 opts
.Set( "clusters", props
.clusters
);
82 opts
.Set( "init", props
.init
);
83 opts
.Set( "loopdepth", props
.loopdepth
);
84 opts
.Set( "damping", props
.damping
);
89 string
HAK::printProperties() const {
90 stringstream
s( stringstream::out
);
92 s
<< "tol=" << props
.tol
<< ",";
93 s
<< "maxiter=" << props
.maxiter
<< ",";
94 s
<< "verbose=" << props
.verbose
<< ",";
95 s
<< "doubleloop=" << props
.doubleloop
<< ",";
96 s
<< "clusters=" << props
.clusters
<< ",";
97 s
<< "init=" << props
.init
<< ",";
98 s
<< "loopdepth=" << props
.loopdepth
<< ",";
99 s
<< "damping=" << props
.damping
<< "]";
104 void HAK::constructMessages() {
105 // Create outer beliefs
107 _Qa
.reserve(nrORs());
108 for( size_t alpha
= 0; alpha
< nrORs(); alpha
++ )
109 _Qa
.push_back( Factor( OR(alpha
).vars() ) );
111 // Create inner beliefs
113 _Qb
.reserve(nrIRs());
114 for( size_t beta
= 0; beta
< nrIRs(); beta
++ )
115 _Qb
.push_back( Factor( IR(beta
) ) );
119 _muab
.reserve( nrORs() );
121 _muba
.reserve( nrORs() );
122 for( size_t alpha
= 0; alpha
< nrORs(); alpha
++ ) {
123 _muab
.push_back( vector
<Factor
>() );
124 _muba
.push_back( vector
<Factor
>() );
125 _muab
[alpha
].reserve( nbOR(alpha
).size() );
126 _muba
[alpha
].reserve( nbOR(alpha
).size() );
127 foreach( const Neighbor
&beta
, nbOR(alpha
) ) {
128 _muab
[alpha
].push_back( Factor( IR(beta
) ) );
129 _muba
[alpha
].push_back( Factor( IR(beta
) ) );
135 HAK::HAK( const RegionGraph
&rg
, const PropertySet
&opts
) : DAIAlgRG(rg
), _Qa(), _Qb(), _muab(), _muba(), _maxdiff(0.0), _iters(0U), props() {
136 setProperties( opts
);
142 void HAK::findLoopClusters( const FactorGraph
& fg
, std::set
<VarSet
> &allcl
, VarSet newcl
, const Var
& root
, size_t length
, VarSet vars
) {
143 for( VarSet::const_iterator in
= vars
.begin(); in
!= vars
.end(); in
++ ) {
144 VarSet ind
= fg
.delta( fg
.findVar( *in
) );
145 if( (newcl
.size()) >= 2 && ind
.contains( root
) ) {
146 allcl
.insert( newcl
| *in
);
148 else if( length
> 1 )
149 findLoopClusters( fg
, allcl
, newcl
| *in
, root
, length
- 1, ind
/ newcl
);
154 HAK::HAK(const FactorGraph
& fg
, const PropertySet
&opts
) : DAIAlgRG(), _Qa(), _Qb(), _muab(), _muba(), _maxdiff(0.0), _iters(0U), props() {
155 setProperties( opts
);
158 if( props
.clusters
== Properties::ClustersType::MIN
) {
160 } else if( props
.clusters
== Properties::ClustersType::DELTA
) {
161 for( size_t i
= 0; i
< fg
.nrVars(); i
++ )
162 cl
.push_back(fg
.Delta(i
));
163 } else if( props
.clusters
== Properties::ClustersType::LOOP
) {
166 for( size_t i0
= 0; i0
< fg
.nrVars(); i0
++ ) {
167 VarSet i0d
= fg
.delta(i0
);
168 if( props
.loopdepth
> 1 )
169 findLoopClusters( fg
, scl
, fg
.var(i0
), fg
.var(i0
), props
.loopdepth
- 1, fg
.delta(i0
) );
171 for( set
<VarSet
>::const_iterator c
= scl
.begin(); c
!= scl
.end(); c
++ )
173 if( props
.verbose
>= 3 ) {
174 cerr
<< Name
<< " uses the following clusters: " << endl
;
175 for( vector
<VarSet
>::const_iterator cli
= cl
.begin(); cli
!= cl
.end(); cli
++ )
176 cerr
<< *cli
<< endl
;
179 DAI_THROW(UNKNOWN_ENUM_VALUE
);
181 RegionGraph
rg(fg
,cl
);
182 RegionGraph::operator=(rg
);
185 if( props
.verbose
>= 3 )
186 cerr
<< Name
<< " regiongraph: " << *this << endl
;
190 string
HAK::identify() const {
191 return string(Name
) + printProperties();
195 void HAK::init( const VarSet
&ns
) {
196 for( vector
<Factor
>::iterator alpha
= _Qa
.begin(); alpha
!= _Qa
.end(); alpha
++ )
197 if( alpha
->vars().intersects( ns
) ) {
198 if( props
.init
== Properties::InitType::UNIFORM
)
199 alpha
->fill( 1.0 / alpha
->states() );
204 for( size_t beta
= 0; beta
< nrIRs(); beta
++ )
205 if( IR(beta
).intersects( ns
) ) {
206 if( props
.init
== Properties::InitType::UNIFORM
)
207 _Qb
[beta
].fill( 1.0 );
209 _Qb
[beta
].randomize();
210 foreach( const Neighbor
&alpha
, nbIR(beta
) ) {
211 size_t _beta
= alpha
.dual
;
212 if( props
.init
== Properties::InitType::UNIFORM
) {
213 muab( alpha
, _beta
).fill( 1.0 );
214 muba( alpha
, _beta
).fill( 1.0 );
216 muab( alpha
, _beta
).randomize();
217 muba( alpha
, _beta
).randomize();
225 for( vector
<Factor
>::iterator alpha
= _Qa
.begin(); alpha
!= _Qa
.end(); alpha
++ )
226 if( props
.init
== Properties::InitType::UNIFORM
)
227 alpha
->fill( 1.0 / alpha
->states() );
231 for( vector
<Factor
>::iterator beta
= _Qb
.begin(); beta
!= _Qb
.end(); beta
++ )
232 if( props
.init
== Properties::InitType::UNIFORM
)
233 beta
->fill( 1.0 / beta
->states() );
237 for( size_t alpha
= 0; alpha
< nrORs(); alpha
++ )
238 foreach( const Neighbor
&beta
, nbOR(alpha
) ) {
239 size_t _beta
= beta
.iter
;
240 if( props
.init
== Properties::InitType::UNIFORM
) {
241 muab( alpha
, _beta
).fill( 1.0 / muab( alpha
, _beta
).states() );
242 muba( alpha
, _beta
).fill( 1.0 / muab( alpha
, _beta
).states() );
244 muab( alpha
, _beta
).randomize();
245 muba( alpha
, _beta
).randomize();
251 double HAK::doGBP() {
252 if( props
.verbose
>= 1 )
253 cerr
<< "Starting " << identify() << "...";
254 if( props
.verbose
>= 3)
259 // Check whether counting numbers won't lead to problems
260 for( size_t beta
= 0; beta
< nrIRs(); beta
++ )
261 DAI_ASSERT( nbIR(beta
).size() + IR(beta
).c() != 0.0 );
263 // Keep old beliefs to check convergence
264 vector
<Factor
> old_beliefs
;
265 old_beliefs
.reserve( nrVars() );
266 for( size_t i
= 0; i
< nrVars(); i
++ )
267 old_beliefs
.push_back( belief( var(i
) ) );
269 // Differences in single node beliefs
270 Diffs
diffs(nrVars(), 1.0);
272 // do several passes over the network until maximum number of iterations has
273 // been reached or until the maximum belief difference is smaller than tolerance
274 for( _iters
= 0; _iters
< props
.maxiter
&& diffs
.maxDiff() > props
.tol
; _iters
++ ) {
275 for( size_t beta
= 0; beta
< nrIRs(); beta
++ ) {
276 foreach( const Neighbor
&alpha
, nbIR(beta
) ) {
277 size_t _beta
= alpha
.dual
;
278 muab( alpha
, _beta
) = _Qa
[alpha
].marginal(IR(beta
)) / muba(alpha
,_beta
);
279 /* TODO: INVESTIGATE THIS PROBLEM
281 * In some cases, the muab's can have very large entries because the muba's have very
282 * small entries. This may cause NANs later on (e.g., multiplying large quantities may
283 * result in +inf; normalization then tries to calculate inf / inf which is NAN).
284 * A fix of this problem would consist in normalizing the messages muab.
285 * However, it is not obvious whether this is a real solution, because it has a
286 * negative performance impact and the NAN's seem to be a symptom of a fundamental
287 * numerical unstability.
289 muab(alpha
,_beta
).normalize();
293 foreach( const Neighbor
&alpha
, nbIR(beta
) ) {
294 size_t _beta
= alpha
.dual
;
295 Qb_new
*= muab(alpha
,_beta
) ^ (1 / (nbIR(beta
).size() + IR(beta
).c()));
299 if( Qb_new
.hasNaNs() ) {
300 // TODO: WHAT TO DO IN THIS CASE?
301 cerr
<< Name
<< "::doGBP: Qb_new has NaNs!" << endl
;
304 /* TODO: WHAT IS THE PURPOSE OF THE FOLLOWING CODE?
306 * _Qb[beta] = Qb_new.makeZero(1e-100);
309 if( props
.doubleloop
|| props
.damping
== 0.0 )
310 _Qb
[beta
] = Qb_new
; // no damping for double loop
312 _Qb
[beta
] = (Qb_new
^(1.0 - props
.damping
)) * (_Qb
[beta
]^props
.damping
);
314 foreach( const Neighbor
&alpha
, nbIR(beta
) ) {
315 size_t _beta
= alpha
.dual
;
316 muba(alpha
,_beta
) = _Qb
[beta
] / muab(alpha
,_beta
);
318 /* TODO: INVESTIGATE WHETHER THIS HACK (INVENTED BY KEES) TO PREVENT NANS MAKES SENSE
320 * muba(beta,*alpha).makePositive(1e-100);
324 Factor Qa_new
= OR(alpha
);
325 foreach( const Neighbor
&gamma
, nbOR(alpha
) )
326 Qa_new
*= muba(alpha
,gamma
.iter
);
327 Qa_new
^= (1.0 / OR(alpha
).c());
329 if( Qa_new
.hasNaNs() ) {
330 cerr
<< Name
<< "::doGBP: Qa_new has NaNs!" << endl
;
333 /* TODO: WHAT IS THE PURPOSE OF THE FOLLOWING CODE?
335 * _Qb[beta] = Qb_new.makeZero(1e-100);
338 if( props
.doubleloop
|| props
.damping
== 0.0 )
339 _Qa
[alpha
] = Qa_new
; // no damping for double loop
341 // FIXME: GEOMETRIC DAMPING IS SLOW!
342 _Qa
[alpha
] = (Qa_new
^(1.0 - props
.damping
)) * (_Qa
[alpha
]^props
.damping
);
346 // Calculate new single variable beliefs and compare with old ones
347 for( size_t i
= 0; i
< nrVars(); i
++ ) {
348 Factor new_belief
= belief( var( i
) );
349 diffs
.push( dist( new_belief
, old_beliefs
[i
], Prob::DISTLINF
) );
350 old_beliefs
[i
] = new_belief
;
353 if( props
.verbose
>= 3 )
354 cerr
<< Name
<< "::doGBP: maxdiff " << diffs
.maxDiff() << " after " << _iters
+1 << " passes" << endl
;
357 if( diffs
.maxDiff() > _maxdiff
)
358 _maxdiff
= diffs
.maxDiff();
360 if( props
.verbose
>= 1 ) {
361 if( diffs
.maxDiff() > props
.tol
) {
362 if( props
.verbose
== 1 )
364 cerr
<< Name
<< "::doGBP: WARNING: not converged within " << props
.maxiter
<< " passes (" << toc() - tic
<< " seconds)...final maxdiff:" << diffs
.maxDiff() << endl
;
366 if( props
.verbose
>= 2 )
367 cerr
<< Name
<< "::doGBP: ";
368 cerr
<< "converged in " << _iters
<< " passes (" << toc() - tic
<< " seconds)." << endl
;
372 return diffs
.maxDiff();
376 double HAK::doDoubleLoop() {
377 if( props
.verbose
>= 1 )
378 cerr
<< "Starting " << identify() << "...";
379 if( props
.verbose
>= 3)
384 // Save original outer regions
385 vector
<FRegion
> org_ORs
= ORs
;
387 // Save original inner counting numbers and set negative counting numbers to zero
388 vector
<double> org_IR_cs( nrIRs(), 0.0 );
389 for( size_t beta
= 0; beta
< nrIRs(); beta
++ ) {
390 org_IR_cs
[beta
] = IR(beta
).c();
391 if( IR(beta
).c() < 0.0 )
395 // Keep old beliefs to check convergence
396 vector
<Factor
> old_beliefs
;
397 old_beliefs
.reserve( nrVars() );
398 for( size_t i
= 0; i
< nrVars(); i
++ )
399 old_beliefs
.push_back( belief( var(i
) ) );
401 // Differences in single node beliefs
402 Diffs
diffs(nrVars(), 1.0);
404 size_t outer_maxiter
= props
.maxiter
;
405 double outer_tol
= props
.tol
;
406 size_t outer_verbose
= props
.verbose
;
407 double org_maxdiff
= _maxdiff
;
409 // Set parameters for inner loop
411 props
.verbose
= outer_verbose
? outer_verbose
- 1 : 0;
413 size_t outer_iter
= 0;
414 size_t total_iter
= 0;
415 for( outer_iter
= 0; outer_iter
< outer_maxiter
&& diffs
.maxDiff() > outer_tol
; outer_iter
++ ) {
416 // Calculate new outer regions
417 for( size_t alpha
= 0; alpha
< nrORs(); alpha
++ ) {
418 OR(alpha
) = org_ORs
[alpha
];
419 foreach( const Neighbor
&beta
, nbOR(alpha
) )
420 OR(alpha
) *= _Qb
[beta
] ^ ((IR(beta
).c() - org_IR_cs
[beta
]) / nbIR(beta
).size());
424 if( isnan( doGBP() ) )
427 // Calculate new single variable beliefs and compare with old ones
428 for( size_t i
= 0; i
< nrVars(); ++i
) {
429 Factor new_belief
= belief( var( i
) );
430 diffs
.push( dist( new_belief
, old_beliefs
[i
], Prob::DISTLINF
) );
431 old_beliefs
[i
] = new_belief
;
434 total_iter
+= Iterations();
436 if( props
.verbose
>= 3 )
437 cerr
<< Name
<< "::doDoubleLoop: maxdiff " << diffs
.maxDiff() << " after " << total_iter
<< " passes" << endl
;
440 // restore _maxiter, _verbose and _maxdiff
441 props
.maxiter
= outer_maxiter
;
442 props
.verbose
= outer_verbose
;
443 _maxdiff
= org_maxdiff
;
446 if( diffs
.maxDiff() > _maxdiff
)
447 _maxdiff
= diffs
.maxDiff();
449 // Restore original outer regions
452 // Restore original inner counting numbers
453 for( size_t beta
= 0; beta
< nrIRs(); ++beta
)
454 IR(beta
).c() = org_IR_cs
[beta
];
456 if( props
.verbose
>= 1 ) {
457 if( diffs
.maxDiff() > props
.tol
) {
458 if( props
.verbose
== 1 )
460 cerr
<< Name
<< "::doDoubleLoop: WARNING: not converged within " << outer_maxiter
<< " passes (" << toc() - tic
<< " seconds)...final maxdiff:" << diffs
.maxDiff() << endl
;
462 if( props
.verbose
>= 3 )
463 cerr
<< Name
<< "::doDoubleLoop: ";
464 cerr
<< "converged in " << total_iter
<< " passes (" << toc() - tic
<< " seconds)." << endl
;
468 return diffs
.maxDiff();
473 if( props
.doubleloop
)
474 return doDoubleLoop();
480 Factor
HAK::belief( const VarSet
&ns
) const {
481 vector
<Factor
>::const_iterator beta
;
482 for( beta
= _Qb
.begin(); beta
!= _Qb
.end(); beta
++ )
483 if( beta
->vars() >> ns
)
485 if( beta
!= _Qb
.end() )
486 return( beta
->marginal(ns
) );
488 vector
<Factor
>::const_iterator alpha
;
489 for( alpha
= _Qa
.begin(); alpha
!= _Qa
.end(); alpha
++ )
490 if( alpha
->vars() >> ns
)
492 DAI_ASSERT( alpha
!= _Qa
.end() );
493 return( alpha
->marginal(ns
) );
498 Factor
HAK::belief( const Var
&n
) const {
499 return belief( (VarSet
)n
);
503 vector
<Factor
> HAK::beliefs() const {
504 vector
<Factor
> result
;
505 for( size_t beta
= 0; beta
< nrIRs(); beta
++ )
506 result
.push_back( Qb(beta
) );
507 for( size_t alpha
= 0; alpha
< nrORs(); alpha
++ )
508 result
.push_back( Qa(alpha
) );
513 Real
HAK::logZ() const {
515 for( size_t beta
= 0; beta
< nrIRs(); beta
++ )
516 s
+= IR(beta
).c() * Qb(beta
).entropy();
517 for( size_t alpha
= 0; alpha
< nrORs(); alpha
++ ) {
518 s
+= OR(alpha
).c() * Qa(alpha
).entropy();
519 s
+= (OR(alpha
).log(true) * Qa(alpha
)).sum();
525 } // end of namespace dai