1 /* This file is part of libDAI - http://www.libdai.org/
3 * libDAI is licensed under the terms of the GNU General Public License version
4 * 2, or (at your option) any later version. libDAI is distributed without any
5 * warranty. See the file COPYING for more details.
7 * Copyright (C) 2006-2009 Joris Mooij [joris dot mooij at libdai dot org]
8 * Copyright (C) 2006-2007 Radboud University Nijmegen, The Netherlands
26 const char *MF::Name
= "MF";
29 void MF::setProperties( const PropertySet
&opts
) {
30 DAI_ASSERT( opts
.hasKey("tol") );
31 DAI_ASSERT( opts
.hasKey("maxiter") );
33 props
.tol
= opts
.getStringAs
<Real
>("tol");
34 props
.maxiter
= opts
.getStringAs
<size_t>("maxiter");
35 if( opts
.hasKey("verbose") )
36 props
.verbose
= opts
.getStringAs
<size_t>("verbose");
39 if( opts
.hasKey("damping") )
40 props
.damping
= opts
.getStringAs
<Real
>("damping");
46 PropertySet
MF::getProperties() const {
48 opts
.Set( "tol", props
.tol
);
49 opts
.Set( "maxiter", props
.maxiter
);
50 opts
.Set( "verbose", props
.verbose
);
51 opts
.Set( "damping", props
.damping
);
56 string
MF::printProperties() const {
57 stringstream
s( stringstream::out
);
59 s
<< "tol=" << props
.tol
<< ",";
60 s
<< "maxiter=" << props
.maxiter
<< ",";
61 s
<< "verbose=" << props
.verbose
<< ",";
62 s
<< "damping=" << props
.damping
<< "]";
67 void MF::construct() {
70 _beliefs
.reserve( nrVars() );
71 for( size_t i
= 0; i
< nrVars(); ++i
)
72 _beliefs
.push_back( Factor( var(i
) ) );
76 string
MF::identify() const {
77 return string(Name
) + printProperties();
82 for( vector
<Factor
>::iterator qi
= _beliefs
.begin(); qi
!= _beliefs
.end(); qi
++ )
90 if( props
.verbose
>= 1 )
91 cerr
<< "Starting " << identify() << "...";
93 size_t pass_size
= _beliefs
.size();
94 Diffs
diffs(pass_size
* 3, 1.0);
97 for( t
=0; t
< (props
.maxiter
*pass_size
) && diffs
.maxDiff() > props
.tol
; t
++ ) {
98 // choose random Var i
99 size_t i
= (size_t) (nrVars() * rnd_uniform());
103 foreach( const Neighbor
&I
, nbV(i
) ) {
105 foreach( const Neighbor
&j
, nbF(I
) ) // for all j in I \ i
108 piet
= factor(I
).log(true);
110 piet
= piet
.marginal(var(i
), false);
117 if( jan
.hasNaNs() ) {
118 cerr
<< Name
<< "::run(): ERROR: jan has NaNs!" << endl
;
122 if( props
.damping
!= 0.0 )
123 jan
= (jan
^(1.0 - props
.damping
)) * (_beliefs
[i
]^props
.damping
);
124 diffs
.push( dist( jan
, _beliefs
[i
], Prob::DISTLINF
) );
129 _iters
= t
/ pass_size
;
130 if( diffs
.maxDiff() > _maxdiff
)
131 _maxdiff
= diffs
.maxDiff();
133 if( props
.verbose
>= 1 ) {
134 if( diffs
.maxDiff() > props
.tol
) {
135 if( props
.verbose
== 1 )
137 cerr
<< Name
<< "::run: WARNING: not converged within " << props
.maxiter
<< " passes (" << toc() - tic
<< " seconds)...final maxdiff:" << diffs
.maxDiff() << endl
;
139 if( props
.verbose
>= 2 )
140 cerr
<< Name
<< "::run: ";
141 cerr
<< "converged in " << t
/ pass_size
<< " passes (" << toc() - tic
<< " seconds)." << endl
;
145 return diffs
.maxDiff();
149 Factor
MF::beliefV( size_t i
) const {
157 Factor
MF::belief (const VarSet
&ns
) const {
159 return belief( *(ns
.begin()) );
161 DAI_ASSERT( ns
.size() == 1 );
167 Factor
MF::belief (const Var
&n
) const {
168 return( beliefV( findVar( n
) ) );
172 vector
<Factor
> MF::beliefs() const {
173 vector
<Factor
> result
;
174 for( size_t i
= 0; i
< nrVars(); i
++ )
175 result
.push_back( beliefV(i
) );
180 Real
MF::logZ() const {
183 for(size_t i
=0; i
< nrVars(); i
++ )
184 s
-= beliefV(i
).entropy();
185 for(size_t I
=0; I
< nrFactors(); I
++ ) {
187 foreach( const Neighbor
&j
, nbF(I
) ) // for all j in I
191 piet
= factor(I
).log(true);
200 void MF::init( const VarSet
&ns
) {
201 for( size_t i
= 0; i
< nrVars(); i
++ ) {
202 if( ns
.contains(var(i
) ) )
203 _beliefs
[i
].fill( 1.0 );
208 } // end of namespace dai