X-Git-Url: http://git.tuebingen.mpg.de/?p=libdai.git;a=blobdiff_plain;f=include%2Fdai%2Falldai.h;h=c0010ca1dfcf0f7cc43d65e67ff2ea8ea25c76df;hp=3bf9b2dfae127f2cd40246b64cc27750edbbeabf;hb=87c6827445f8fd67801efb6e818771e16229313b;hpb=83f2623b5af4926236d6aeae2a98d8e068d4424f diff --git a/include/dai/alldai.h b/include/dai/alldai.h index 3bf9b2d..c0010ca 100644 --- a/include/dai/alldai.h +++ b/include/dai/alldai.h @@ -22,6 +22,7 @@ /// \file /// \brief Main libDAI header file +/// \todo Improve documentation #ifndef __defined_libdai_alldai_h @@ -32,6 +33,8 @@ #include #include #include +#include +#include #ifdef DAI_WITH_BP #include #endif @@ -53,6 +56,9 @@ #ifdef DAI_WITH_MR #include #endif +#ifdef DAI_WITH_GIBBS + #include +#endif /// Namespace for libDAI @@ -91,6 +97,9 @@ static const char* DAINames[] = { #endif #ifdef DAI_WITH_MR MR::Name, +#endif +#ifdef DAI_WITH_GIBBS + Gibbs::Name, #endif "" }; @@ -99,95 +108,4 @@ static const char* DAINames[] = { } // end of namespace dai -/** \mainpage libDAI reference manual - * \author Joris Mooij - * \version 0.2.2 - * \date 30 September 2008 - * - * \section about About libDAI - * libDAI is a free/open source C++ library (licensed under GPL) that provides - * implementations of various (approximate) inference methods for discrete - * graphical models. libDAI supports arbitrary factor graphs with discrete - * variables; this includes discrete Markov Random Fields and Bayesian - * Networks. - * - * The library is targeted at researchers; to be able to use the library, a - * good understanding of graphical models is needed. - * - * \section limitations Limitations - * libDAI is not intended to be a complete package for approximate inference. - * Instead, it should be considered as an "inference engine", providing - * various inference methods. In particular, it contains no GUI, currently - * only supports its own file format for input and output (although support - * for standard file formats may be added later), and provides very limited - * visualization functionalities. - * - * \section features Features - * Currently, libDAI supports the following (approximate) inference methods: - * - Exact inference by brute force enumeration; - * - Exact inference by junction-tree methods; - * - Mean Field; - * - Loopy Belief Propagation [\ref KFL01]; - * - Tree Expectation Propagation [\ref MiQ04]; - * - Generalized Belief Propagation [\ref YFW05]; - * - Double-loop GBP [\ref HAK03]; - * - Various variants of Loop Corrected Belief Propagation - * [\ref MoK07, \ref MoR05]. - * - * \section language Why C++? - * Because libDAI is implemented in C++, it is very fast compared with - * implementations in MatLab (a factor 1000 faster is not uncommon). - * libDAI does provide a MatLab interface for easy integration with MatLab. - * - */ - - -/** \page Bibliography - * \section Bibliograpy - * \anchor KFL01 \ref KFL01 - * F. R. Kschischang and B. J. Frey and H.-A. Loeliger (2001): - * "Factor Graphs and the Sum-Product Algorithm", - * IEEE Transactions on Information Theory 47(2):498-519. - * http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=910572 - * - * \anchor MiQ04 \ref MiQ04 - * T. Minka and Y. Qi (2004): - * "Tree-structured Approximations by Expectation Propagation", - * Advances in Neural Information Processing Systems (NIPS) 16. - * http://books.nips.cc/papers/files/nips16/NIPS2003_AA25.pdf - * - * \anchor MoR05 \ref MoR05 - * A. Montanari and T. Rizzo (2005): - * "How to Compute Loop Corrections to the Bethe Approximation", - * Journal of Statistical Mechanics: Theory and Experiment - * 2005(10)-P10011. - * http://stacks.iop.org/1742-5468/2005/P10011 - * - * \anchor YFW05 \ref YFW05 - * J. S. Yedidia and W. T. Freeman and Y. Weiss (2005): - * "Constructing Free-Energy Approximations and Generalized Belief Propagation Algorithms", - * IEEE Transactions on Information Theory - * 51(7):2282-2312. - * http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1459044 - * - * \anchor HAK03 \ref HAK03 - * T. Heskes and C. A. Albers and H. J. Kappen (2003): - * "Approximate Inference and Constrained Optimization", - * Proceedings of the 19th Annual Conference on Uncertainty in Artificial Intelligence (UAI-03) pp. 313-320. - * http://www.snn.ru.nl/reports/Heskes.uai2003.ps.gz - * - * \anchor MoK07 \ref MoK07 - * J. M. Mooij and H. J. Kappen (2007): - * "Loop Corrections for Approximate Inference on Factor Graphs", - * Journal of Machine Learning Research 8:1113-1143. - * http://www.jmlr.org/papers/volume8/mooij07a/mooij07a.pdf - * - * \anchor MoK07b \ref MoK07b - * J. M. Mooij and H. J. Kappen (2007): - * "Sufficient Conditions for Convergence of the Sum-Product Algorithm", - * IEEE Transactions on Information Theory 53(12):4422-4437. - * http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4385778 - */ - - #endif