2 * Copyright (C) 1997-2013 Andre Noll <maan@systemlinux.org>
4 * Licensed under the GPL v2. For licencing details see COPYING.
7 /** \file vss.c The virtual streaming system.
9 * This contains the audio streaming code of para_server which is independent
10 * of the current audio format, audio file selector and of the activated
19 #include "portable_io.h"
26 #include "server.cmdline.h"
34 extern struct misc_meta_data
*mmd
;
36 extern void dccp_send_init(struct sender
*);
37 extern void http_send_init(struct sender
*);
38 extern void udp_send_init(struct sender
*);
40 /** The list of supported senders. */
41 struct sender senders
[] = {
44 .init
= http_send_init
,
48 .init
= dccp_send_init
,
52 .init
= udp_send_init
,
59 /** The possible states of the afs socket. */
60 enum afs_socket_status
{
61 /** Socket is inactive. */
63 /** Socket fd was included in the write fd set for select(). */
64 AFS_SOCKET_CHECK_FOR_WRITE
,
65 /** vss wrote a request to the socket and waits for reply from afs. */
66 AFS_SOCKET_AFD_PENDING
69 /** The task structure for the virtual streaming system. */
71 /** Copied from the -announce_time command line option. */
72 struct timeval announce_tv
;
73 /** End of the announcing interval. */
74 struct timeval data_send_barrier
;
75 /** End of the EOF interval. */
76 struct timeval eof_barrier
;
77 /** Only used if --autoplay_delay was given. */
78 struct timeval autoplay_barrier
;
79 /** Used for afs-server communication. */
81 /** The current state of \a afs_socket. */
82 enum afs_socket_status afsss
;
83 /** The memory mapped audio file. */
85 /** Used by the scheduler. */
87 /** Pointer to the header of the mapped audio file. */
89 /** Length of the audio file header. */
91 /** Time between audio file headers are sent. */
92 struct timeval header_interval
;
96 * The list of currently connected fec clients.
98 * Senders may use \ref vss_add_fec_client() to add entries to the list.
100 static struct list_head fec_client_list
;
103 * Data associated with one FEC group.
105 * A FEC group consists of a fixed number of slices and this number is given by
106 * the \a slices_per_group parameter of struct \ref fec_client_parms. Each FEC
107 * group contains a number of chunks of the current audio file.
109 * FEC slices directly correspond to the data packages sent by the paraslash
110 * senders that use FEC. Each slice is identified by its group number and its
111 * number within the group. All slices have the same size, but the last slice
112 * of the group may not be filled entirely.
115 /** The number of the FEC group. */
117 /** Number of bytes in this group. */
119 /** The first chunk of the current audio file belonging to the group. */
120 uint32_t first_chunk
;
121 /** The number of chunks contained in this group. */
123 /** When the first chunk was sent. */
124 struct timeval start
;
125 /** The duration of the full group. */
126 struct timeval duration
;
127 /** The group duration divided by the number of slices. */
128 struct timeval slice_duration
;
129 /** Group contains the audio file header that occupies that many slices. */
130 uint8_t num_header_slices
;
131 /** Number of bytes per slice for this group. */
132 uint16_t slice_bytes
;
135 /** A FEC client is always in one of these states. */
136 enum fec_client_state
{
137 FEC_STATE_NONE
= 0, /**< not initialized and not enabled */
138 FEC_STATE_DISABLED
, /**< temporarily disabled */
139 FEC_STATE_READY_TO_RUN
/**< initialized and enabled */
143 * Describes one connected FEC client.
146 /** Current state of the client */
147 enum fec_client_state state
;
148 /** The connected sender client (transport layer). */
149 struct sender_client
*sc
;
150 /** Parameters requested by the client. */
151 struct fec_client_parms
*fcp
;
152 /** Used by the core FEC code. */
153 struct fec_parms
*parms
;
154 /** The position of this client in the fec client list. */
155 struct list_head node
;
156 /** When the first slice for this client was sent. */
157 struct timeval stream_start
;
158 /** The first chunk sent to this FEC client. */
159 int first_stream_chunk
;
160 /** Describes the current group. */
161 struct fec_group group
;
162 /** The current slice. */
163 uint8_t current_slice_num
;
164 /** The data to be FEC-encoded (point to a region within the mapped audio file). */
165 const unsigned char **src_data
;
166 /** Last time an audio header was sent. */
167 struct timeval next_header_time
;
168 /** Used for the last source pointer of an audio file. */
169 unsigned char *extra_src_buf
;
170 /** Needed for the last slice of the audio file header. */
171 unsigned char *extra_header_buf
;
172 /** Extra slices needed to store largest chunk + header. */
173 int num_extra_slices
;
174 /** Contains the FEC-encoded data. */
175 unsigned char *enc_buf
;
176 /** Maximal packet size. */
181 * Get the chunk time of the current audio file.
183 * \return A pointer to a struct containing the chunk time, or NULL,
184 * if currently no audio file is selected.
186 struct timeval
*vss_chunk_time(void)
188 if (mmd
->afd
.afhi
.chunk_tv
.tv_sec
== 0 &&
189 mmd
->afd
.afhi
.chunk_tv
.tv_usec
== 0)
191 return &mmd
->afd
.afhi
.chunk_tv
;
195 * Write a fec header to a buffer.
197 * \param buf The buffer to write to.
198 * \param h The fec header to write.
200 static void write_fec_header(struct fec_client
*fc
, struct vss_task
*vsst
)
202 char *buf
= (char *)fc
->enc_buf
;
203 struct fec_group
*g
= &fc
->group
;
204 struct fec_client_parms
*p
= fc
->fcp
;
206 write_u32(buf
, FEC_MAGIC
);
208 write_u8(buf
+ 4, p
->slices_per_group
+ fc
->num_extra_slices
);
209 write_u8(buf
+ 5, p
->data_slices_per_group
+ fc
->num_extra_slices
);
210 write_u32(buf
+ 6, g
->num_header_slices
? vsst
->header_len
: 0);
212 write_u32(buf
+ 10, g
->num
);
213 write_u32(buf
+ 14, g
->bytes
);
215 write_u8(buf
+ 18, fc
->current_slice_num
);
216 write_u8(buf
+ 19, 0); /* unused */
217 write_u16(buf
+ 20, g
->slice_bytes
);
218 write_u8(buf
+ 22, g
->first_chunk
? 0 : 1);
219 write_u8(buf
+ 23, vsst
->header_len
? 1 : 0);
220 memset(buf
+ 24, 0, 8);
223 static bool need_audio_header(struct fec_client
*fc
, struct vss_task
*vsst
)
225 if (!mmd
->current_chunk
) {
226 tv_add(now
, &vsst
->header_interval
, &fc
->next_header_time
);
229 if (!vsst
->header_buf
)
231 if (vsst
->header_len
== 0)
233 if (fc
->group
.num
> 0) {
234 if (!fc
->fcp
->need_periodic_header
)
236 if (tv_diff(&fc
->next_header_time
, now
, NULL
) > 0)
239 tv_add(now
, &vsst
->header_interval
, &fc
->next_header_time
);
243 static bool need_data_slices(struct fec_client
*fc
, struct vss_task
*vsst
)
245 if (fc
->group
.num
> 0)
247 if (!vsst
->header_buf
)
249 if (vsst
->header_len
== 0)
251 if (fc
->fcp
->need_periodic_header
)
256 static int num_slices(long unsigned bytes
, int max_payload
, int rs
)
260 assert(max_payload
> 0);
262 ret
= DIV_ROUND_UP(bytes
, max_payload
);
268 /* set group start and group duration */
269 static void set_group_timing(struct fec_client
*fc
, struct vss_task
*vsst
)
271 struct fec_group
*g
= &fc
->group
;
272 struct timeval
*chunk_tv
= vss_chunk_time();
274 if (!need_data_slices(fc
, vsst
))
275 ms2tv(200, &g
->duration
);
277 tv_scale(g
->num_chunks
, chunk_tv
, &g
->duration
);
278 tv_divide(fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
,
279 &g
->duration
, &g
->slice_duration
);
280 PARA_DEBUG_LOG("durations (group/chunk/slice): %lu/%lu/%lu\n",
281 tv2ms(&g
->duration
), tv2ms(chunk_tv
), tv2ms(&g
->slice_duration
));
284 static int initialize_fec_client(struct fec_client
*fc
, struct vss_task
*vsst
)
287 int hs
, ds
, rs
; /* header/data/redundant slices */
288 struct fec_client_parms
*fcp
= fc
->fcp
;
293 * Set the maximum slice size to the Maximum Packet Size if the
294 * transport protocol allows to determine this value. The user
295 * can specify a slice size up to this value.
297 ret
= fcp
->init_fec(fc
->sc
);
302 fc
->mps
= generic_max_transport_msg_size(fc
->sc
->fd
);
303 if (fc
->mps
<= FEC_HEADER_SIZE
)
304 return -ERRNO_TO_PARA_ERROR(EINVAL
);
306 rs
= fc
->fcp
->slices_per_group
- fc
->fcp
->data_slices_per_group
;
307 ret
= num_slices(vsst
->header_len
, fc
->mps
- FEC_HEADER_SIZE
, rs
);
311 ret
= num_slices(mmd
->afd
.max_chunk_size
, fc
->mps
- FEC_HEADER_SIZE
, rs
);
315 if (fc
->fcp
->need_periodic_header
)
318 k
= PARA_MAX(hs
, ds
);
319 if (k
< fc
->fcp
->data_slices_per_group
)
320 k
= fc
->fcp
->data_slices_per_group
;
321 fc
->num_extra_slices
= k
- fc
->fcp
->data_slices_per_group
;
324 ret
= fec_new(k
, n
, &fc
->parms
);
327 PARA_INFO_LOG("mps: %d, k: %d, n: %d, extra slices: %d\n",
328 fc
->mps
, k
, n
, fc
->num_extra_slices
);
329 fc
->src_data
= para_realloc(fc
->src_data
, k
* sizeof(char *));
330 fc
->enc_buf
= para_realloc(fc
->enc_buf
, fc
->mps
);
331 fc
->extra_src_buf
= para_realloc(fc
->extra_src_buf
, fc
->mps
);
332 fc
->extra_header_buf
= para_realloc(fc
->extra_header_buf
, fc
->mps
);
334 fc
->state
= FEC_STATE_READY_TO_RUN
;
335 fc
->next_header_time
.tv_sec
= 0;
336 fc
->stream_start
= *now
;
337 fc
->first_stream_chunk
= mmd
->current_chunk
;
341 static void vss_get_chunk(int chunk_num
, struct vss_task
*vsst
,
342 char **buf
, size_t *sz
)
345 * Chunk zero is special for header streams: It is the first portion of
346 * the audio file which consists of the audio file header. It may be
347 * arbitrary large due to embedded meta data. Audio format handlers may
348 * replace the header by a stripped one with meta data omitted which is
349 * of bounded size. We always use the stripped header for streaming
350 * rather than the unmodified header (chunk zero).
352 if (chunk_num
== 0 && vsst
->header_len
> 0) {
353 *buf
= vsst
->header_buf
; /* stripped header */
354 *sz
= vsst
->header_len
;
357 afh_get_chunk(chunk_num
, &mmd
->afd
.afhi
, vsst
->map
, (const char **)buf
,
361 static void compute_group_size(struct vss_task
*vsst
, struct fec_group
*g
,
366 int i
, max_chunks
= PARA_MAX(1LU, 150 / tv2ms(vss_chunk_time()));
368 if (g
->first_chunk
== 0) {
370 vss_get_chunk(0, vsst
, &buf
, &len
);
378 * Include chunks into the group until the group duration is at least
379 * 150ms. For ogg and wma, a single chunk's duration (ogg page/wma
380 * super frame) is already larger than 150ms, so a FEC group consists
381 * of exactly one chunk for these audio formats.
384 int chunk_num
= g
->first_chunk
+ i
;
386 if (g
->bytes
> 0 && i
>= max_chunks
) /* duration limit */
388 if (chunk_num
>= mmd
->afd
.afhi
.chunks_total
) /* eof */
390 vss_get_chunk(chunk_num
, vsst
, &buf
, &len
);
391 if (g
->bytes
+ len
> max_bytes
)
393 /* Include this chunk */
397 assert(g
->num_chunks
);
401 * Compute the slice size of the next group.
403 * The FEC parameters n and k are fixed but the slice size varies per
404 * FEC group. We'd like to choose slices as small as possible to avoid
405 * unnecessary FEC calculations but large enough to guarantee that the
406 * k data slices suffice to encode the header (if needed) and the data
409 * Once we know the payload of the next group, we define the number s
410 * of bytes per slice for this group by
412 * s = ceil(payload / k)
414 * However, for header streams, computing s is more complicated since no
415 * overlapping of header and data slices is possible. Hence we have k >=
416 * 2 and s must satisfy
418 * (*) ceil(h / s) + ceil(d / s) <= k
420 * where h and d are payload of the header and the data chunk(s)
421 * respectively. In general there is no value for s such that (*)
422 * becomes an equality, for example if h = 4000, d = 5000 and k = 10.
424 * We use the following approach for computing a suitable value for s:
427 * k1 := ceil(k * min(h, d) / (h + d)),
430 * Note that k >= 2 implies k1 > 0 and k2 > 0, so
432 * s := max(ceil(min(h, d) / k1), ceil(max(h, d) / k2))
434 * is well-defined. Inequality (*) holds for this value of s since k1
435 * slices suffice to store min(h, d) while k2 slices suffice to store
436 * max(h, d), i.e. the first addent of (*) is bounded by k1 and the
439 * For the above example we obtain
441 * k1 = ceil(10 * 4000 / 9000) = 5, k2 = 5,
442 * s = max(4000 / 5, 5000 / 5) = 1000,
444 * which is optimal since a slice size of 999 bytes would already require
447 static int compute_slice_size(struct fec_client
*fc
, struct vss_task
*vsst
)
449 struct fec_group
*g
= &fc
->group
;
450 int k
= fc
->fcp
->data_slices_per_group
+ fc
->num_extra_slices
;
451 int n
= fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
;
452 int ret
, k1
, k2
, h
, d
, min
, max
, sum
;
453 int max_slice_bytes
= fc
->mps
- FEC_HEADER_SIZE
;
456 if (!need_audio_header(fc
, vsst
)) {
457 max_group_bytes
= k
* max_slice_bytes
;
458 g
->num_header_slices
= 0;
459 compute_group_size(vsst
, g
, max_group_bytes
);
460 g
->slice_bytes
= DIV_ROUND_UP(g
->bytes
, k
);
461 if (g
->slice_bytes
== 0)
465 if (!need_data_slices(fc
, vsst
)) {
468 g
->slice_bytes
= DIV_ROUND_UP(vsst
->header_len
, k
);
469 g
->num_header_slices
= k
;
472 h
= vsst
->header_len
;
473 max_group_bytes
= (k
- num_slices(h
, max_slice_bytes
, n
- k
))
475 compute_group_size(vsst
, g
, max_group_bytes
);
478 g
->slice_bytes
= DIV_ROUND_UP(h
, k
);
479 ret
= num_slices(vsst
->header_len
, g
->slice_bytes
, n
- k
);
482 g
->num_header_slices
= ret
;
485 min
= PARA_MIN(h
, d
);
486 max
= PARA_MAX(h
, d
);
488 k1
= DIV_ROUND_UP(k
* min
, sum
);
493 g
->slice_bytes
= PARA_MAX(DIV_ROUND_UP(min
, k1
), DIV_ROUND_UP(max
, k2
));
495 * This value of s := g->slice_bytes satisfies inequality (*) above,
496 * but it might be larger than max_slice_bytes. However, we know that
497 * max_slice_bytes are sufficient to store header and data, so:
499 g
->slice_bytes
= PARA_MIN((int)g
->slice_bytes
, max_slice_bytes
);
501 ret
= num_slices(vsst
->header_len
, g
->slice_bytes
, n
- k
);
504 g
->num_header_slices
= ret
;
508 static int setup_next_fec_group(struct fec_client
*fc
, struct vss_task
*vsst
)
510 int ret
, i
, k
, n
, data_slices
;
513 struct fec_group
*g
= &fc
->group
;
515 if (fc
->state
== FEC_STATE_NONE
) {
516 ret
= initialize_fec_client(fc
, vsst
);
519 g
->first_chunk
= mmd
->current_chunk
;
524 if (g
->first_chunk
+ g
->num_chunks
>= mmd
->afd
.afhi
.chunks_total
)
527 * Start and duration of this group depend only on the previous
528 * group. Compute the new group start as g->start += g->duration.
531 tv_add(&tmp
, &g
->duration
, &g
->start
);
532 set_group_timing(fc
, vsst
);
533 g
->first_chunk
+= g
->num_chunks
;
536 k
= fc
->fcp
->data_slices_per_group
+ fc
->num_extra_slices
;
537 n
= fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
;
539 compute_slice_size(fc
, vsst
);
540 assert(g
->slice_bytes
> 0);
541 ret
= num_slices(g
->bytes
, g
->slice_bytes
, n
- k
);
545 assert(g
->num_header_slices
+ data_slices
<= k
);
546 fc
->current_slice_num
= 0;
548 set_group_timing(fc
, vsst
);
549 /* setup header slices */
550 buf
= vsst
->header_buf
;
551 for (i
= 0; i
< g
->num_header_slices
; i
++) {
552 uint32_t payload_size
;
553 if (buf
+ g
->slice_bytes
<= vsst
->header_buf
+ vsst
->header_len
) {
554 fc
->src_data
[i
] = (const unsigned char *)buf
;
555 buf
+= g
->slice_bytes
;
559 * Can not use vss->header_buf for this slice as it
560 * goes beyond the buffer. This slice will not be fully
563 payload_size
= vsst
->header_buf
+ vsst
->header_len
- buf
;
564 memcpy(fc
->extra_header_buf
, buf
, payload_size
);
565 if (payload_size
< g
->slice_bytes
)
566 memset(fc
->extra_header_buf
+ payload_size
, 0,
567 g
->slice_bytes
- payload_size
);
569 * There might be more than one header slice to fill although
570 * only the first one will be used. Set all header slices to
573 while (i
< g
->num_header_slices
)
574 fc
->src_data
[i
++] = fc
->extra_header_buf
;
575 break; /* we don't want i to be increased. */
579 * Setup data slices. Note that for ogg streams chunk 0 points to a
580 * buffer on the heap rather than to the mapped audio file.
582 vss_get_chunk(g
->first_chunk
, vsst
, &buf
, &len
);
583 for (p
= buf
; i
< g
->num_header_slices
+ data_slices
; i
++) {
584 if (p
+ g
->slice_bytes
> buf
+ g
->bytes
) {
586 * We must make a copy for this slice since using p
587 * directly would exceed the buffer.
589 uint32_t payload_size
= buf
+ g
->bytes
- p
;
590 assert(payload_size
+ FEC_HEADER_SIZE
<= fc
->mps
);
591 memcpy(fc
->extra_src_buf
, p
, payload_size
);
592 if (payload_size
< g
->slice_bytes
)
593 memset(fc
->extra_src_buf
+ payload_size
, 0,
594 g
->slice_bytes
- payload_size
);
595 fc
->src_data
[i
] = fc
->extra_src_buf
;
599 fc
->src_data
[i
] = (const unsigned char *)p
;
603 /* use arbitrary data for all remaining slices */
606 fc
->src_data
[i
] = (const unsigned char *)buf
;
608 PARA_DEBUG_LOG("FEC group %d: %d chunks (%d - %d), %d bytes\n",
609 g
->num
, g
->num_chunks
, g
->first_chunk
,
610 g
->first_chunk
+ g
->num_chunks
- 1, g
->bytes
612 PARA_DEBUG_LOG("slice_bytes: %d, %d header slices, %d data slices\n",
613 g
->slice_bytes
, g
->num_header_slices
, data_slices
618 static int compute_next_fec_slice(struct fec_client
*fc
, struct vss_task
*vsst
)
620 if (fc
->state
== FEC_STATE_NONE
|| fc
->current_slice_num
621 == fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
) {
622 int ret
= setup_next_fec_group(fc
, vsst
);
626 PARA_ERROR_LOG("%s\n", para_strerror(-ret
));
627 PARA_ERROR_LOG("FEC client temporarily disabled\n");
628 fc
->state
= FEC_STATE_DISABLED
;
632 write_fec_header(fc
, vsst
);
633 fec_encode(fc
->parms
, fc
->src_data
, fc
->enc_buf
+ FEC_HEADER_SIZE
,
634 fc
->current_slice_num
, fc
->group
.slice_bytes
);
639 * Return a buffer that marks the end of the stream.
641 * \param buf Result pointer.
642 * \return The length of the eof buffer.
644 * This is used for (multicast) udp streaming where closing the socket on the
645 * sender might not give rise to an eof condition at the peer.
647 size_t vss_get_fec_eof_packet(const char **buf
)
649 static const char fec_eof_packet
[FEC_HEADER_SIZE
] = FEC_EOF_PACKET
;
650 *buf
= fec_eof_packet
;
651 return FEC_HEADER_SIZE
;
655 * Add one entry to the list of active fec clients.
657 * \param sc Generic sender_client data of the transport layer.
658 * \param fcp FEC parameters as supplied by the transport layer.
660 * \return Newly allocated fec_client struct.
662 struct fec_client
*vss_add_fec_client(struct sender_client
*sc
,
663 struct fec_client_parms
*fcp
)
665 struct fec_client
*fc
= para_calloc(sizeof(*fc
));
669 para_list_add(&fc
->node
, &fec_client_list
);
674 * Remove one entry from the list of active fec clients.
676 * \param fc The client to be removed.
678 void vss_del_fec_client(struct fec_client
*fc
)
683 free(fc
->extra_src_buf
);
684 free(fc
->extra_header_buf
);
690 * Compute if/when next slice is due. If it isn't due yet and \a diff is
691 * not \p Null, compute the time difference next - now, where
693 * next = stream_start + (first_group_chunk - first_stream_chunk)
694 * * chunk_time + slice_num * slice_time
696 static int next_slice_is_due(struct fec_client
*fc
, struct timeval
*diff
)
698 struct timeval tmp
, next
;
701 if (fc
->state
== FEC_STATE_NONE
)
703 tv_scale(fc
->current_slice_num
, &fc
->group
.slice_duration
, &tmp
);
704 tv_add(&tmp
, &fc
->group
.start
, &next
);
705 ret
= tv_diff(&next
, now
, diff
);
706 return ret
< 0? 1 : 0;
709 static void set_eof_barrier(struct vss_task
*vsst
)
711 struct fec_client
*fc
;
712 struct timeval timeout
= {1, 0}, *chunk_tv
= vss_chunk_time();
716 list_for_each_entry(fc
, &fec_client_list
, node
) {
717 struct timeval group_duration
;
719 if (fc
->state
!= FEC_STATE_READY_TO_RUN
)
721 tv_scale(fc
->group
.num_chunks
, chunk_tv
, &group_duration
);
722 if (tv_diff(&timeout
, &group_duration
, NULL
) < 0)
723 timeout
= group_duration
;
726 tv_add(now
, &timeout
, &vsst
->eof_barrier
);
730 * Check if vss status flag \a P (playing) is set.
732 * \return Greater than zero if playing, zero otherwise.
735 unsigned int vss_playing(void)
737 return mmd
->new_vss_status_flags
& VSS_PLAYING
;
741 * Check if the \a N (next) status flag is set.
743 * \return Greater than zero if set, zero if not.
746 unsigned int vss_next(void)
748 return mmd
->new_vss_status_flags
& VSS_NEXT
;
752 * Check if a reposition request is pending.
754 * \return Greater than zero if true, zero otherwise.
757 unsigned int vss_repos(void)
759 return mmd
->new_vss_status_flags
& VSS_REPOS
;
763 * Check if the vss is currently paused.
765 * \return Greater than zero if paused, zero otherwise.
768 unsigned int vss_paused(void)
770 return !(mmd
->new_vss_status_flags
& VSS_NEXT
)
771 && !(mmd
->new_vss_status_flags
& VSS_PLAYING
);
775 * Check if the vss is currently stopped.
777 * \return Greater than zero if paused, zero otherwise.
780 unsigned int vss_stopped(void)
782 return (mmd
->new_vss_status_flags
& VSS_NEXT
)
783 && !(mmd
->new_vss_status_flags
& VSS_PLAYING
);
786 static int chk_barrier(const char *bname
, const struct timeval
*barrier
,
787 struct timeval
*diff
, int print_log
)
791 if (tv_diff(now
, barrier
, diff
) > 0)
795 PARA_DEBUG_LOG("%s barrier: %lims left\n", bname
, ms
);
799 static void vss_compute_timeout(struct sched
*s
, struct vss_task
*vsst
)
802 struct fec_client
*fc
;
804 if (!vss_playing() || !vsst
->map
)
806 if (vss_next() && vsst
->map
) /* only sleep a bit, nec*/
807 return sched_request_timeout_ms(100, s
);
809 /* Each of these barriers must have passed until we may proceed */
810 if (sched_request_barrier(&vsst
->autoplay_barrier
, s
) == 1)
812 if (sched_request_barrier(&vsst
->eof_barrier
, s
) == 1)
814 if (sched_request_barrier(&vsst
->data_send_barrier
, s
) == 1)
817 * Compute the select timeout as the minimal time until the next
818 * chunk/slice is due for any client.
820 compute_chunk_time(mmd
->chunks_sent
, &mmd
->afd
.afhi
.chunk_tv
,
821 &mmd
->stream_start
, &tv
);
822 if (sched_request_barrier_or_min_delay(&tv
, s
) == 0)
824 list_for_each_entry(fc
, &fec_client_list
, node
) {
825 if (fc
->state
!= FEC_STATE_READY_TO_RUN
)
827 if (next_slice_is_due(fc
, &tv
))
828 return sched_min_delay(s
);
829 sched_request_timeout(&tv
, s
);
833 static void vss_eof(struct vss_task
*vsst
)
838 if (mmd
->new_vss_status_flags
& VSS_NOMORE
)
839 mmd
->new_vss_status_flags
= VSS_NEXT
;
840 set_eof_barrier(vsst
);
841 afh_free_header(vsst
->header_buf
, mmd
->afd
.audio_format_id
);
842 vsst
->header_buf
= NULL
;
843 para_munmap(vsst
->map
, mmd
->size
);
845 mmd
->chunks_sent
= 0;
847 mmd
->afd
.afhi
.seconds_total
= 0;
848 mmd
->afd
.afhi
.chunk_tv
.tv_sec
= 0;
849 mmd
->afd
.afhi
.chunk_tv
.tv_usec
= 0;
850 free(mmd
->afd
.afhi
.chunk_table
);
851 mmd
->afd
.afhi
.chunk_table
= NULL
;
857 static int need_to_request_new_audio_file(struct vss_task
*vsst
)
861 if (vsst
->map
) /* have audio file */
863 if (!vss_playing()) /* don't need one */
865 if (mmd
->new_vss_status_flags
& VSS_NOMORE
)
867 if (vsst
->afsss
== AFS_SOCKET_AFD_PENDING
) /* already requested one */
869 if (chk_barrier("autoplay_delay", &vsst
->autoplay_barrier
,
875 static void set_mmd_offset(void)
877 struct timeval offset
;
878 tv_scale(mmd
->current_chunk
, &mmd
->afd
.afhi
.chunk_tv
, &offset
);
879 mmd
->offset
= tv2ms(&offset
);
883 * Compute the timeout for the main select-loop of the scheduler.
885 * \param s Pointer to the server scheduler.
886 * \param t Pointer to the vss task structure.
888 * Before the timeout is computed, the current vss status flags are evaluated
889 * and acted upon by calling appropriate functions from the lower layers.
890 * Possible actions include
892 * - request a new audio file from afs,
893 * - shutdown of all senders (stop/pause command),
894 * - reposition the stream (ff/jmp command).
896 static void vss_pre_select(struct sched
*s
, struct task
*t
)
899 struct vss_task
*vsst
= container_of(t
, struct vss_task
, task
);
901 if (!vsst
->map
|| vss_next() || vss_paused() || vss_repos()) {
902 struct fec_client
*fc
, *tmp
;
903 for (i
= 0; senders
[i
].name
; i
++)
904 if (senders
[i
].shutdown_clients
)
905 senders
[i
].shutdown_clients();
906 list_for_each_entry_safe(fc
, tmp
, &fec_client_list
, node
)
907 fc
->state
= FEC_STATE_NONE
;
908 mmd
->stream_start
.tv_sec
= 0;
909 mmd
->stream_start
.tv_usec
= 0;
913 else if (vss_paused()) {
914 if (mmd
->chunks_sent
)
915 set_eof_barrier(vsst
);
916 mmd
->chunks_sent
= 0;
917 } else if (vss_repos()) {
918 tv_add(now
, &vsst
->announce_tv
, &vsst
->data_send_barrier
);
919 set_eof_barrier(vsst
);
920 mmd
->chunks_sent
= 0;
921 mmd
->current_chunk
= mmd
->repos_request
;
922 mmd
->new_vss_status_flags
&= ~VSS_REPOS
;
925 if (need_to_request_new_audio_file(vsst
)) {
926 PARA_DEBUG_LOG("ready and playing, but no audio file\n");
927 para_fd_set(vsst
->afs_socket
, &s
->wfds
, &s
->max_fileno
);
928 vsst
->afsss
= AFS_SOCKET_CHECK_FOR_WRITE
;
930 para_fd_set(vsst
->afs_socket
, &s
->rfds
, &s
->max_fileno
);
931 for (i
= 0; senders
[i
].name
; i
++) {
932 if (!senders
[i
].pre_select
)
934 senders
[i
].pre_select(&s
->max_fileno
, &s
->rfds
, &s
->wfds
);
936 vss_compute_timeout(s
, vsst
);
939 static int recv_afs_msg(int afs_socket
, int *fd
, uint32_t *code
, uint32_t *data
)
941 char control
[255], buf
[8];
942 struct msghdr msg
= {.msg_iov
= NULL
};
943 struct cmsghdr
*cmsg
;
949 iov
.iov_len
= sizeof(buf
);
952 msg
.msg_control
= control
;
953 msg
.msg_controllen
= sizeof(control
);
954 memset(buf
, 0, sizeof(buf
));
955 ret
= recvmsg(afs_socket
, &msg
, 0);
957 return -ERRNO_TO_PARA_ERROR(errno
);
958 if (iov
.iov_len
!= sizeof(buf
))
959 return -E_AFS_SHORT_READ
;
960 *code
= *(uint32_t*)buf
;
961 *data
= *(uint32_t*)(buf
+ 4);
962 for (cmsg
= CMSG_FIRSTHDR(&msg
); cmsg
; cmsg
= CMSG_NXTHDR(&msg
, cmsg
)) {
963 if (cmsg
->cmsg_level
!= SOL_SOCKET
964 || cmsg
->cmsg_type
!= SCM_RIGHTS
)
966 if ((cmsg
->cmsg_len
- CMSG_LEN(0)) / sizeof(int) != 1)
968 *fd
= *(int *)CMSG_DATA(cmsg
);
974 #define MAP_POPULATE 0
977 static void recv_afs_result(struct vss_task
*vsst
, fd_set
*rfds
)
979 int ret
, passed_fd
, shmid
;
980 uint32_t afs_code
= 0, afs_data
= 0;
983 if (!FD_ISSET(vsst
->afs_socket
, rfds
))
985 ret
= recv_afs_msg(vsst
->afs_socket
, &passed_fd
, &afs_code
, &afs_data
);
986 if (ret
== -ERRNO_TO_PARA_ERROR(EAGAIN
))
990 vsst
->afsss
= AFS_SOCKET_READY
;
991 PARA_DEBUG_LOG("fd: %d, code: %u, shmid: %u\n", passed_fd
, afs_code
,
994 if (afs_code
!= NEXT_AUDIO_FILE
)
999 ret
= load_afd(shmid
, &mmd
->afd
);
1003 ret
= fstat(passed_fd
, &statbuf
);
1005 PARA_ERROR_LOG("fstat error:\n");
1006 ret
= -ERRNO_TO_PARA_ERROR(errno
);
1009 mmd
->size
= statbuf
.st_size
;
1010 mmd
->mtime
= statbuf
.st_mtime
;
1011 ret
= para_mmap(mmd
->size
, PROT_READ
, MAP_PRIVATE
| MAP_POPULATE
,
1012 passed_fd
, 0, &vsst
->map
);
1016 mmd
->chunks_sent
= 0;
1017 mmd
->current_chunk
= 0;
1021 mmd
->new_vss_status_flags
&= (~VSS_NEXT
);
1022 afh_get_header(&mmd
->afd
.afhi
, mmd
->afd
.audio_format_id
,
1023 vsst
->map
, mmd
->size
, &vsst
->header_buf
, &vsst
->header_len
);
1026 free(mmd
->afd
.afhi
.chunk_table
);
1029 PARA_ERROR_LOG("%s\n", para_strerror(-ret
));
1030 mmd
->new_vss_status_flags
= VSS_NEXT
;
1034 * Main sending function.
1036 * This function gets called from vss_post_select(). It checks whether the next
1037 * chunk of data should be pushed out. It obtains a pointer to the data to be
1038 * sent out as well as its length from mmd->afd.afhi. This information is then
1039 * passed to each supported sender's send() function as well as to the send()
1040 * functions of each registered fec client.
1042 static void vss_send(struct vss_task
*vsst
)
1044 int i
, fec_active
= 0;
1046 struct fec_client
*fc
, *tmp_fc
;
1048 if (!vsst
->map
|| !vss_playing())
1050 if (chk_barrier("eof", &vsst
->eof_barrier
, &due
, 1) < 0)
1052 if (chk_barrier("data send", &vsst
->data_send_barrier
,
1055 list_for_each_entry_safe(fc
, tmp_fc
, &fec_client_list
, node
) {
1056 if (fc
->state
== FEC_STATE_DISABLED
)
1058 if (!next_slice_is_due(fc
, NULL
)) {
1062 if (compute_next_fec_slice(fc
, vsst
) <= 0)
1064 PARA_DEBUG_LOG("sending %d:%d (%u bytes)\n", fc
->group
.num
,
1065 fc
->current_slice_num
, fc
->group
.slice_bytes
);
1066 fc
->fcp
->send_fec(fc
->sc
, (char *)fc
->enc_buf
,
1067 fc
->group
.slice_bytes
+ FEC_HEADER_SIZE
);
1068 fc
->current_slice_num
++;
1071 if (mmd
->current_chunk
>= mmd
->afd
.afhi
.chunks_total
) { /* eof */
1073 mmd
->new_vss_status_flags
|= VSS_NEXT
;
1076 compute_chunk_time(mmd
->chunks_sent
, &mmd
->afd
.afhi
.chunk_tv
,
1077 &mmd
->stream_start
, &due
);
1078 if (tv_diff(&due
, now
, NULL
) <= 0) {
1082 if (!mmd
->chunks_sent
) {
1083 mmd
->stream_start
= *now
;
1088 * We call the send function also in case of empty chunks as
1089 * they might have still some data queued which can be sent in
1092 vss_get_chunk(mmd
->current_chunk
, vsst
, &buf
, &len
);
1093 for (i
= 0; senders
[i
].name
; i
++) {
1094 if (!senders
[i
].send
)
1096 senders
[i
].send(mmd
->current_chunk
, mmd
->chunks_sent
,
1097 buf
, len
, vsst
->header_buf
, vsst
->header_len
);
1100 * Prefault next chunk(s)
1102 * If the backing device of the memory-mapped audio file is
1103 * slow and read-ahead is turned off or prevented for some
1104 * reason, e.g. due to memory pressure, it may take much longer
1105 * than the chunk interval to get the next chunk on the wire,
1106 * causing buffer underruns on the client side. Mapping the
1107 * file with MAP_POPULATE seems to help a bit, but it does not
1108 * eliminate the delays completely. Moreover, it is supported
1109 * only on Linux. So we do our own read-ahead here.
1111 if (mmd
->current_chunk
> 0) { /* chunk 0 might be on the heap */
1113 for (i
= 0; i
< 5 && buf
< vsst
->map
+ mmd
->size
; i
++) {
1114 __a_unused
volatile char x
= *buf
;
1119 mmd
->current_chunk
++;
1123 static int vss_post_select(struct sched
*s
, struct task
*t
)
1126 struct vss_task
*vsst
= container_of(t
, struct vss_task
, task
);
1128 if (mmd
->sender_cmd_data
.cmd_num
>= 0) {
1129 int num
= mmd
->sender_cmd_data
.cmd_num
,
1130 sender_num
= mmd
->sender_cmd_data
.sender_num
;
1132 if (senders
[sender_num
].client_cmds
[num
]) {
1133 ret
= senders
[sender_num
].client_cmds
[num
]
1134 (&mmd
->sender_cmd_data
);
1136 PARA_ERROR_LOG("%s\n", para_strerror(-ret
));
1138 mmd
->sender_cmd_data
.cmd_num
= -1;
1140 if (vsst
->afsss
!= AFS_SOCKET_CHECK_FOR_WRITE
)
1141 recv_afs_result(vsst
, &s
->rfds
);
1142 else if (FD_ISSET(vsst
->afs_socket
, &s
->wfds
)) {
1143 PARA_NOTICE_LOG("requesting new fd from afs\n");
1144 ret
= write_buffer(vsst
->afs_socket
, "new");
1146 PARA_CRIT_LOG("%s\n", para_strerror(-ret
));
1148 vsst
->afsss
= AFS_SOCKET_AFD_PENDING
;
1150 for (i
= 0; senders
[i
].name
; i
++) {
1151 if (!senders
[i
].post_select
)
1153 senders
[i
].post_select(&s
->rfds
, &s
->wfds
);
1155 if ((vss_playing() && !(mmd
->vss_status_flags
& VSS_PLAYING
)) ||
1156 (vss_next() && vss_playing()))
1157 tv_add(now
, &vsst
->announce_tv
, &vsst
->data_send_barrier
);
1163 * Initialize the virtual streaming system task.
1165 * \param afs_socket The fd for communication with afs.
1166 * \param s The scheduler to register the vss task to.
1168 * This also initializes all supported senders and starts streaming
1169 * if the --autoplay command line flag was given.
1171 void init_vss_task(int afs_socket
, struct sched
*s
)
1173 static struct vss_task vss_task_struct
, *vsst
= &vss_task_struct
;
1175 char *hn
= para_hostname(), *home
= para_homedir();
1176 long unsigned announce_time
= conf
.announce_time_arg
> 0?
1177 conf
.announce_time_arg
: 300,
1178 autoplay_delay
= conf
.autoplay_delay_arg
> 0?
1179 conf
.autoplay_delay_arg
: 0;
1180 vsst
->header_interval
.tv_sec
= 5; /* should this be configurable? */
1181 vsst
->afs_socket
= afs_socket
;
1182 vsst
->task
.pre_select
= vss_pre_select
;
1183 vsst
->task
.post_select
= vss_post_select
;
1184 ms2tv(announce_time
, &vsst
->announce_tv
);
1185 PARA_INFO_LOG("announce timeval: %lums\n", tv2ms(&vsst
->announce_tv
));
1186 INIT_LIST_HEAD(&fec_client_list
);
1187 for (i
= 0; senders
[i
].name
; i
++) {
1188 PARA_NOTICE_LOG("initializing %s sender\n", senders
[i
].name
);
1189 senders
[i
].init(&senders
[i
]);
1193 mmd
->sender_cmd_data
.cmd_num
= -1;
1194 if (conf
.autoplay_given
) {
1196 mmd
->vss_status_flags
|= VSS_PLAYING
;
1197 mmd
->new_vss_status_flags
|= VSS_PLAYING
;
1198 ms2tv(autoplay_delay
, &tmp
);
1199 tv_add(now
, &tmp
, &vsst
->autoplay_barrier
);
1200 tv_add(&vsst
->autoplay_barrier
, &vsst
->announce_tv
,
1201 &vsst
->data_send_barrier
);
1203 sprintf(vsst
->task
.status
, "vss task");
1204 register_task(s
, &vsst
->task
);