1 /* Copyright (C) 1997 Andre Noll <maan@tuebingen.mpg.de>, see file COPYING. */
3 /** \file vss.c The virtual streaming system.
5 * This contains the audio streaming code of para_server which is independent
6 * of the current audio format, audio file selector and of the activated
10 #include <sys/socket.h>
11 #include <netinet/in.h>
14 #include <sys/types.h>
15 #include <arpa/inet.h>
20 #include "server.lsg.h"
23 #include "portable_io.h"
37 extern struct misc_meta_data
*mmd
;
38 extern const struct sender udp_sender
, dccp_sender
, http_sender
;
39 const struct sender
* const senders
[] = {
40 &http_sender
, &dccp_sender
, &udp_sender
, NULL
};
42 /** The possible states of the afs socket. */
43 enum afs_socket_status
{
44 /** Socket is inactive. */
46 /** Socket fd was included in the write fd set for select(). */
47 AFS_SOCKET_CHECK_FOR_WRITE
,
48 /** vss wrote a request to the socket and waits for reply from afs. */
49 AFS_SOCKET_AFD_PENDING
52 /** The task structure for the virtual streaming system. */
54 /** Copied from the -announce_time command line option. */
55 struct timeval announce_tv
;
56 /** End of the announcing interval. */
57 struct timeval data_send_barrier
;
58 /** End of the EOF interval. */
59 struct timeval eof_barrier
;
60 /** Only used if --autoplay_delay was given. */
61 struct timeval autoplay_barrier
;
62 /** Used for afs-server communication. */
64 /** The current state of \a afs_socket. */
65 enum afs_socket_status afsss
;
66 /** The memory mapped audio file. */
68 /** The size of the memory mapping. */
70 /** Used by the scheduler. */
72 /** Pointer to the header of the mapped audio file. */
74 /** Length of the audio file header. */
76 /** Time between audio file headers are sent. */
77 struct timeval header_interval
;
78 /* Only used if afh supports dynamic chunks. */
83 * The list of currently connected fec clients.
85 * Senders may use \ref vss_add_fec_client() to add entries to the list.
87 static struct list_head fec_client_list
;
90 * Data associated with one FEC group.
92 * A FEC group consists of a fixed number of slices and this number is given by
93 * the \a slices_per_group parameter of struct \ref fec_client_parms. Each FEC
94 * group contains a number of chunks of the current audio file.
96 * FEC slices directly correspond to the data packages sent by the paraslash
97 * senders that use FEC. Each slice is identified by its group number and its
98 * number within the group. All slices have the same size, but the last slice
99 * of the group may not be filled entirely.
102 /** The number of the FEC group. */
104 /** Number of bytes in this group. */
106 /** The first chunk of the current audio file belonging to the group. */
107 uint32_t first_chunk
;
108 /** The number of chunks contained in this group. */
110 /** When the first chunk was sent. */
111 struct timeval start
;
112 /** The duration of the full group. */
113 struct timeval duration
;
114 /** The group duration divided by the number of slices. */
115 struct timeval slice_duration
;
116 /** Group contains the audio file header that occupies that many slices. */
117 uint8_t num_header_slices
;
118 /** Number of bytes per slice for this group. */
119 uint16_t slice_bytes
;
122 /** A FEC client is always in one of these states. */
123 enum fec_client_state
{
124 FEC_STATE_NONE
= 0, /**< not initialized and not enabled */
125 FEC_STATE_DISABLED
, /**< temporarily disabled */
126 FEC_STATE_READY_TO_RUN
/**< initialized and enabled */
130 * Describes one connected FEC client.
133 /** Current state of the client */
134 enum fec_client_state state
;
135 /** The connected sender client (transport layer). */
136 struct sender_client
*sc
;
137 /** Parameters requested by the client. */
138 struct fec_client_parms
*fcp
;
139 /** Used by the core FEC code. */
140 struct fec_parms
*parms
;
141 /** The position of this client in the fec client list. */
142 struct list_head node
;
143 /** When the first slice for this client was sent. */
144 struct timeval stream_start
;
145 /** The first chunk sent to this FEC client. */
146 int first_stream_chunk
;
147 /** Describes the current group. */
148 struct fec_group group
;
149 /** The current slice. */
150 uint8_t current_slice_num
;
151 /** The data to be FEC-encoded. */
152 unsigned char **src_data
;
153 /** Last time an audio header was sent. */
154 struct timeval next_header_time
;
155 /** Extra slices needed to store largest chunk + header. */
156 int num_extra_slices
;
157 /** Contains the FEC-encoded data. */
158 unsigned char *enc_buf
;
159 /** Maximal packet size. */
164 * Get the chunk time of the current audio file.
166 * \return A pointer to a struct containing the chunk time, or NULL,
167 * if currently no audio file is selected.
169 struct timeval
*vss_chunk_time(void)
171 if (mmd
->afd
.afhi
.chunk_tv
.tv_sec
== 0 &&
172 mmd
->afd
.afhi
.chunk_tv
.tv_usec
== 0)
174 return &mmd
->afd
.afhi
.chunk_tv
;
178 * Write a fec header to a buffer.
180 * \param buf The buffer to write to.
181 * \param h The fec header to write.
183 static void write_fec_header(struct fec_client
*fc
, struct vss_task
*vsst
)
185 char *buf
= (char *)fc
->enc_buf
;
186 struct fec_group
*g
= &fc
->group
;
187 struct fec_client_parms
*p
= fc
->fcp
;
189 write_u32(buf
, FEC_MAGIC
);
191 write_u8(buf
+ 4, p
->slices_per_group
+ fc
->num_extra_slices
);
192 write_u8(buf
+ 5, p
->data_slices_per_group
+ fc
->num_extra_slices
);
193 write_u32(buf
+ 6, g
->num_header_slices
? vsst
->header_len
: 0);
195 write_u32(buf
+ 10, g
->num
);
196 write_u32(buf
+ 14, g
->bytes
);
198 write_u8(buf
+ 18, fc
->current_slice_num
);
199 write_u8(buf
+ 19, 0); /* unused */
200 write_u16(buf
+ 20, g
->slice_bytes
);
201 write_u8(buf
+ 22, g
->first_chunk
? 0 : 1);
202 write_u8(buf
+ 23, vsst
->header_len
? 1 : 0);
203 memset(buf
+ 24, 0, 8);
206 static bool need_audio_header(struct fec_client
*fc
, struct vss_task
*vsst
)
208 if (!mmd
->current_chunk
) {
209 tv_add(now
, &vsst
->header_interval
, &fc
->next_header_time
);
212 if (!vsst
->header_buf
)
214 if (vsst
->header_len
== 0)
216 if (fc
->group
.num
> 0) {
217 if (!fc
->fcp
->need_periodic_header
)
219 if (tv_diff(&fc
->next_header_time
, now
, NULL
) > 0)
222 tv_add(now
, &vsst
->header_interval
, &fc
->next_header_time
);
226 static bool need_data_slices(struct fec_client
*fc
, struct vss_task
*vsst
)
228 if (fc
->group
.num
> 0)
230 if (!vsst
->header_buf
)
232 if (vsst
->header_len
== 0)
234 if (fc
->fcp
->need_periodic_header
)
239 static int fc_num_data_slices(const struct fec_client
*fc
)
241 return fc
->fcp
->data_slices_per_group
+ fc
->num_extra_slices
;
244 static int fc_num_slices(const struct fec_client
*fc
)
246 return fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
;
249 static int fc_num_redundant_slices(const struct fec_client
*fc
)
251 return fc
->fcp
->slices_per_group
- fc
->fcp
->data_slices_per_group
;
254 static int num_slices(long unsigned bytes
, int max_payload
, int rs
)
258 assert(max_payload
> 0);
260 ret
= DIV_ROUND_UP(bytes
, max_payload
);
266 /* set group start and group duration */
267 static void set_group_timing(struct fec_client
*fc
, struct vss_task
*vsst
)
269 struct fec_group
*g
= &fc
->group
;
270 struct timeval
*chunk_tv
= vss_chunk_time();
272 if (!need_data_slices(fc
, vsst
))
273 ms2tv(200, &g
->duration
);
275 tv_scale(g
->num_chunks
, chunk_tv
, &g
->duration
);
276 tv_divide(fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
,
277 &g
->duration
, &g
->slice_duration
);
278 PARA_DEBUG_LOG("durations (group/chunk/slice): %lu/%lu/%lu\n",
279 tv2ms(&g
->duration
), tv2ms(chunk_tv
), tv2ms(&g
->slice_duration
));
282 static int initialize_fec_client(struct fec_client
*fc
, struct vss_task
*vsst
)
285 int hs
, ds
, rs
; /* header/data/redundant slices */
286 struct fec_client_parms
*fcp
= fc
->fcp
;
291 * Set the maximum slice size to the Maximum Packet Size if the
292 * transport protocol allows determination of this value. The user
293 * can specify a slice size up to this value.
295 ret
= fcp
->init_fec(fc
->sc
);
300 fc
->mps
= generic_max_transport_msg_size(fc
->sc
->fd
);
301 if (fc
->mps
<= FEC_HEADER_SIZE
)
302 return -ERRNO_TO_PARA_ERROR(EINVAL
);
304 /* free previous buffers, if any */
306 k
= fc_num_data_slices(fc
);
307 for (i
= 0; i
< k
; i
++)
308 free(fc
->src_data
[i
]);
314 rs
= fc_num_redundant_slices(fc
);
315 ret
= num_slices(vsst
->header_len
, fc
->mps
- FEC_HEADER_SIZE
, rs
);
319 ret
= num_slices(mmd
->afd
.max_chunk_size
, fc
->mps
- FEC_HEADER_SIZE
, rs
);
323 if (fc
->fcp
->need_periodic_header
)
326 k
= PARA_MAX(hs
, ds
);
327 if (k
< fc
->fcp
->data_slices_per_group
)
328 k
= fc
->fcp
->data_slices_per_group
;
329 fc
->num_extra_slices
= k
- fc
->fcp
->data_slices_per_group
;
330 n
= fc_num_slices(fc
);
331 PARA_INFO_LOG("mps: %d, k: %d, n: %d, extra slices: %d\n",
332 fc
->mps
, k
, n
, fc
->num_extra_slices
);
335 ret
= fec_new(k
, n
, &fc
->parms
);
338 fc
->src_data
= para_malloc(k
* sizeof(char *));
339 for (i
= 0; i
< k
; i
++)
340 fc
->src_data
[i
] = para_malloc(fc
->mps
);
341 fc
->enc_buf
= para_malloc(fc
->mps
);
343 fc
->state
= FEC_STATE_READY_TO_RUN
;
344 fc
->next_header_time
.tv_sec
= 0;
345 fc
->stream_start
= *now
;
346 fc
->first_stream_chunk
= mmd
->current_chunk
;
350 static int vss_get_chunk(int chunk_num
, struct vss_task
*vsst
,
351 char **buf
, size_t *sz
)
356 * Chunk zero is special for header streams: It is the first portion of
357 * the audio file which consists of the audio file header. It may be
358 * arbitrary large due to embedded meta data. Audio format handlers may
359 * replace the header by a stripped one with meta data omitted which is
360 * of bounded size. We always use the stripped header for streaming
361 * rather than the unmodified header (chunk zero).
363 if (chunk_num
== 0 && vsst
->header_len
> 0) {
364 assert(vsst
->header_buf
);
365 *buf
= vsst
->header_buf
; /* stripped header */
366 *sz
= vsst
->header_len
;
369 ret
= afh_get_chunk(chunk_num
, &mmd
->afd
.afhi
,
370 mmd
->afd
.audio_format_id
, vsst
->map
, vsst
->mapsize
,
371 (const char **)buf
, sz
, &vsst
->afh_context
);
379 static int compute_group_size(struct vss_task
*vsst
, struct fec_group
*g
,
384 int ret
, i
, max_chunks
= PARA_MAX(1LU, 150 / tv2ms(vss_chunk_time()));
386 if (g
->first_chunk
== 0) {
388 ret
= vss_get_chunk(0, vsst
, &buf
, &len
);
398 * Include chunks into the group until the group duration is at least
399 * 150ms. For ogg and wma, a single chunk's duration (ogg page/wma
400 * super frame) is already larger than 150ms, so a FEC group consists
401 * of exactly one chunk for these audio formats.
404 int chunk_num
= g
->first_chunk
+ i
;
406 if (g
->bytes
> 0 && i
>= max_chunks
) /* duration limit */
408 if (chunk_num
>= mmd
->afd
.afhi
.chunks_total
) /* eof */
410 ret
= vss_get_chunk(chunk_num
, vsst
, &buf
, &len
);
413 if (g
->bytes
+ len
> max_bytes
)
415 /* Include this chunk */
419 assert(g
->num_chunks
);
420 PARA_DEBUG_LOG("group #%u: %u chunks, %u bytes total\n", g
->num
,
421 g
->num_chunks
, g
->bytes
);
426 * Compute the slice size of the next group.
428 * The FEC parameters n and k are fixed but the slice size varies per
429 * FEC group. We'd like to choose slices as small as possible to avoid
430 * unnecessary FEC calculations but large enough to guarantee that the
431 * k data slices suffice to encode the header (if needed) and the data
434 * Once we know the payload of the next group, we define the number s
435 * of bytes per slice for this group by
437 * s = ceil(payload / k)
439 * However, for header streams, computing s is more complicated since no
440 * overlapping of header and data slices is possible. Hence we have k >=
441 * 2 and s must satisfy
443 * (*) ceil(h / s) + ceil(d / s) <= k
445 * where h and d are payload of the header and the data chunk(s)
446 * respectively. In general there is no value for s such that (*)
447 * becomes an equality, for example if h = 4000, d = 5000 and k = 10.
449 * We use the following approach for computing a suitable value for s:
452 * k1 := ceil(k * min(h, d) / (h + d)),
455 * Note that k >= 2 implies k1 > 0 and k2 > 0, so
457 * s := max(ceil(min(h, d) / k1), ceil(max(h, d) / k2))
459 * is well-defined. Inequality (*) holds for this value of s since k1
460 * slices suffice to store min(h, d) while k2 slices suffice to store
461 * max(h, d), i.e. the first addent of (*) is bounded by k1 and the
464 * For the above example we obtain
466 * k1 = ceil(10 * 4000 / 9000) = 5, k2 = 5,
467 * s = max(4000 / 5, 5000 / 5) = 1000,
469 * which is optimal since a slice size of 999 bytes would already require
472 static int compute_slice_size(struct fec_client
*fc
, struct vss_task
*vsst
)
474 struct fec_group
*g
= &fc
->group
;
475 int k
= fc_num_data_slices(fc
);
476 int n
= fc_num_slices(fc
);
477 int ret
, k1
, k2
, h
, d
, min
, max
, sum
;
478 int max_slice_bytes
= fc
->mps
- FEC_HEADER_SIZE
;
481 if (!need_audio_header(fc
, vsst
)) {
482 max_group_bytes
= k
* max_slice_bytes
;
483 g
->num_header_slices
= 0;
484 ret
= compute_group_size(vsst
, g
, max_group_bytes
);
487 g
->slice_bytes
= DIV_ROUND_UP(g
->bytes
, k
);
488 if (g
->slice_bytes
== 0)
492 if (!need_data_slices(fc
, vsst
)) {
495 g
->slice_bytes
= DIV_ROUND_UP(vsst
->header_len
, k
);
496 g
->num_header_slices
= k
;
499 h
= vsst
->header_len
;
500 max_group_bytes
= (k
- num_slices(h
, max_slice_bytes
, n
- k
))
502 ret
= compute_group_size(vsst
, g
, max_group_bytes
);
507 g
->slice_bytes
= DIV_ROUND_UP(h
, k
);
508 ret
= num_slices(vsst
->header_len
, g
->slice_bytes
, n
- k
);
511 g
->num_header_slices
= ret
;
514 min
= PARA_MIN(h
, d
);
515 max
= PARA_MAX(h
, d
);
517 k1
= DIV_ROUND_UP(k
* min
, sum
);
522 g
->slice_bytes
= PARA_MAX(DIV_ROUND_UP(min
, k1
), DIV_ROUND_UP(max
, k2
));
524 * This value of s := g->slice_bytes satisfies inequality (*) above,
525 * but it might be larger than max_slice_bytes. However, we know that
526 * max_slice_bytes are sufficient to store header and data, so:
528 g
->slice_bytes
= PARA_MIN((int)g
->slice_bytes
, max_slice_bytes
);
530 ret
= num_slices(vsst
->header_len
, g
->slice_bytes
, n
- k
);
533 g
->num_header_slices
= ret
;
537 static int setup_next_fec_group(struct fec_client
*fc
, struct vss_task
*vsst
)
540 size_t copy
, src_copied
, slice_copied
;
541 struct fec_group
*g
= &fc
->group
;
543 if (fc
->state
== FEC_STATE_NONE
) {
544 ret
= initialize_fec_client(fc
, vsst
);
547 g
->first_chunk
= mmd
->current_chunk
;
552 if (g
->first_chunk
+ g
->num_chunks
>= mmd
->afd
.afhi
.chunks_total
)
555 * Start and duration of this group depend only on the previous
556 * group. Compute the new group start as g->start += g->duration.
559 tv_add(&tmp
, &g
->duration
, &g
->start
);
560 set_group_timing(fc
, vsst
);
561 g
->first_chunk
+= g
->num_chunks
;
564 compute_slice_size(fc
, vsst
);
565 assert(g
->slice_bytes
> 0);
566 fc
->current_slice_num
= 0;
568 set_group_timing(fc
, vsst
);
569 /* setup header slices */
570 for (i
= 0, src_copied
= 0; i
< g
->num_header_slices
; i
++) {
571 copy
= PARA_MIN((size_t)g
->slice_bytes
, vsst
->header_len
- src_copied
);
574 memcpy(fc
->src_data
[i
], vsst
->header_buf
+ src_copied
, copy
);
575 if (copy
< g
->slice_bytes
)
576 memset(fc
->src_data
[i
] + copy
, 0, g
->slice_bytes
- copy
);
580 * There might be more than one header slice to fill although only the
581 * first one will be used. Zero out any remaining header slices.
583 while (i
< g
->num_header_slices
)
584 memset(fc
->src_data
[i
++], 0, g
->slice_bytes
);
587 for (c
= g
->first_chunk
; c
< g
->first_chunk
+ g
->num_chunks
; c
++) {
590 ret
= vss_get_chunk(c
, vsst
, &buf
, &src_len
);
596 while (src_copied
< src_len
) {
597 copy
= PARA_MIN((size_t)g
->slice_bytes
- slice_copied
,
598 src_len
- src_copied
);
599 memcpy(fc
->src_data
[i
] + slice_copied
,
600 buf
+ src_copied
, copy
);
602 slice_copied
+= copy
;
603 if (slice_copied
== g
->slice_bytes
) {
609 if (i
< fc_num_data_slices(fc
) && slice_copied
< g
->slice_bytes
)
610 memset(fc
->src_data
[i
] + slice_copied
, 0,
611 g
->slice_bytes
- slice_copied
);
612 /* zero out remaining slices, if any */
613 while (++i
< fc_num_data_slices(fc
))
614 memset(fc
->src_data
[i
], 0, g
->slice_bytes
);
615 PARA_DEBUG_LOG("FEC group %u: %u chunks (%u - %u), %u bytes\n",
616 g
->num
, g
->num_chunks
, g
->first_chunk
,
617 g
->first_chunk
+ g
->num_chunks
- 1, g
->bytes
619 PARA_DEBUG_LOG("slice_bytes: %d, %d header slices, %d data slices\n",
620 g
->slice_bytes
, g
->num_header_slices
, fc_num_data_slices(fc
)
625 static int compute_next_fec_slice(struct fec_client
*fc
, struct vss_task
*vsst
)
627 if (fc
->state
== FEC_STATE_NONE
|| fc
->current_slice_num
628 == fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
) {
629 int ret
= setup_next_fec_group(fc
, vsst
);
633 PARA_ERROR_LOG("%s\n", para_strerror(-ret
));
634 PARA_ERROR_LOG("FEC client temporarily disabled\n");
635 fc
->state
= FEC_STATE_DISABLED
;
639 write_fec_header(fc
, vsst
);
640 fec_encode(fc
->parms
, (const unsigned char * const*)fc
->src_data
,
641 fc
->enc_buf
+ FEC_HEADER_SIZE
, fc
->current_slice_num
,
642 fc
->group
.slice_bytes
);
647 * Return a buffer that marks the end of the stream.
649 * \param buf Result pointer.
650 * \return The length of the eof buffer.
652 * This is used for (multicast) udp streaming where closing the socket on the
653 * sender might not give rise to an eof condition at the peer.
655 size_t vss_get_fec_eof_packet(const char **buf
)
657 static const char fec_eof_packet
[FEC_HEADER_SIZE
] = FEC_EOF_PACKET
;
658 *buf
= fec_eof_packet
;
659 return FEC_HEADER_SIZE
;
663 * Add one entry to the list of active fec clients.
665 * \param sc Generic sender_client data of the transport layer.
666 * \param fcp FEC parameters as supplied by the transport layer.
668 * \return Newly allocated fec_client struct.
670 struct fec_client
*vss_add_fec_client(struct sender_client
*sc
,
671 struct fec_client_parms
*fcp
)
673 struct fec_client
*fc
= para_calloc(sizeof(*fc
));
677 para_list_add(&fc
->node
, &fec_client_list
);
682 * Remove one entry from the list of active fec clients.
684 * \param fc The client to be removed.
686 void vss_del_fec_client(struct fec_client
*fc
)
693 for (i
= 0; i
< fc_num_data_slices(fc
); i
++)
694 free(fc
->src_data
[i
]);
702 * Compute if/when next slice is due. If it isn't due yet and \a diff is
703 * not \p Null, compute the time difference next - now, where
705 * next = stream_start + (first_group_chunk - first_stream_chunk)
706 * * chunk_time + slice_num * slice_time
708 static int next_slice_is_due(struct fec_client
*fc
, struct timeval
*diff
)
710 struct timeval tmp
, next
;
713 if (fc
->state
== FEC_STATE_NONE
)
715 tv_scale(fc
->current_slice_num
, &fc
->group
.slice_duration
, &tmp
);
716 tv_add(&tmp
, &fc
->group
.start
, &next
);
717 ret
= tv_diff(&next
, now
, diff
);
718 return ret
< 0? 1 : 0;
721 static void set_eof_barrier(struct vss_task
*vsst
)
723 struct fec_client
*fc
;
724 struct timeval timeout
= {1, 0}, *chunk_tv
= vss_chunk_time();
728 list_for_each_entry(fc
, &fec_client_list
, node
) {
729 struct timeval group_duration
;
731 if (fc
->state
!= FEC_STATE_READY_TO_RUN
)
733 tv_scale(fc
->group
.num_chunks
, chunk_tv
, &group_duration
);
734 if (tv_diff(&timeout
, &group_duration
, NULL
) < 0)
735 timeout
= group_duration
;
738 tv_add(now
, &timeout
, &vsst
->eof_barrier
);
742 * Check if vss status flag \a P (playing) is set.
744 * \return Greater than zero if playing, zero otherwise.
747 unsigned int vss_playing(void)
749 return mmd
->new_vss_status_flags
& VSS_PLAYING
;
753 * Check if the \a N (next) status flag is set.
755 * \return Greater than zero if set, zero if not.
758 unsigned int vss_next(void)
760 return mmd
->new_vss_status_flags
& VSS_NEXT
;
764 * Check if a reposition request is pending.
766 * \return Greater than zero if true, zero otherwise.
769 unsigned int vss_repos(void)
771 return mmd
->new_vss_status_flags
& VSS_REPOS
;
775 * Check if the vss is currently paused.
777 * \return Greater than zero if paused, zero otherwise.
780 unsigned int vss_paused(void)
782 return !(mmd
->new_vss_status_flags
& VSS_NEXT
)
783 && !(mmd
->new_vss_status_flags
& VSS_PLAYING
);
787 * Check if the vss is currently stopped.
789 * \return Greater than zero if paused, zero otherwise.
792 unsigned int vss_stopped(void)
794 return (mmd
->new_vss_status_flags
& VSS_NEXT
)
795 && !(mmd
->new_vss_status_flags
& VSS_PLAYING
);
798 static int chk_barrier(const char *bname
, const struct timeval
*barrier
,
799 struct timeval
*diff
, int print_log
)
803 if (tv_diff(now
, barrier
, diff
) > 0)
807 PARA_DEBUG_LOG("%s barrier: %lims left\n", bname
, ms
);
811 static void vss_compute_timeout(struct sched
*s
, struct vss_task
*vsst
)
814 struct fec_client
*fc
;
816 if (!vss_playing() || !vsst
->map
)
818 if (vss_next() && vsst
->map
) /* only sleep a bit, nec*/
819 return sched_request_timeout_ms(100, s
);
821 /* Each of these barriers must have passed until we may proceed */
822 if (sched_request_barrier(&vsst
->autoplay_barrier
, s
) == 1)
824 if (sched_request_barrier(&vsst
->eof_barrier
, s
) == 1)
826 if (sched_request_barrier(&vsst
->data_send_barrier
, s
) == 1)
829 * Compute the select timeout as the minimal time until the next
830 * chunk/slice is due for any client.
832 compute_chunk_time(mmd
->chunks_sent
, &mmd
->afd
.afhi
.chunk_tv
,
833 &mmd
->stream_start
, &tv
);
834 if (sched_request_barrier_or_min_delay(&tv
, s
) == 0)
836 list_for_each_entry(fc
, &fec_client_list
, node
) {
837 if (fc
->state
!= FEC_STATE_READY_TO_RUN
)
839 if (next_slice_is_due(fc
, &tv
))
840 return sched_min_delay(s
);
841 sched_request_timeout(&tv
, s
);
845 static void vss_eof(struct vss_task
*vsst
)
850 if (mmd
->new_vss_status_flags
& VSS_NOMORE
)
851 mmd
->new_vss_status_flags
= VSS_NEXT
;
852 set_eof_barrier(vsst
);
853 afh_free_header(vsst
->header_buf
, mmd
->afd
.audio_format_id
);
854 vsst
->header_buf
= NULL
;
855 para_munmap(vsst
->map
, vsst
->mapsize
);
857 mmd
->chunks_sent
= 0;
859 mmd
->afd
.afhi
.seconds_total
= 0;
860 mmd
->afd
.afhi
.chunk_tv
.tv_sec
= 0;
861 mmd
->afd
.afhi
.chunk_tv
.tv_usec
= 0;
862 free(mmd
->afd
.afhi
.chunk_table
);
863 mmd
->afd
.afhi
.chunk_table
= NULL
;
865 afh_close(vsst
->afh_context
, mmd
->afd
.audio_format_id
);
866 vsst
->afh_context
= NULL
;
870 static int need_to_request_new_audio_file(struct vss_task
*vsst
)
874 if (vsst
->map
) /* have audio file */
876 if (!vss_playing()) /* don't need one */
878 if (mmd
->new_vss_status_flags
& VSS_NOMORE
)
880 if (vsst
->afsss
== AFS_SOCKET_AFD_PENDING
) /* already requested one */
882 if (chk_barrier("autoplay_delay", &vsst
->autoplay_barrier
,
888 static void set_mmd_offset(void)
890 struct timeval offset
;
891 tv_scale(mmd
->current_chunk
, &mmd
->afd
.afhi
.chunk_tv
, &offset
);
892 mmd
->offset
= tv2ms(&offset
);
895 static void vss_pre_select(struct sched
*s
, void *context
)
898 struct vss_task
*vsst
= context
;
900 if (need_to_request_new_audio_file(vsst
)) {
901 PARA_DEBUG_LOG("ready and playing, but no audio file\n");
902 para_fd_set(vsst
->afs_socket
, &s
->wfds
, &s
->max_fileno
);
903 vsst
->afsss
= AFS_SOCKET_CHECK_FOR_WRITE
;
905 para_fd_set(vsst
->afs_socket
, &s
->rfds
, &s
->max_fileno
);
907 if (!senders
[i
]->pre_select
)
909 senders
[i
]->pre_select(&s
->max_fileno
, &s
->rfds
, &s
->wfds
);
911 vss_compute_timeout(s
, vsst
);
914 static int recv_afs_msg(int afs_socket
, int *fd
, uint32_t *code
, uint32_t *data
)
916 char control
[255] __a_aligned(8), buf
[8];
917 struct msghdr msg
= {.msg_iov
= NULL
};
918 struct cmsghdr
*cmsg
;
924 iov
.iov_len
= sizeof(buf
);
927 msg
.msg_control
= control
;
928 msg
.msg_controllen
= sizeof(control
);
929 memset(buf
, 0, sizeof(buf
));
930 ret
= recvmsg(afs_socket
, &msg
, 0);
932 return -ERRNO_TO_PARA_ERROR(errno
);
933 if (iov
.iov_len
!= sizeof(buf
))
934 return -E_AFS_SHORT_READ
;
935 *code
= *(uint32_t*)buf
;
936 *data
= *(uint32_t*)(buf
+ 4);
937 for (cmsg
= CMSG_FIRSTHDR(&msg
); cmsg
; cmsg
= CMSG_NXTHDR(&msg
, cmsg
)) {
938 if (cmsg
->cmsg_level
!= SOL_SOCKET
939 || cmsg
->cmsg_type
!= SCM_RIGHTS
)
941 if ((cmsg
->cmsg_len
- CMSG_LEN(0)) / sizeof(int) != 1)
943 *fd
= *(int *)CMSG_DATA(cmsg
);
949 /** As of 2018, neither FreeBSD-11.2 nor NetBSD-8.0 have MAP_POPULATE. */
950 #define MAP_POPULATE 0
953 static void recv_afs_result(struct vss_task
*vsst
, fd_set
*rfds
)
955 int ret
, passed_fd
, shmid
;
956 uint32_t afs_code
= 0, afs_data
= 0;
959 if (!FD_ISSET(vsst
->afs_socket
, rfds
))
961 ret
= recv_afs_msg(vsst
->afs_socket
, &passed_fd
, &afs_code
, &afs_data
);
962 if (ret
== -ERRNO_TO_PARA_ERROR(EAGAIN
))
966 vsst
->afsss
= AFS_SOCKET_READY
;
968 if (afs_code
!= NEXT_AUDIO_FILE
) {
969 PARA_ERROR_LOG("afs code: %u, expected: %d\n", afs_code
,
976 ret
= load_afd(shmid
, &mmd
->afd
);
980 ret
= fstat(passed_fd
, &statbuf
);
982 PARA_ERROR_LOG("fstat error:\n");
983 ret
= -ERRNO_TO_PARA_ERROR(errno
);
986 ret
= para_mmap(statbuf
.st_size
, PROT_READ
, MAP_PRIVATE
| MAP_POPULATE
,
987 passed_fd
, &vsst
->map
);
990 vsst
->mapsize
= statbuf
.st_size
;
992 mmd
->chunks_sent
= 0;
993 mmd
->current_chunk
= 0;
997 mmd
->new_vss_status_flags
&= (~VSS_NEXT
);
998 afh_get_header(&mmd
->afd
.afhi
, mmd
->afd
.audio_format_id
,
999 vsst
->map
, vsst
->mapsize
, &vsst
->header_buf
, &vsst
->header_len
);
1002 free(mmd
->afd
.afhi
.chunk_table
);
1005 PARA_ERROR_LOG("%s\n", para_strerror(-ret
));
1006 mmd
->new_vss_status_flags
= VSS_NEXT
;
1010 * Main sending function.
1012 * This function gets called from vss_post_select(). It checks whether the next
1013 * chunk of data should be pushed out. It obtains a pointer to the data to be
1014 * sent out as well as its length from mmd->afd.afhi. This information is then
1015 * passed to each supported sender's send() function as well as to the send()
1016 * functions of each registered fec client.
1018 static void vss_send(struct vss_task
*vsst
)
1021 bool fec_active
= false;
1023 struct fec_client
*fc
, *tmp_fc
;
1027 if (!vsst
->map
|| !vss_playing())
1029 if (chk_barrier("eof", &vsst
->eof_barrier
, &due
, 1) < 0)
1031 if (chk_barrier("data send", &vsst
->data_send_barrier
, &due
, 1) < 0)
1033 list_for_each_entry_safe(fc
, tmp_fc
, &fec_client_list
, node
) {
1034 if (fc
->state
== FEC_STATE_DISABLED
)
1036 if (!next_slice_is_due(fc
, NULL
)) {
1040 if (compute_next_fec_slice(fc
, vsst
) <= 0)
1042 PARA_DEBUG_LOG("sending %u:%u (%u bytes)\n", fc
->group
.num
,
1043 fc
->current_slice_num
, fc
->group
.slice_bytes
);
1044 fc
->current_slice_num
++;
1045 fc
->fcp
->send_fec(fc
->sc
, (char *)fc
->enc_buf
,
1046 fc
->group
.slice_bytes
+ FEC_HEADER_SIZE
);
1049 if (mmd
->current_chunk
>= mmd
->afd
.afhi
.chunks_total
) { /* eof */
1051 mmd
->new_vss_status_flags
|= VSS_NEXT
;
1054 compute_chunk_time(mmd
->chunks_sent
, &mmd
->afd
.afhi
.chunk_tv
,
1055 &mmd
->stream_start
, &due
);
1056 if (tv_diff(&due
, now
, NULL
) > 0)
1058 if (!mmd
->chunks_sent
) {
1059 mmd
->stream_start
= *now
;
1063 ret
= vss_get_chunk(mmd
->current_chunk
, vsst
, &buf
, &len
);
1065 PARA_ERROR_LOG("could not get chunk %lu: %s\n",
1066 mmd
->current_chunk
, para_strerror(-ret
));
1069 * We call ->send() even if len is zero because senders might
1070 * have data queued which can be sent now.
1072 FOR_EACH_SENDER(i
) {
1073 if (!senders
[i
]->send
)
1075 senders
[i
]->send(mmd
->current_chunk
, mmd
->chunks_sent
,
1076 buf
, len
, vsst
->header_buf
, vsst
->header_len
);
1080 mmd
->current_chunk
++;
1083 static int vss_post_select(struct sched
*s
, void *context
)
1086 struct vss_task
*vsst
= context
;
1088 ret
= task_get_notification(vsst
->task
);
1090 afh_free_header(vsst
->header_buf
, mmd
->afd
.audio_format_id
);
1093 if (!vsst
->map
|| vss_next() || vss_paused() || vss_repos()) {
1094 /* shut down senders and fec clients */
1095 struct fec_client
*fc
, *tmp
;
1097 if (senders
[i
]->shutdown_clients
)
1098 senders
[i
]->shutdown_clients();
1099 list_for_each_entry_safe(fc
, tmp
, &fec_client_list
, node
)
1100 fc
->state
= FEC_STATE_NONE
;
1101 mmd
->stream_start
.tv_sec
= 0;
1102 mmd
->stream_start
.tv_usec
= 0;
1106 else if (vss_paused()) {
1107 if (mmd
->chunks_sent
)
1108 set_eof_barrier(vsst
);
1109 mmd
->chunks_sent
= 0;
1110 } else if (vss_repos()) { /* repositioning due to ff/jmp command */
1111 tv_add(now
, &vsst
->announce_tv
, &vsst
->data_send_barrier
);
1112 set_eof_barrier(vsst
);
1113 mmd
->chunks_sent
= 0;
1114 mmd
->current_chunk
= afh_get_start_chunk(mmd
->repos_request
,
1115 &mmd
->afd
.afhi
, mmd
->afd
.audio_format_id
);
1116 mmd
->new_vss_status_flags
&= ~VSS_REPOS
;
1119 /* If a sender command is pending, run it. */
1120 if (mmd
->sender_cmd_data
.cmd_num
>= 0) {
1121 int num
= mmd
->sender_cmd_data
.cmd_num
,
1122 sender_num
= mmd
->sender_cmd_data
.sender_num
;
1124 if (senders
[sender_num
]->client_cmds
[num
]) {
1125 ret
= senders
[sender_num
]->client_cmds
[num
]
1126 (&mmd
->sender_cmd_data
);
1128 PARA_ERROR_LOG("%s\n", para_strerror(-ret
));
1130 mmd
->sender_cmd_data
.cmd_num
= -1;
1132 if (vsst
->afsss
!= AFS_SOCKET_CHECK_FOR_WRITE
)
1133 recv_afs_result(vsst
, &s
->rfds
);
1134 else if (FD_ISSET(vsst
->afs_socket
, &s
->wfds
)) {
1135 PARA_NOTICE_LOG("requesting new fd from afs\n");
1136 ret
= write_buffer(vsst
->afs_socket
, "new");
1138 PARA_CRIT_LOG("%s\n", para_strerror(-ret
));
1140 vsst
->afsss
= AFS_SOCKET_AFD_PENDING
;
1142 FOR_EACH_SENDER(i
) {
1143 if (!senders
[i
]->post_select
)
1145 senders
[i
]->post_select(&s
->rfds
, &s
->wfds
);
1147 if ((vss_playing() && !(mmd
->vss_status_flags
& VSS_PLAYING
)) ||
1148 (vss_next() && vss_playing()))
1149 tv_add(now
, &vsst
->announce_tv
, &vsst
->data_send_barrier
);
1155 * Initialize the virtual streaming system task.
1157 * \param afs_socket The fd for communication with afs.
1158 * \param s The scheduler to register the vss task to.
1160 * This also initializes all supported senders and starts streaming
1161 * if the --autoplay command line flag was given.
1163 void vss_init(int afs_socket
, struct sched
*s
)
1165 static struct vss_task vss_task_struct
, *vsst
= &vss_task_struct
;
1167 long unsigned announce_time
= OPT_UINT32_VAL(ANNOUNCE_TIME
),
1168 autoplay_delay
= OPT_UINT32_VAL(AUTOPLAY_DELAY
);
1169 vsst
->header_interval
.tv_sec
= 5; /* should this be configurable? */
1170 vsst
->afs_socket
= afs_socket
;
1171 ms2tv(announce_time
, &vsst
->announce_tv
);
1172 PARA_INFO_LOG("announce timeval: %lums\n", tv2ms(&vsst
->announce_tv
));
1173 init_list_head(&fec_client_list
);
1174 FOR_EACH_SENDER(i
) {
1175 PARA_NOTICE_LOG("initializing %s sender\n", senders
[i
]->name
);
1178 mmd
->sender_cmd_data
.cmd_num
= -1;
1179 if (OPT_GIVEN(AUTOPLAY
)) {
1181 mmd
->vss_status_flags
|= VSS_PLAYING
;
1182 mmd
->new_vss_status_flags
|= VSS_PLAYING
;
1183 ms2tv(autoplay_delay
, &tmp
);
1184 tv_add(clock_get_realtime(NULL
), &tmp
, &vsst
->autoplay_barrier
);
1185 tv_add(&vsst
->autoplay_barrier
, &vsst
->announce_tv
,
1186 &vsst
->data_send_barrier
);
1188 vsst
->task
= task_register(&(struct task_info
) {
1190 .pre_select
= vss_pre_select
,
1191 .post_select
= vss_post_select
,
1197 * Turn off the virtual streaming system.
1199 * This is only executed on exit. It calls the ->shutdown method of all senders.
1201 void vss_shutdown(void)
1205 FOR_EACH_SENDER(i
) {
1206 if (!senders
[i
]->shutdown
)
1208 PARA_NOTICE_LOG("shutting down %s sender\n", senders
[i
]->name
);
1209 senders
[i
]->shutdown();