2 * Copyright (C) 1997-2011 Andre Noll <maan@systemlinux.org>
4 * Licensed under the GPL v2. For licencing details see COPYING.
7 /** \file vss.c The virtual streaming system.
9 * This contains the audio streaming code of para_server which is independent
10 * of the current audio format, audio file selector and of the activated
19 #include "portable_io.h"
26 #include "server.cmdline.h"
34 extern struct misc_meta_data
*mmd
;
36 extern void dccp_send_init(struct sender
*);
37 extern void http_send_init(struct sender
*);
38 extern void udp_send_init(struct sender
*);
40 /** The list of supported senders. */
41 struct sender senders
[] = {
44 .init
= http_send_init
,
48 .init
= dccp_send_init
,
52 .init
= udp_send_init
,
59 /** The possible states of the afs socket. */
60 enum afs_socket_status
{
61 /** Socket is inactive. */
63 /** Socket fd was included in the write fd set for select(). */
64 AFS_SOCKET_CHECK_FOR_WRITE
,
65 /** vss wrote a request to the socket and waits for reply from afs. */
66 AFS_SOCKET_AFD_PENDING
69 /** The task structure for the virtual streaming system. */
71 /** Copied from the -announce_time command line option. */
72 struct timeval announce_tv
;
73 /** End of the announcing interval. */
74 struct timeval data_send_barrier
;
75 /** End of the EOF interval. */
76 struct timeval eof_barrier
;
77 /** Only used if --autoplay_delay was given. */
78 struct timeval autoplay_barrier
;
79 /** Used for afs-server communication. */
81 /** The current state of \a afs_socket. */
82 enum afs_socket_status afsss
;
83 /** The memory mapped audio file. */
85 /** Used by the scheduler. */
87 /** Pointer to the header of the mapped audio file. */
89 /** Length of the audio file header. */
91 /** Time between audio file headers are sent. */
92 struct timeval header_interval
;
96 * The list of currently connected fec clients.
98 * Senders may use \ref vss_add_fec_client() to add entries to the list.
100 static struct list_head fec_client_list
;
103 * Data associated with one FEC group.
105 * A FEC group consists of a fixed number of slices and this number is given by
106 * the \a slices_per_group parameter of struct \ref fec_client_parms. Each FEC
107 * group contains a number of chunks of the current audio file.
109 * FEC slices directly correspond to the data packages sent by the paraslash
110 * senders that use FEC. Each slice is identified by its group number and its
111 * number within the group. All slices have the same size, but the last slice
112 * of the group may not be filled entirely.
115 /** The number of the FEC group. */
117 /** Number of bytes in this group. */
119 /** The first chunk of the current audio file belonging to the group. */
120 uint32_t first_chunk
;
121 /** The number of chunks contained in this group. */
123 /** When the first chunk was sent. */
124 struct timeval start
;
125 /** The duration of the full group. */
126 struct timeval duration
;
127 /** The group duration divided by the number of slices. */
128 struct timeval slice_duration
;
129 /** Group contains the audio file header that occupies that many slices. */
130 uint8_t num_header_slices
;
131 /** Number of bytes per slice for this group. */
132 uint16_t slice_bytes
;
135 /** A FEC client is always in one of these states. */
136 enum fec_client_state
{
137 FEC_STATE_NONE
= 0, /**< not initialized and not enabled */
138 FEC_STATE_DISABLED
, /**< temporarily disabled */
139 FEC_STATE_READY_TO_RUN
/**< initialized and enabled */
143 * Describes one connected FEC client.
146 /** Current state of the client */
147 enum fec_client_state state
;
148 /** The connected sender client (transport layer). */
149 struct sender_client
*sc
;
150 /** Parameters requested by the client. */
151 struct fec_client_parms
*fcp
;
152 /** Used by the core FEC code. */
153 struct fec_parms
*parms
;
154 /** The position of this client in the fec client list. */
155 struct list_head node
;
156 /** When the first slice for this client was sent. */
157 struct timeval stream_start
;
158 /** The first chunk sent to this FEC client. */
159 int first_stream_chunk
;
160 /** Describes the current group. */
161 struct fec_group group
;
162 /** The current slice. */
163 uint8_t current_slice_num
;
164 /** The data to be FEC-encoded (point to a region within the mapped audio file). */
165 const unsigned char **src_data
;
166 /** Last time an audio header was sent. */
167 struct timeval next_header_time
;
168 /** Used for the last source pointer of an audio file. */
169 unsigned char *extra_src_buf
;
170 /** Needed for the last slice of the audio file header. */
171 unsigned char *extra_header_buf
;
172 /** Extra slices needed to store largest chunk + header. */
173 int num_extra_slices
;
174 /** Contains the FEC-encoded data. */
175 unsigned char *enc_buf
;
176 /** Maximal packet size. */
181 * Get the chunk time of the current audio file.
183 * \return A pointer to a struct containing the chunk time, or NULL,
184 * if currently no audio file is selected.
186 struct timeval
*vss_chunk_time(void)
188 if (mmd
->afd
.afhi
.chunk_tv
.tv_sec
== 0 &&
189 mmd
->afd
.afhi
.chunk_tv
.tv_usec
== 0)
191 return &mmd
->afd
.afhi
.chunk_tv
;
195 * Write a fec header to a buffer.
197 * \param buf The buffer to write to.
198 * \param h The fec header to write.
200 static void write_fec_header(struct fec_client
*fc
, struct vss_task
*vsst
)
202 char *buf
= (char *)fc
->enc_buf
;
203 struct fec_group
*g
= &fc
->group
;
204 struct fec_client_parms
*p
= fc
->fcp
;
206 write_u32(buf
, FEC_MAGIC
);
208 write_u8(buf
+ 4, p
->slices_per_group
+ fc
->num_extra_slices
);
209 write_u8(buf
+ 5, p
->data_slices_per_group
+ fc
->num_extra_slices
);
210 write_u32(buf
+ 6, g
->num_header_slices
? vsst
->header_len
: 0);
212 write_u32(buf
+ 10, g
->num
);
213 write_u32(buf
+ 14, g
->bytes
);
215 write_u8(buf
+ 18, fc
->current_slice_num
);
216 write_u8(buf
+ 19, 0); /* unused */
217 write_u16(buf
+ 20, g
->slice_bytes
);
218 write_u8(buf
+ 22, g
->first_chunk
? 0 : 1);
219 write_u8(buf
+ 23, vsst
->header_len
? 1 : 0);
220 memset(buf
+ 24, 0, 8);
223 static bool need_audio_header(struct fec_client
*fc
, struct vss_task
*vsst
)
225 if (!mmd
->current_chunk
) {
226 tv_add(now
, &vsst
->header_interval
, &fc
->next_header_time
);
229 if (!vsst
->header_buf
)
231 if (vsst
->header_len
== 0)
233 if (fc
->group
.num
> 0) {
234 if (!fc
->fcp
->need_periodic_header
)
236 if (tv_diff(&fc
->next_header_time
, now
, NULL
) > 0)
239 tv_add(now
, &vsst
->header_interval
, &fc
->next_header_time
);
243 static bool need_data_slices(struct fec_client
*fc
, struct vss_task
*vsst
)
245 if (fc
->group
.num
> 0)
247 if (!vsst
->header_buf
)
249 if (vsst
->header_len
== 0)
251 if (fc
->fcp
->need_periodic_header
)
256 static int num_slices(long unsigned bytes
, int max_payload
, int rs
)
260 assert(max_payload
> 0);
262 ret
= DIV_ROUND_UP(bytes
, max_payload
);
268 /* set group start and group duration */
269 static void set_group_timing(struct fec_client
*fc
, struct vss_task
*vsst
)
271 struct fec_group
*g
= &fc
->group
;
272 struct timeval
*chunk_tv
= vss_chunk_time();
274 if (!need_data_slices(fc
, vsst
))
275 ms2tv(200, &g
->duration
);
277 tv_scale(g
->num_chunks
, chunk_tv
, &g
->duration
);
278 tv_divide(fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
,
279 &g
->duration
, &g
->slice_duration
);
280 PARA_DEBUG_LOG("durations (group/chunk/slice): %lu/%lu/%lu\n",
281 tv2ms(&g
->duration
), tv2ms(chunk_tv
), tv2ms(&g
->slice_duration
));
284 static int initialize_fec_client(struct fec_client
*fc
, struct vss_task
*vsst
)
287 int hs
, ds
, rs
; /* header/data/redundant slices */
288 struct fec_client_parms
*fcp
= fc
->fcp
;
293 * Set the maximum slice size to the Maximum Packet Size if the
294 * transport protocol allows to determine this value. The user
295 * can specify a slice size up to this value.
297 ret
= fcp
->init_fec(fc
->sc
);
302 fc
->mps
= generic_max_transport_msg_size(fc
->sc
->fd
);
303 if (fc
->mps
<= FEC_HEADER_SIZE
)
304 return -ERRNO_TO_PARA_ERROR(EINVAL
);
306 rs
= fc
->fcp
->slices_per_group
- fc
->fcp
->data_slices_per_group
;
307 ret
= num_slices(vsst
->header_len
, fc
->mps
- FEC_HEADER_SIZE
, rs
);
311 ret
= num_slices(mmd
->afd
.max_chunk_size
, fc
->mps
- FEC_HEADER_SIZE
, rs
);
315 if (fc
->fcp
->need_periodic_header
)
318 k
= PARA_MAX(hs
, ds
);
319 if (k
< fc
->fcp
->data_slices_per_group
)
320 k
= fc
->fcp
->data_slices_per_group
;
321 fc
->num_extra_slices
= k
- fc
->fcp
->data_slices_per_group
;
324 ret
= fec_new(k
, n
, &fc
->parms
);
327 PARA_INFO_LOG("mps: %d, k: %d, n: %d, extra slices: %d\n",
328 fc
->mps
, k
, n
, fc
->num_extra_slices
);
329 fc
->src_data
= para_realloc(fc
->src_data
, k
* sizeof(char *));
330 fc
->enc_buf
= para_realloc(fc
->enc_buf
, fc
->mps
);
331 fc
->extra_src_buf
= para_realloc(fc
->extra_src_buf
, fc
->mps
);
332 fc
->extra_header_buf
= para_realloc(fc
->extra_header_buf
, fc
->mps
);
334 fc
->state
= FEC_STATE_READY_TO_RUN
;
335 fc
->next_header_time
.tv_sec
= 0;
336 fc
->stream_start
= *now
;
337 fc
->first_stream_chunk
= mmd
->current_chunk
;
341 static void vss_get_chunk(int chunk_num
, struct vss_task
*vsst
,
342 char **buf
, size_t *sz
)
345 * Chunk zero is special for header streams: It is the first portion of
346 * the audio file which consists of the audio file header. It may be
347 * arbitrary large due to embedded meta data. Audio format handlers may
348 * replace the header by a stripped one with meta data omitted which is
349 * of bounded size. We always use the stripped header for streaming
350 * rather than the unmodified header (chunk zero).
352 if (chunk_num
== 0 && vsst
->header_len
> 0) {
353 *buf
= vsst
->header_buf
; /* stripped header */
354 *sz
= vsst
->header_len
;
357 afh_get_chunk(chunk_num
, &mmd
->afd
.afhi
, vsst
->map
, (const char **)buf
,
361 static void compute_group_size(struct vss_task
*vsst
, struct fec_group
*g
,
364 int i
, max_chunks
= PARA_MAX(1LU, 150 / tv2ms(vss_chunk_time()));
369 * Include chunks into the group until the group duration is at least
370 * 150ms. For ogg and wma, a single chunk's duration (ogg page/wma
371 * super frame) is already larger than 150ms, so a FEC group consists
372 * of exactly one chunk for these audio formats.
377 int chunk_num
= g
->first_chunk
+ i
;
379 if (g
->bytes
> 0 && i
>= max_chunks
) /* duration limit */
381 if (chunk_num
>= mmd
->afd
.afhi
.chunks_total
) /* eof */
383 vss_get_chunk(chunk_num
, vsst
, &buf
, &len
);
384 if (g
->bytes
+ len
> max_bytes
)
386 /* Include this chunk */
390 assert(g
->num_chunks
);
394 * Compute the slice size of the next group.
396 * The FEC parameters n and k are fixed but the slice size varies per
397 * FEC group. We'd like to choose slices as small as possible to avoid
398 * unnecessary FEC calculations but large enough to guarantee that the
399 * k data slices suffice to encode the header (if needed) and the data
402 * Once we know the payload of the next group, we define the number s
403 * of bytes per slice for this group by
405 * s = ceil(payload / k)
407 * However, for header streams, computing s is more complicated since no
408 * overlapping of header and data slices is possible. Hence we have k >=
409 * 2 and s must satisfy
411 * (*) ceil(h / s) + ceil(d / s) <= k
413 * where h and d are payload of the header and the data chunk(s)
414 * respectively. In general there is no value for s such that (*)
415 * becomes an equality, for example if h = 4000, d = 5000 and k = 10.
417 * We use the following approach for computing a suitable value for s:
420 * k1 := ceil(k * min(h, d) / (h + d)),
423 * Note that k >= 2 implies k1 > 0 and k2 > 0, so
425 * s := max(ceil(min(h, d) / k1), ceil(max(h, d) / k2))
427 * is well-defined. Inequality (*) holds for this value of s since k1
428 * slices suffice to store min(h, d) while k2 slices suffice to store
429 * max(h, d), i.e. the first addent of (*) is bounded by k1 and the
432 * For the above example we obtain
434 * k1 = ceil(10 * 4000 / 9000) = 5, k2 = 5,
435 * s = max(4000 / 5, 5000 / 5) = 1000,
437 * which is optimal since a slice size of 999 bytes would already require
440 static int compute_slice_size(struct fec_client
*fc
, struct vss_task
*vsst
)
442 struct fec_group
*g
= &fc
->group
;
443 int k
= fc
->fcp
->data_slices_per_group
+ fc
->num_extra_slices
;
444 int n
= fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
;
445 int ret
, k1
, k2
, h
, d
, min
, max
, sum
;
446 int max_slice_bytes
= fc
->mps
- FEC_HEADER_SIZE
;
449 if (!need_audio_header(fc
, vsst
)) {
450 max_group_bytes
= k
* max_slice_bytes
;
451 g
->num_header_slices
= 0;
452 compute_group_size(vsst
, g
, max_group_bytes
);
453 g
->slice_bytes
= DIV_ROUND_UP(g
->bytes
, k
);
454 if (g
->slice_bytes
== 0)
458 if (!need_data_slices(fc
, vsst
)) {
461 g
->slice_bytes
= DIV_ROUND_UP(vsst
->header_len
, k
);
462 g
->num_header_slices
= k
;
465 h
= vsst
->header_len
;
466 max_group_bytes
= (k
- num_slices(h
, max_slice_bytes
, n
- k
))
468 compute_group_size(vsst
, g
, max_group_bytes
);
471 g
->slice_bytes
= DIV_ROUND_UP(h
, k
);
472 ret
= num_slices(vsst
->header_len
, g
->slice_bytes
, n
- k
);
475 g
->num_header_slices
= ret
;
478 min
= PARA_MIN(h
, d
);
479 max
= PARA_MAX(h
, d
);
481 k1
= DIV_ROUND_UP(k
* min
, sum
);
486 g
->slice_bytes
= PARA_MAX(DIV_ROUND_UP(min
, k1
), DIV_ROUND_UP(max
, k2
));
488 * This value of s := g->slice_bytes satisfies inequality (*) above,
489 * but it might be larger than max_slice_bytes. However, we know that
490 * max_slice_bytes are sufficient to store header and data, so:
492 g
->slice_bytes
= PARA_MIN((int)g
->slice_bytes
, max_slice_bytes
);
494 ret
= num_slices(vsst
->header_len
, g
->slice_bytes
, n
- k
);
497 g
->num_header_slices
= ret
;
501 static int setup_next_fec_group(struct fec_client
*fc
, struct vss_task
*vsst
)
503 int ret
, i
, k
, n
, data_slices
;
506 struct fec_group
*g
= &fc
->group
;
508 if (fc
->state
== FEC_STATE_NONE
) {
509 ret
= initialize_fec_client(fc
, vsst
);
512 g
->first_chunk
= mmd
->current_chunk
;
517 if (g
->first_chunk
+ g
->num_chunks
>= mmd
->afd
.afhi
.chunks_total
)
520 * Start and duration of this group depend only on the previous
521 * group. Compute the new group start as g->start += g->duration.
524 tv_add(&tmp
, &g
->duration
, &g
->start
);
525 set_group_timing(fc
, vsst
);
526 g
->first_chunk
+= g
->num_chunks
;
529 k
= fc
->fcp
->data_slices_per_group
+ fc
->num_extra_slices
;
530 n
= fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
;
532 compute_slice_size(fc
, vsst
);
533 assert(g
->slice_bytes
> 0);
534 ret
= num_slices(g
->bytes
, g
->slice_bytes
, n
- k
);
538 assert(g
->num_header_slices
+ data_slices
<= k
);
539 fc
->current_slice_num
= 0;
541 set_group_timing(fc
, vsst
);
542 /* setup header slices */
543 buf
= vsst
->header_buf
;
544 for (i
= 0; i
< g
->num_header_slices
; i
++) {
545 uint32_t payload_size
;
546 if (buf
+ g
->slice_bytes
<= vsst
->header_buf
+ vsst
->header_len
) {
547 fc
->src_data
[i
] = (const unsigned char *)buf
;
548 buf
+= g
->slice_bytes
;
552 * Can not use vss->header_buf for this slice as it
553 * goes beyond the buffer. This slice will not be fully
556 payload_size
= vsst
->header_buf
+ vsst
->header_len
- buf
;
557 memcpy(fc
->extra_header_buf
, buf
, payload_size
);
558 if (payload_size
< g
->slice_bytes
)
559 memset(fc
->extra_header_buf
+ payload_size
, 0,
560 g
->slice_bytes
- payload_size
);
561 fc
->src_data
[i
] = fc
->extra_header_buf
;
562 assert(i
== g
->num_header_slices
- 1);
565 /* setup data slices */
566 vss_get_chunk(g
->first_chunk
, vsst
, &buf
, &len
);
567 for (; i
< g
->num_header_slices
+ data_slices
; i
++) {
568 if (buf
+ g
->slice_bytes
> vsst
->map
+ mmd
->size
) {
570 * Can not use the memory mapped audio file for this
571 * slice as it goes beyond the map.
573 uint32_t payload_size
= vsst
->map
+ mmd
->size
- buf
;
574 memcpy(fc
->extra_src_buf
, buf
, payload_size
);
575 if (payload_size
< g
->slice_bytes
)
576 memset(fc
->extra_src_buf
+ payload_size
, 0,
577 g
->slice_bytes
- payload_size
);
578 fc
->src_data
[i
] = fc
->extra_src_buf
;
582 fc
->src_data
[i
] = (const unsigned char *)buf
;
583 buf
+= g
->slice_bytes
;
586 /* use arbitrary data for all remaining slices */
589 fc
->src_data
[i
] = (const unsigned char *)buf
;
591 PARA_DEBUG_LOG("FEC group %d: %d chunks (%d - %d), %d bytes\n",
592 g
->num
, g
->num_chunks
, g
->first_chunk
,
593 g
->first_chunk
+ g
->num_chunks
- 1, g
->bytes
595 PARA_DEBUG_LOG("slice_bytes: %d, %d header slices, %d data slices\n",
596 g
->slice_bytes
, g
->num_header_slices
, data_slices
601 static int compute_next_fec_slice(struct fec_client
*fc
, struct vss_task
*vsst
)
603 if (fc
->state
== FEC_STATE_NONE
|| fc
->current_slice_num
604 == fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
) {
605 int ret
= setup_next_fec_group(fc
, vsst
);
609 PARA_ERROR_LOG("%s\n", para_strerror(-ret
));
610 PARA_ERROR_LOG("FEC client temporarily disabled\n");
611 fc
->state
= FEC_STATE_DISABLED
;
615 write_fec_header(fc
, vsst
);
616 fec_encode(fc
->parms
, fc
->src_data
, fc
->enc_buf
+ FEC_HEADER_SIZE
,
617 fc
->current_slice_num
, fc
->group
.slice_bytes
);
622 * Return a buffer that marks the end of the stream.
624 * \param buf Result pointer.
625 * \return The length of the eof buffer.
627 * This is used for (multicast) udp streaming where closing the socket on the
628 * sender might not give rise to an eof condition at the peer.
630 size_t vss_get_fec_eof_packet(const char **buf
)
632 static const char fec_eof_packet
[FEC_HEADER_SIZE
] = FEC_EOF_PACKET
;
633 *buf
= fec_eof_packet
;
634 return FEC_HEADER_SIZE
;
638 * Add one entry to the list of active fec clients.
640 * \param sc Generic sender_client data of the transport layer.
641 * \param fcp FEC parameters as supplied by the transport layer.
643 * \return Newly allocated fec_client struct.
645 struct fec_client
*vss_add_fec_client(struct sender_client
*sc
,
646 struct fec_client_parms
*fcp
)
648 struct fec_client
*fc
= para_calloc(sizeof(*fc
));
652 para_list_add(&fc
->node
, &fec_client_list
);
657 * Remove one entry from the list of active fec clients.
659 * \param fc The client to be removed.
661 void vss_del_fec_client(struct fec_client
*fc
)
666 free(fc
->extra_src_buf
);
667 free(fc
->extra_header_buf
);
673 * Compute if/when next slice is due. If it isn't due yet and \a diff is
674 * not \p Null, compute the time difference next - now, where
676 * next = stream_start + (first_group_chunk - first_stream_chunk)
677 * * chunk_time + slice_num * slice_time
679 static int next_slice_is_due(struct fec_client
*fc
, struct timeval
*diff
)
681 struct timeval tmp
, next
;
684 if (fc
->state
== FEC_STATE_NONE
)
686 tv_scale(fc
->current_slice_num
, &fc
->group
.slice_duration
, &tmp
);
687 tv_add(&tmp
, &fc
->group
.start
, &next
);
688 ret
= tv_diff(&next
, now
, diff
);
689 return ret
< 0? 1 : 0;
692 static void set_eof_barrier(struct vss_task
*vsst
)
694 struct fec_client
*fc
;
695 struct timeval timeout
= {1, 0}, *chunk_tv
= vss_chunk_time();
699 list_for_each_entry(fc
, &fec_client_list
, node
) {
700 struct timeval group_duration
;
702 if (fc
->state
!= FEC_STATE_READY_TO_RUN
)
704 tv_scale(fc
->group
.num_chunks
, chunk_tv
, &group_duration
);
705 if (tv_diff(&timeout
, &group_duration
, NULL
) < 0)
706 timeout
= group_duration
;
709 tv_add(now
, &timeout
, &vsst
->eof_barrier
);
713 * Check if vss status flag \a P (playing) is set.
715 * \return Greater than zero if playing, zero otherwise.
718 unsigned int vss_playing(void)
720 return mmd
->new_vss_status_flags
& VSS_PLAYING
;
724 * Check if the \a N (next) status flag is set.
726 * \return Greater than zero if set, zero if not.
729 unsigned int vss_next(void)
731 return mmd
->new_vss_status_flags
& VSS_NEXT
;
735 * Check if a reposition request is pending.
737 * \return Greater than zero if true, zero otherwise.
740 unsigned int vss_repos(void)
742 return mmd
->new_vss_status_flags
& VSS_REPOS
;
746 * Check if the vss is currently paused.
748 * \return Greater than zero if paused, zero otherwise.
751 unsigned int vss_paused(void)
753 return !(mmd
->new_vss_status_flags
& VSS_NEXT
)
754 && !(mmd
->new_vss_status_flags
& VSS_PLAYING
);
758 * Check if the vss is currently stopped.
760 * \return Greater than zero if paused, zero otherwise.
763 unsigned int vss_stopped(void)
765 return (mmd
->new_vss_status_flags
& VSS_NEXT
)
766 && !(mmd
->new_vss_status_flags
& VSS_PLAYING
);
769 static int chk_barrier(const char *bname
, const struct timeval
*barrier
,
770 struct timeval
*diff
, int print_log
)
774 if (tv_diff(now
, barrier
, diff
) > 0)
778 PARA_DEBUG_LOG("%s barrier: %lims left\n", bname
, ms
);
782 static void vss_compute_timeout(struct sched
*s
, struct vss_task
*vsst
)
785 struct fec_client
*fc
;
787 if (!vss_playing() || !vsst
->map
)
789 if (vss_next() && vsst
->map
) /* only sleep a bit, nec*/
790 return sched_request_timeout_ms(100, s
);
792 /* Each of these barriers must have passed until we may proceed */
793 if (sched_request_barrier(&vsst
->autoplay_barrier
, s
) == 1)
795 if (sched_request_barrier(&vsst
->eof_barrier
, s
) == 1)
797 if (sched_request_barrier(&vsst
->data_send_barrier
, s
) == 1)
800 * Compute the select timeout as the minimal time until the next
801 * chunk/slice is due for any client.
803 compute_chunk_time(mmd
->chunks_sent
, &mmd
->afd
.afhi
.chunk_tv
,
804 &mmd
->stream_start
, &tv
);
805 if (sched_request_barrier_or_min_delay(&tv
, s
) == 0)
807 list_for_each_entry(fc
, &fec_client_list
, node
) {
808 if (fc
->state
!= FEC_STATE_READY_TO_RUN
)
810 if (next_slice_is_due(fc
, &tv
))
811 return sched_min_delay(s
);
812 sched_request_timeout(&tv
, s
);
816 static void vss_eof(struct vss_task
*vsst
)
821 if (mmd
->new_vss_status_flags
& VSS_NOMORE
)
822 mmd
->new_vss_status_flags
= VSS_NEXT
;
823 set_eof_barrier(vsst
);
824 afh_free_header(vsst
->header_buf
, mmd
->afd
.audio_format_id
);
825 vsst
->header_buf
= NULL
;
826 para_munmap(vsst
->map
, mmd
->size
);
828 mmd
->chunks_sent
= 0;
830 mmd
->afd
.afhi
.seconds_total
= 0;
831 mmd
->afd
.afhi
.chunk_tv
.tv_sec
= 0;
832 mmd
->afd
.afhi
.chunk_tv
.tv_usec
= 0;
833 free(mmd
->afd
.afhi
.chunk_table
);
834 mmd
->afd
.afhi
.chunk_table
= NULL
;
840 static int need_to_request_new_audio_file(struct vss_task
*vsst
)
844 if (vsst
->map
) /* have audio file */
846 if (!vss_playing()) /* don't need one */
848 if (mmd
->new_vss_status_flags
& VSS_NOMORE
)
850 if (vsst
->afsss
== AFS_SOCKET_AFD_PENDING
) /* already requested one */
852 if (chk_barrier("autoplay_delay", &vsst
->autoplay_barrier
,
858 static void set_mmd_offset(void)
860 struct timeval offset
;
861 tv_scale(mmd
->current_chunk
, &mmd
->afd
.afhi
.chunk_tv
, &offset
);
862 mmd
->offset
= tv2ms(&offset
);
866 * Compute the timeout for the main select-loop of the scheduler.
868 * \param s Pointer to the server scheduler.
869 * \param t Pointer to the vss task structure.
871 * Before the timeout is computed, the current vss status flags are evaluated
872 * and acted upon by calling appropriate functions from the lower layers.
873 * Possible actions include
875 * - request a new audio file from afs,
876 * - shutdown of all senders (stop/pause command),
877 * - reposition the stream (ff/jmp command).
879 static void vss_pre_select(struct sched
*s
, struct task
*t
)
882 struct vss_task
*vsst
= container_of(t
, struct vss_task
, task
);
884 if (!vsst
->map
|| vss_next() || vss_paused() || vss_repos()) {
885 struct fec_client
*fc
, *tmp
;
886 for (i
= 0; senders
[i
].name
; i
++)
887 if (senders
[i
].shutdown_clients
)
888 senders
[i
].shutdown_clients();
889 list_for_each_entry_safe(fc
, tmp
, &fec_client_list
, node
)
890 fc
->state
= FEC_STATE_NONE
;
891 mmd
->stream_start
.tv_sec
= 0;
892 mmd
->stream_start
.tv_usec
= 0;
896 else if (vss_paused()) {
897 if (mmd
->chunks_sent
)
898 set_eof_barrier(vsst
);
899 mmd
->chunks_sent
= 0;
900 } else if (vss_repos()) {
901 tv_add(now
, &vsst
->announce_tv
, &vsst
->data_send_barrier
);
902 set_eof_barrier(vsst
);
903 mmd
->chunks_sent
= 0;
904 mmd
->current_chunk
= mmd
->repos_request
;
905 mmd
->new_vss_status_flags
&= ~VSS_REPOS
;
908 if (need_to_request_new_audio_file(vsst
)) {
909 PARA_DEBUG_LOG("ready and playing, but no audio file\n");
910 para_fd_set(vsst
->afs_socket
, &s
->wfds
, &s
->max_fileno
);
911 vsst
->afsss
= AFS_SOCKET_CHECK_FOR_WRITE
;
913 para_fd_set(vsst
->afs_socket
, &s
->rfds
, &s
->max_fileno
);
914 for (i
= 0; senders
[i
].name
; i
++) {
915 if (!senders
[i
].pre_select
)
917 senders
[i
].pre_select(&s
->max_fileno
, &s
->rfds
, &s
->wfds
);
919 vss_compute_timeout(s
, vsst
);
922 static int recv_afs_msg(int afs_socket
, int *fd
, uint32_t *code
, uint32_t *data
)
924 char control
[255], buf
[8];
925 struct msghdr msg
= {.msg_iov
= NULL
};
926 struct cmsghdr
*cmsg
;
932 iov
.iov_len
= sizeof(buf
);
935 msg
.msg_control
= control
;
936 msg
.msg_controllen
= sizeof(control
);
937 memset(buf
, 0, sizeof(buf
));
938 ret
= recvmsg(afs_socket
, &msg
, 0);
940 return -ERRNO_TO_PARA_ERROR(errno
);
941 if (iov
.iov_len
!= sizeof(buf
))
942 return -E_AFS_SHORT_READ
;
943 *code
= *(uint32_t*)buf
;
944 *data
= *(uint32_t*)(buf
+ 4);
945 for (cmsg
= CMSG_FIRSTHDR(&msg
); cmsg
; cmsg
= CMSG_NXTHDR(&msg
, cmsg
)) {
946 if (cmsg
->cmsg_level
!= SOL_SOCKET
947 || cmsg
->cmsg_type
!= SCM_RIGHTS
)
949 if ((cmsg
->cmsg_len
- CMSG_LEN(0)) / sizeof(int) != 1)
951 *fd
= *(int *)CMSG_DATA(cmsg
);
957 #define MAP_POPULATE 0
960 static void recv_afs_result(struct vss_task
*vsst
, fd_set
*rfds
)
962 int ret
, passed_fd
, shmid
;
963 uint32_t afs_code
= 0, afs_data
= 0;
966 if (!FD_ISSET(vsst
->afs_socket
, rfds
))
968 ret
= recv_afs_msg(vsst
->afs_socket
, &passed_fd
, &afs_code
, &afs_data
);
969 if (ret
== -ERRNO_TO_PARA_ERROR(EAGAIN
))
973 vsst
->afsss
= AFS_SOCKET_READY
;
974 PARA_DEBUG_LOG("fd: %d, code: %u, shmid: %u\n", passed_fd
, afs_code
,
977 if (afs_code
!= NEXT_AUDIO_FILE
)
982 ret
= load_afd(shmid
, &mmd
->afd
);
986 ret
= fstat(passed_fd
, &statbuf
);
988 PARA_ERROR_LOG("fstat error:\n");
989 ret
= -ERRNO_TO_PARA_ERROR(errno
);
992 mmd
->size
= statbuf
.st_size
;
993 mmd
->mtime
= statbuf
.st_mtime
;
994 ret
= para_mmap(mmd
->size
, PROT_READ
, MAP_PRIVATE
| MAP_POPULATE
,
995 passed_fd
, 0, &vsst
->map
);
999 mmd
->chunks_sent
= 0;
1000 mmd
->current_chunk
= 0;
1004 mmd
->new_vss_status_flags
&= (~VSS_NEXT
);
1005 afh_get_header(&mmd
->afd
.afhi
, mmd
->afd
.audio_format_id
,
1006 vsst
->map
, mmd
->size
, &vsst
->header_buf
, &vsst
->header_len
);
1009 free(mmd
->afd
.afhi
.chunk_table
);
1012 PARA_ERROR_LOG("%s\n", para_strerror(-ret
));
1013 mmd
->new_vss_status_flags
= VSS_NEXT
;
1017 * Main sending function.
1019 * This function gets called from vss_post_select(). It checks whether the next
1020 * chunk of data should be pushed out. It obtains a pointer to the data to be
1021 * sent out as well as its length from mmd->afd.afhi. This information is then
1022 * passed to each supported sender's send() function as well as to the send()
1023 * functions of each registered fec client.
1025 static void vss_send(struct vss_task
*vsst
)
1027 int i
, fec_active
= 0;
1029 struct fec_client
*fc
, *tmp_fc
;
1031 if (!vsst
->map
|| !vss_playing())
1033 if (chk_barrier("eof", &vsst
->eof_barrier
, &due
, 1) < 0)
1035 if (chk_barrier("data send", &vsst
->data_send_barrier
,
1038 list_for_each_entry_safe(fc
, tmp_fc
, &fec_client_list
, node
) {
1039 if (fc
->state
== FEC_STATE_DISABLED
)
1041 if (!next_slice_is_due(fc
, NULL
)) {
1045 if (compute_next_fec_slice(fc
, vsst
) <= 0)
1047 PARA_DEBUG_LOG("sending %d:%d (%u bytes)\n", fc
->group
.num
,
1048 fc
->current_slice_num
, fc
->group
.slice_bytes
);
1049 fc
->fcp
->send_fec(fc
->sc
, (char *)fc
->enc_buf
,
1050 fc
->group
.slice_bytes
+ FEC_HEADER_SIZE
);
1051 fc
->current_slice_num
++;
1054 if (mmd
->current_chunk
>= mmd
->afd
.afhi
.chunks_total
) { /* eof */
1056 mmd
->new_vss_status_flags
|= VSS_NEXT
;
1059 compute_chunk_time(mmd
->chunks_sent
, &mmd
->afd
.afhi
.chunk_tv
,
1060 &mmd
->stream_start
, &due
);
1061 if (tv_diff(&due
, now
, NULL
) <= 0) {
1065 if (!mmd
->chunks_sent
) {
1066 mmd
->stream_start
= *now
;
1071 * We call the send function also in case of empty chunks as
1072 * they might have still some data queued which can be sent in
1075 vss_get_chunk(mmd
->current_chunk
, vsst
, &buf
, &len
);
1076 for (i
= 0; senders
[i
].name
; i
++) {
1077 if (!senders
[i
].send
)
1079 senders
[i
].send(mmd
->current_chunk
, mmd
->chunks_sent
,
1080 buf
, len
, vsst
->header_buf
, vsst
->header_len
);
1083 mmd
->current_chunk
++;
1085 * Prefault next chunk(s)
1087 * If the backing device of the memory-mapped audio file is
1088 * slow and read-ahead is turned off or prevented for some
1089 * reason, e.g. due to memory pressure, it may take much longer
1090 * than the chunk interval to get the next chunk on the wire,
1091 * causing buffer underruns on the client side. Mapping the
1092 * file with MAP_POPULATE seems to help a bit, but it does not
1093 * eliminate the delays completely. Moreover, it is supported
1094 * only on Linux. So we do our own read-ahead here.
1097 for (i
= 0; i
< 5 && buf
< vsst
->map
+ mmd
->size
; i
++) {
1098 __a_unused
volatile char x
= *buf
;
1104 static void vss_post_select(struct sched
*s
, struct task
*t
)
1107 struct vss_task
*vsst
= container_of(t
, struct vss_task
, task
);
1110 if (mmd
->sender_cmd_data
.cmd_num
>= 0) {
1111 int num
= mmd
->sender_cmd_data
.cmd_num
,
1112 sender_num
= mmd
->sender_cmd_data
.sender_num
;
1114 if (senders
[sender_num
].client_cmds
[num
]) {
1115 ret
= senders
[sender_num
].client_cmds
[num
]
1116 (&mmd
->sender_cmd_data
);
1118 PARA_ERROR_LOG("%s\n", para_strerror(-ret
));
1120 mmd
->sender_cmd_data
.cmd_num
= -1;
1122 if (vsst
->afsss
!= AFS_SOCKET_CHECK_FOR_WRITE
)
1123 recv_afs_result(vsst
, &s
->rfds
);
1124 else if (FD_ISSET(vsst
->afs_socket
, &s
->wfds
)) {
1125 PARA_NOTICE_LOG("requesting new fd from afs\n");
1126 ret
= send_buffer(vsst
->afs_socket
, "new");
1128 PARA_CRIT_LOG("%s\n", para_strerror(-ret
));
1130 vsst
->afsss
= AFS_SOCKET_AFD_PENDING
;
1132 for (i
= 0; senders
[i
].name
; i
++) {
1133 if (!senders
[i
].post_select
)
1135 senders
[i
].post_select(&s
->rfds
, &s
->wfds
);
1137 if ((vss_playing() && !(mmd
->vss_status_flags
& VSS_PLAYING
)) ||
1138 (vss_next() && vss_playing()))
1139 tv_add(now
, &vsst
->announce_tv
, &vsst
->data_send_barrier
);
1144 * Initialize the virtual streaming system task.
1146 * \param afs_socket The fd for communication with afs.
1148 * This also initializes all supported senders and starts streaming
1149 * if the --autoplay command line flag was given.
1151 void init_vss_task(int afs_socket
)
1153 static struct vss_task vss_task_struct
, *vsst
= &vss_task_struct
;
1155 char *hn
= para_hostname(), *home
= para_homedir();
1156 long unsigned announce_time
= conf
.announce_time_arg
> 0?
1157 conf
.announce_time_arg
: 300,
1158 autoplay_delay
= conf
.autoplay_delay_arg
> 0?
1159 conf
.autoplay_delay_arg
: 0;
1160 vsst
->header_interval
.tv_sec
= 5; /* should this be configurable? */
1161 vsst
->afs_socket
= afs_socket
;
1162 vsst
->task
.pre_select
= vss_pre_select
;
1163 vsst
->task
.post_select
= vss_post_select
;
1164 ms2tv(announce_time
, &vsst
->announce_tv
);
1165 PARA_INFO_LOG("announce timeval: %lums\n", tv2ms(&vsst
->announce_tv
));
1166 INIT_LIST_HEAD(&fec_client_list
);
1167 for (i
= 0; senders
[i
].name
; i
++) {
1168 PARA_NOTICE_LOG("initializing %s sender\n", senders
[i
].name
);
1169 senders
[i
].init(&senders
[i
]);
1173 mmd
->sender_cmd_data
.cmd_num
= -1;
1174 if (conf
.autoplay_given
) {
1176 mmd
->vss_status_flags
|= VSS_PLAYING
;
1177 mmd
->new_vss_status_flags
|= VSS_PLAYING
;
1178 ms2tv(autoplay_delay
, &tmp
);
1179 tv_add(now
, &tmp
, &vsst
->autoplay_barrier
);
1180 tv_add(&vsst
->autoplay_barrier
, &vsst
->announce_tv
,
1181 &vsst
->data_send_barrier
);
1183 sprintf(vsst
->task
.status
, "vss task");
1184 register_task(&vsst
->task
);