]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
16b9894ca5420bf226731d6330a5d21121ccbcdc
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27 #include <sys/select.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "imdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         struct asf_header_info ahi;
63         struct getbit_context gb;
64         int use_bit_reservoir;
65         int use_variable_block_len;
66         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
67         int use_noise_coding;   ///< true if perceptual noise is added
68         int byte_offset_bits;
69         struct vlc exp_vlc;
70         int exponent_sizes[BLOCK_NB_SIZES];
71         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
72         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
73         int coefs_start;        ///< first coded coef
74         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
75         int exponent_high_sizes[BLOCK_NB_SIZES];
76         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
77         struct vlc hgain_vlc;
78
79         /* coded values in high bands */
80         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
82
83         /* there are two possible tables for spectral coefficients */
84         struct vlc coef_vlc[2];
85         uint16_t *run_table[2];
86         uint16_t *level_table[2];
87         const struct coef_vlc_table *coef_vlcs[2];
88         /* frame info */
89         int frame_len;          ///< frame length in samples
90         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
91         int nb_block_sizes;     ///< number of block sizes
92         /* block info */
93         int reset_block_lengths;
94         int block_len_bits;     ///< log2 of current block length
95         int next_block_len_bits;        ///< log2 of next block length
96         int prev_block_len_bits;        ///< log2 of prev block length
97         int block_len;          ///< block length in samples
98         int block_pos;          ///< current position in frame
99         uint8_t ms_stereo;      ///< true if mid/side stereo mode
100         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
101         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
102         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
103         float max_exponent[MAX_CHANNELS];
104         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
106         float output[BLOCK_MAX_SIZE * 2];
107         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
108         float *windows[BLOCK_NB_SIZES];
109         /* output buffer for one frame and the last for IMDCT windowing */
110         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
111         /* last frame info */
112         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
113         int last_bitoffset;
114         int last_superframe_len;
115         float noise_table[NOISE_TAB_SIZE];
116         int noise_index;
117         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
118         /* lsp_to_curve tables */
119         float lsp_cos_table[BLOCK_MAX_SIZE];
120         float lsp_pow_e_table[256];
121         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
122         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
123 };
124
125 #define EXPVLCBITS 8
126 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
127
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
130
131 #define VLCBITS 9
132 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
133
134 #define SINE_WINDOW(x) float sine_ ## x[x] __aligned(16)
135
136 SINE_WINDOW(128);
137 SINE_WINDOW(256);
138 SINE_WINDOW(512);
139 SINE_WINDOW(1024);
140 SINE_WINDOW(2048);
141 SINE_WINDOW(4096);
142
143 static float *sine_windows[6] = {
144         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
145 };
146
147 /* Generate a sine window. */
148 static void sine_window_init(float *window, int n)
149 {
150         int i;
151
152         for (i = 0; i < n; i++)
153                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
154 }
155
156 static void wmadec_cleanup(struct private_wmadec_data *pwd)
157 {
158         int i;
159
160         for (i = 0; i < pwd->nb_block_sizes; i++)
161                 imdct_end(pwd->mdct_ctx[i]);
162         if (pwd->use_exp_vlc)
163                 free_vlc(&pwd->exp_vlc);
164         if (pwd->use_noise_coding)
165                 free_vlc(&pwd->hgain_vlc);
166         for (i = 0; i < 2; i++) {
167                 free_vlc(&pwd->coef_vlc[i]);
168                 free(pwd->run_table[i]);
169                 free(pwd->level_table[i]);
170         }
171 }
172
173 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
174                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
175 {
176         int n = vlc_table->n;
177         const uint8_t *table_bits = vlc_table->huffbits;
178         const uint32_t *table_codes = vlc_table->huffcodes;
179         const uint16_t *levels_table = vlc_table->levels;
180         uint16_t *run_table, *level_table;
181         int i, l, j, k, level;
182
183         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
184
185         run_table = para_malloc(n * sizeof(uint16_t));
186         level_table = para_malloc(n * sizeof(uint16_t));
187         i = 2;
188         level = 1;
189         k = 0;
190         while (i < n) {
191                 l = levels_table[k++];
192                 for (j = 0; j < l; j++) {
193                         run_table[i] = j;
194                         level_table[i] = level;
195                         i++;
196                 }
197                 level++;
198         }
199         *prun_table = run_table;
200         *plevel_table = level_table;
201 }
202
203 /* compute the scale factor band sizes for each MDCT block size */
204 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
205         float high_freq)
206 {
207         struct asf_header_info *ahi = &pwd->ahi;
208         int a, b, pos, lpos, k, block_len, i, j, n;
209         const uint8_t *table;
210
211         pwd->coefs_start = 0;
212         for (k = 0; k < pwd->nb_block_sizes; k++) {
213                 block_len = pwd->frame_len >> k;
214
215                 table = NULL;
216                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
217                 if (a < 3) {
218                         if (ahi->sample_rate >= 44100)
219                                 table = exponent_band_44100[a];
220                         else if (ahi->sample_rate >= 32000)
221                                 table = exponent_band_32000[a];
222                         else if (ahi->sample_rate >= 22050)
223                                 table = exponent_band_22050[a];
224                 }
225                 if (table) {
226                         n = *table++;
227                         for (i = 0; i < n; i++)
228                                 pwd->exponent_bands[k][i] = table[i];
229                         pwd->exponent_sizes[k] = n;
230                 } else {
231                         j = 0;
232                         lpos = 0;
233                         for (i = 0; i < 25; i++) {
234                                 a = wma_critical_freqs[i];
235                                 b = ahi->sample_rate;
236                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
237                                 pos <<= 2;
238                                 if (pos > block_len)
239                                         pos = block_len;
240                                 if (pos > lpos)
241                                         pwd->exponent_bands[k][j++] = pos - lpos;
242                                 if (pos >= block_len)
243                                         break;
244                                 lpos = pos;
245                         }
246                         pwd->exponent_sizes[k] = j;
247                 }
248
249                 /* max number of coefs */
250                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
251                 /* high freq computation */
252                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
253                         / ahi->sample_rate + 0.5);
254                 n = pwd->exponent_sizes[k];
255                 j = 0;
256                 pos = 0;
257                 for (i = 0; i < n; i++) {
258                         int start, end;
259                         start = pos;
260                         pos += pwd->exponent_bands[k][i];
261                         end = pos;
262                         if (start < pwd->high_band_start[k])
263                                 start = pwd->high_band_start[k];
264                         if (end > pwd->coefs_end[k])
265                                 end = pwd->coefs_end[k];
266                         if (end > start)
267                                 pwd->exponent_high_bands[k][j++] = end - start;
268                 }
269                 pwd->exponent_high_sizes[k] = j;
270         }
271 }
272
273 static int wma_init(struct private_wmadec_data *pwd)
274 {
275         int i;
276         float bps1, high_freq;
277         volatile float bps;
278         int sample_rate1;
279         int coef_vlc_table;
280         struct asf_header_info *ahi = &pwd->ahi;
281         int flags2 = ahi->flags2;
282
283         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
284                 || ahi->channels <= 0 || ahi->channels > 8
285                 || ahi->bit_rate <= 0)
286                 return -E_WMA_BAD_PARAMS;
287
288         /* compute MDCT block size */
289         if (ahi->sample_rate <= 16000) {
290                 pwd->frame_len_bits = 9;
291         } else if (ahi->sample_rate <= 22050) {
292                 pwd->frame_len_bits = 10;
293         } else {
294                 pwd->frame_len_bits = 11;
295         }
296         pwd->frame_len = 1 << pwd->frame_len_bits;
297         if (pwd->use_variable_block_len) {
298                 int nb_max, nb;
299                 nb = ((flags2 >> 3) & 3) + 1;
300                 if ((ahi->bit_rate / ahi->channels) >= 32000)
301                         nb += 2;
302                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
303                 if (nb > nb_max)
304                         nb = nb_max;
305                 pwd->nb_block_sizes = nb + 1;
306         } else
307                 pwd->nb_block_sizes = 1;
308
309         /* init rate dependent parameters */
310         pwd->use_noise_coding = 1;
311         high_freq = ahi->sample_rate * 0.5;
312
313         /* wma2 rates are normalized */
314         sample_rate1 = ahi->sample_rate;
315         if (sample_rate1 >= 44100)
316                 sample_rate1 = 44100;
317         else if (sample_rate1 >= 22050)
318                 sample_rate1 = 22050;
319         else if (sample_rate1 >= 16000)
320                 sample_rate1 = 16000;
321         else if (sample_rate1 >= 11025)
322                 sample_rate1 = 11025;
323         else if (sample_rate1 >= 8000)
324                 sample_rate1 = 8000;
325
326         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
327         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
328         /*
329          * Compute high frequency value and choose if noise coding should be
330          * activated.
331          */
332         bps1 = bps;
333         if (ahi->channels == 2)
334                 bps1 = bps * 1.6;
335         if (sample_rate1 == 44100) {
336                 if (bps1 >= 0.61)
337                         pwd->use_noise_coding = 0;
338                 else
339                         high_freq = high_freq * 0.4;
340         } else if (sample_rate1 == 22050) {
341                 if (bps1 >= 1.16)
342                         pwd->use_noise_coding = 0;
343                 else if (bps1 >= 0.72)
344                         high_freq = high_freq * 0.7;
345                 else
346                         high_freq = high_freq * 0.6;
347         } else if (sample_rate1 == 16000) {
348                 if (bps > 0.5)
349                         high_freq = high_freq * 0.5;
350                 else
351                         high_freq = high_freq * 0.3;
352         } else if (sample_rate1 == 11025) {
353                 high_freq = high_freq * 0.7;
354         } else if (sample_rate1 == 8000) {
355                 if (bps <= 0.625) {
356                         high_freq = high_freq * 0.5;
357                 } else if (bps > 0.75) {
358                         pwd->use_noise_coding = 0;
359                 } else {
360                         high_freq = high_freq * 0.65;
361                 }
362         } else {
363                 if (bps >= 0.8) {
364                         high_freq = high_freq * 0.75;
365                 } else if (bps >= 0.6) {
366                         high_freq = high_freq * 0.6;
367                 } else {
368                         high_freq = high_freq * 0.5;
369                 }
370         }
371         PARA_INFO_LOG("channels=%d sample_rate=%d "
372                 "bitrate=%d block_align=%d\n",
373                 ahi->channels, ahi->sample_rate,
374                 ahi->bit_rate, ahi->block_align);
375         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
376                 "high_freq=%f bitoffset=%d\n",
377                 pwd->frame_len, bps, bps1,
378                 high_freq, pwd->byte_offset_bits);
379         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
380                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
381
382         compute_scale_factor_band_sizes(pwd, high_freq);
383         /* init MDCT windows : simple sinus window */
384         for (i = 0; i < pwd->nb_block_sizes; i++) {
385                 int n;
386                 n = 1 << (pwd->frame_len_bits - i);
387                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
388                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
389         }
390
391         pwd->reset_block_lengths = 1;
392
393         if (pwd->use_noise_coding) {
394                 /* init the noise generator */
395                 if (pwd->use_exp_vlc)
396                         pwd->noise_mult = 0.02;
397                 else
398                         pwd->noise_mult = 0.04;
399
400                 {
401                         unsigned int seed;
402                         float norm;
403                         seed = 1;
404                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
405                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
406                                 seed = seed * 314159 + 1;
407                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
408                         }
409                 }
410         }
411
412         /* choose the VLC tables for the coefficients */
413         coef_vlc_table = 2;
414         if (ahi->sample_rate >= 32000) {
415                 if (bps1 < 0.72)
416                         coef_vlc_table = 0;
417                 else if (bps1 < 1.16)
418                         coef_vlc_table = 1;
419         }
420         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
421         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
422         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
423                 pwd->coef_vlcs[0]);
424         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
425                 pwd->coef_vlcs[1]);
426         return 0;
427 }
428
429 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
430 {
431         float wdel, a, b;
432         int i, e, m;
433
434         wdel = M_PI / frame_len;
435         for (i = 0; i < frame_len; i++)
436                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
437
438         /* tables for x^-0.25 computation */
439         for (i = 0; i < 256; i++) {
440                 e = i - 126;
441                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
442         }
443
444         /* These two tables are needed to avoid two operations in pow_m1_4. */
445         b = 1.0;
446         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
447                 m = (1 << LSP_POW_BITS) + i;
448                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
449                 a = pow(a, -0.25);
450                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
451                 pwd->lsp_pow_m_table2[i] = b - a;
452                 b = a;
453         }
454 }
455
456 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
457 {
458         struct private_wmadec_data *pwd;
459         int ret, i;
460
461         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
462         pwd = para_calloc(sizeof(*pwd));
463         ret = read_asf_header(initial_buf, len, &pwd->ahi);
464         if (ret <= 0) {
465                 free(pwd);
466                 return ret;
467         }
468
469         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
470         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
471         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
472
473         ret = wma_init(pwd);
474         if (ret < 0)
475                 return ret;
476         /* init MDCT */
477         for (i = 0; i < pwd->nb_block_sizes; i++) {
478                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
479                 if (ret < 0)
480                         return ret;
481         }
482         if (pwd->use_noise_coding) {
483                 PARA_INFO_LOG("using noise coding\n");
484                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
485                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
486                         wma_hgain_huffcodes, 2);
487         }
488
489         if (pwd->use_exp_vlc) {
490                 PARA_INFO_LOG("using exp_vlc\n");
491                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
492                 sizeof(wma_scale_huffbits), wma_scale_huffbits,
493                 wma_scale_huffcodes, 4);
494         } else {
495                 PARA_INFO_LOG("using curve\n");
496                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
497         }
498         *result = pwd;
499         return pwd->ahi.header_len;
500 }
501
502 /**
503  * compute x^-0.25 with an exponent and mantissa table. We use linear
504  * interpolation to reduce the mantissa table size at a small speed
505  * expense (linear interpolation approximately doubles the number of
506  * bits of precision).
507  */
508 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
509 {
510         union {
511                 float f;
512                 unsigned int v;
513         } u, t;
514         unsigned int e, m;
515         float a, b;
516
517         u.f = x;
518         e = u.v >> 23;
519         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
520         /* build interpolation scale: 1 <= t < 2. */
521         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
522         a = pwd->lsp_pow_m_table1[m];
523         b = pwd->lsp_pow_m_table2[m];
524         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
525 }
526
527 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
528                 float *out, float *val_max_ptr, int n, float *lsp)
529 {
530         int i, j;
531         float p, q, w, v, val_max;
532
533         val_max = 0;
534         for (i = 0; i < n; i++) {
535                 p = 0.5f;
536                 q = 0.5f;
537                 w = pwd->lsp_cos_table[i];
538                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
539                         q *= w - lsp[j - 1];
540                         p *= w - lsp[j];
541                 }
542                 p *= p * (2.0f - w);
543                 q *= q * (2.0f + w);
544                 v = p + q;
545                 v = pow_m1_4(pwd, v);
546                 if (v > val_max)
547                         val_max = v;
548                 out[i] = v;
549         }
550         *val_max_ptr = val_max;
551 }
552
553 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
554 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
555 {
556         float lsp_coefs[NB_LSP_COEFS];
557         int val, i;
558
559         for (i = 0; i < NB_LSP_COEFS; i++) {
560                 if (i == 0 || i >= 8)
561                         val = get_bits(&pwd->gb, 3);
562                 else
563                         val = get_bits(&pwd->gb, 4);
564                 lsp_coefs[i] = wma_lsp_codebook[i][val];
565         }
566
567         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
568                 pwd->block_len, lsp_coefs);
569 }
570
571 /* Decode exponents coded with VLC codes. */
572 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
573 {
574         int last_exp, n, code;
575         const uint16_t *ptr, *band_ptr;
576         float v, *q, max_scale, *q_end;
577
578         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
579         ptr = band_ptr;
580         q = pwd->exponents[ch];
581         q_end = q + pwd->block_len;
582         max_scale = 0;
583         last_exp = 36;
584
585         while (q < q_end) {
586                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
587                 if (code < 0)
588                         return -1;
589                 /* NOTE: this offset is the same as MPEG4 AAC ! */
590                 last_exp += code - 60;
591                 /* XXX: use a table */
592                 v = pow(10, last_exp * (1.0 / 16.0));
593                 if (v > max_scale)
594                         max_scale = v;
595                 n = *ptr++;
596                 do {
597                         *q++ = v;
598                 } while (--n);
599         }
600         pwd->max_exponent[ch] = max_scale;
601         return 0;
602 }
603
604 /* compute src0 * src1 + src2 */
605 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
606                 const float *src2, int len)
607 {
608         int i;
609
610         for (i = 0; i < len; i++)
611                 dst[i] = src0[i] * src1[i] + src2[i];
612 }
613
614 static inline void vector_mult_reverse(float *dst, const float *src0,
615                 const float *src1, int len)
616 {
617         int i;
618
619         src1 += len - 1;
620         for (i = 0; i < len; i++)
621                 dst[i] = src0[i] * src1[-i];
622 }
623
624 /**
625  * Apply MDCT window and add into output.
626  *
627  * We ensure that when the windows overlap their squared sum
628  * is always 1 (MDCT reconstruction rule).
629  */
630 static void wma_window(struct private_wmadec_data *pwd, float *out)
631 {
632         float *in = pwd->output;
633         int block_len, bsize, n;
634
635         /* left part */
636         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
637                 block_len = pwd->block_len;
638                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
639                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
640         } else {
641                 block_len = 1 << pwd->prev_block_len_bits;
642                 n = (pwd->block_len - block_len) / 2;
643                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
644                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
645                         block_len);
646                 memcpy(out + n + block_len, in + n + block_len,
647                         n * sizeof(float));
648         }
649         out += pwd->block_len;
650         in += pwd->block_len;
651         /* right part */
652         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
653                 block_len = pwd->block_len;
654                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
655                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
656         } else {
657                 block_len = 1 << pwd->next_block_len_bits;
658                 n = (pwd->block_len - block_len) / 2;
659                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
660                 memcpy(out, in, n * sizeof(float));
661                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
662                         block_len);
663                 memset(out + n + block_len, 0, n * sizeof(float));
664         }
665 }
666
667 static int wma_total_gain_to_bits(int total_gain)
668 {
669         if (total_gain < 15)
670                 return 13;
671         else if (total_gain < 32)
672                 return 12;
673         else if (total_gain < 40)
674                 return 11;
675         else if (total_gain < 45)
676                 return 10;
677         else
678                 return 9;
679 }
680
681 /**
682  * @return 0 if OK. 1 if last block of frame. return -1 if
683  * unrecorrable error.
684  */
685 static int wma_decode_block(struct private_wmadec_data *pwd)
686 {
687         int n, v, ch, code, bsize;
688         int coef_nb_bits, total_gain;
689         int nb_coefs[MAX_CHANNELS];
690         float mdct_norm;
691
692         /* compute current block length */
693         if (pwd->use_variable_block_len) {
694                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
695
696                 if (pwd->reset_block_lengths) {
697                         pwd->reset_block_lengths = 0;
698                         v = get_bits(&pwd->gb, n);
699                         if (v >= pwd->nb_block_sizes)
700                                 return -1;
701                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
702                         v = get_bits(&pwd->gb, n);
703                         if (v >= pwd->nb_block_sizes)
704                                 return -1;
705                         pwd->block_len_bits = pwd->frame_len_bits - v;
706                 } else {
707                         /* update block lengths */
708                         pwd->prev_block_len_bits = pwd->block_len_bits;
709                         pwd->block_len_bits = pwd->next_block_len_bits;
710                 }
711                 v = get_bits(&pwd->gb, n);
712                 if (v >= pwd->nb_block_sizes)
713                         return -1;
714                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
715         } else {
716                 /* fixed block len */
717                 pwd->next_block_len_bits = pwd->frame_len_bits;
718                 pwd->prev_block_len_bits = pwd->frame_len_bits;
719                 pwd->block_len_bits = pwd->frame_len_bits;
720         }
721
722         /* now check if the block length is coherent with the frame length */
723         pwd->block_len = 1 << pwd->block_len_bits;
724         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
725                 return -E_INCOHERENT_BLOCK_LEN;
726
727         if (pwd->ahi.channels == 2)
728                 pwd->ms_stereo = get_bit(&pwd->gb);
729         v = 0;
730         for (ch = 0; ch < pwd->ahi.channels; ch++) {
731                 int a = get_bit(&pwd->gb);
732                 pwd->channel_coded[ch] = a;
733                 v |= a;
734         }
735
736         bsize = pwd->frame_len_bits - pwd->block_len_bits;
737
738         /* if no channel coded, no need to go further */
739         /* XXX: fix potential framing problems */
740         if (!v)
741                 goto next;
742
743         /* read total gain and extract corresponding number of bits for
744            coef escape coding */
745         total_gain = 1;
746         for (;;) {
747                 int a = get_bits(&pwd->gb, 7);
748                 total_gain += a;
749                 if (a != 127)
750                         break;
751         }
752
753         coef_nb_bits = wma_total_gain_to_bits(total_gain);
754
755         /* compute number of coefficients */
756         n = pwd->coefs_end[bsize] - pwd->coefs_start;
757         for (ch = 0; ch < pwd->ahi.channels; ch++)
758                 nb_coefs[ch] = n;
759
760         /* complex coding */
761         if (pwd->use_noise_coding) {
762                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
763                         if (pwd->channel_coded[ch]) {
764                                 int i, m, a;
765                                 m = pwd->exponent_high_sizes[bsize];
766                                 for (i = 0; i < m; i++) {
767                                         a = get_bit(&pwd->gb);
768                                         pwd->high_band_coded[ch][i] = a;
769                                         /* if noise coding, the coefficients are not transmitted */
770                                         if (a)
771                                                 nb_coefs[ch] -=
772                                                     pwd->
773                                                     exponent_high_bands[bsize]
774                                                     [i];
775                                 }
776                         }
777                 }
778                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
779                         if (pwd->channel_coded[ch]) {
780                                 int i, val;
781
782                                 n = pwd->exponent_high_sizes[bsize];
783                                 val = (int) 0x80000000;
784                                 for (i = 0; i < n; i++) {
785                                         if (pwd->high_band_coded[ch][i]) {
786                                                 if (val == (int) 0x80000000) {
787                                                         val =
788                                                             get_bits(&pwd->gb,
789                                                                      7) - 19;
790                                                 } else {
791                                                         code =
792                                                             get_vlc(&pwd->gb,
793                                                                      pwd->
794                                                                      hgain_vlc.
795                                                                      table,
796                                                                      HGAINVLCBITS,
797                                                                      HGAINMAX);
798                                                         if (code < 0)
799                                                                 return -1;
800                                                         val += code - 18;
801                                                 }
802                                                 pwd->high_band_values[ch][i] =
803                                                     val;
804                                         }
805                                 }
806                         }
807                 }
808         }
809
810         /* exponents can be reused in short blocks. */
811         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
812                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
813                         if (pwd->channel_coded[ch]) {
814                                 if (pwd->use_exp_vlc) {
815                                         if (decode_exp_vlc(pwd, ch) < 0)
816                                                 return -1;
817                                 } else {
818                                         decode_exp_lsp(pwd, ch);
819                                 }
820                                 pwd->exponents_bsize[ch] = bsize;
821                         }
822                 }
823         }
824
825         /* parse spectral coefficients : just RLE encoding */
826         for (ch = 0; ch < pwd->ahi.channels; ch++) {
827                 struct vlc *coef_vlc;
828                 int level, run, tindex;
829                 int16_t *ptr, *eptr;
830                 const uint16_t *level_table, *run_table;
831
832                 if (!pwd->channel_coded[ch])
833                         continue;
834                 /*
835                  * special VLC tables are used for ms stereo because there is
836                  * potentially less energy there
837                  */
838                 tindex = (ch == 1 && pwd->ms_stereo);
839                 coef_vlc = &pwd->coef_vlc[tindex];
840                 run_table = pwd->run_table[tindex];
841                 level_table = pwd->level_table[tindex];
842                 /* XXX: optimize */
843                 ptr = &pwd->coefs1[ch][0];
844                 eptr = ptr + nb_coefs[ch];
845                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
846                 for (;;) {
847                         code = get_vlc(&pwd->gb, coef_vlc->table,
848                                 VLCBITS, VLCMAX);
849                         if (code < 0)
850                                 return -1;
851                         if (code == 1) /* EOB */
852                                 break;
853                         if (code == 0) { /* escape */
854                                 level = get_bits(&pwd->gb, coef_nb_bits);
855                                 /* reading block_len_bits would be better */
856                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
857                         } else { /* normal code */
858                                 run = run_table[code];
859                                 level = level_table[code];
860                         }
861                         if (!get_bit(&pwd->gb))
862                                 level = -level;
863                         ptr += run;
864                         if (ptr >= eptr) {
865                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
866                                 break;
867                         }
868                         *ptr++ = level;
869                         if (ptr >= eptr) /* EOB can be omitted */
870                                 break;
871                 }
872         }
873
874         /* normalize */
875         {
876                 int n4 = pwd->block_len / 2;
877                 mdct_norm = 1.0 / (float) n4;
878         }
879
880         /* finally compute the MDCT coefficients */
881         for (ch = 0; ch < pwd->ahi.channels; ch++) {
882                 if (pwd->channel_coded[ch]) {
883                         int16_t *coefs1;
884                         float *coefs, *exponents, mult, mult1, noise;
885                         int i, j, n1, last_high_band, esize;
886                         float exp_power[HIGH_BAND_MAX_SIZE];
887
888                         coefs1 = pwd->coefs1[ch];
889                         exponents = pwd->exponents[ch];
890                         esize = pwd->exponents_bsize[ch];
891                         mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
892                         mult *= mdct_norm;
893                         coefs = pwd->coefs[ch];
894                         if (pwd->use_noise_coding) {
895                                 mult1 = mult;
896                                 /* very low freqs : noise */
897                                 for (i = 0; i < pwd->coefs_start; i++) {
898                                         *coefs++ =
899                                             pwd->noise_table[pwd->noise_index] *
900                                             exponents[i << bsize >> esize] *
901                                             mult1;
902                                         pwd->noise_index =
903                                             (pwd->noise_index +
904                                              1) & (NOISE_TAB_SIZE - 1);
905                                 }
906
907                                 n1 = pwd->exponent_high_sizes[bsize];
908
909                                 /* compute power of high bands */
910                                 exponents = pwd->exponents[ch] +
911                                     (pwd->high_band_start[bsize] << bsize);
912                                 last_high_band = 0;     /* avoid warning */
913                                 for (j = 0; j < n1; j++) {
914                                         n = pwd->exponent_high_bands[pwd->
915                                                                    frame_len_bits
916                                                                    -
917                                                                    pwd->
918                                                                    block_len_bits]
919                                             [j];
920                                         if (pwd->high_band_coded[ch][j]) {
921                                                 float e2, val;
922                                                 e2 = 0;
923                                                 for (i = 0; i < n; i++) {
924                                                         val = exponents[i << bsize
925                                                                       >> esize];
926                                                         e2 += val * val;
927                                                 }
928                                                 exp_power[j] = e2 / n;
929                                                 last_high_band = j;
930                                         }
931                                         exponents += n << bsize;
932                                 }
933
934                                 /* main freqs and high freqs */
935                                 exponents =
936                                     pwd->exponents[ch] +
937                                     (pwd->coefs_start << bsize);
938                                 for (j = -1; j < n1; j++) {
939                                         if (j < 0) {
940                                                 n = pwd->high_band_start[bsize] -
941                                                     pwd->coefs_start;
942                                         } else {
943                                                 n = pwd->exponent_high_bands[pwd->
944                                                                            frame_len_bits
945                                                                            -
946                                                                            pwd->
947                                                                            block_len_bits]
948                                                     [j];
949                                         }
950                                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
951                                                 /* use noise with specified power */
952                                                 mult1 =
953                                                     sqrt(exp_power[j] /
954                                                          exp_power
955                                                          [last_high_band]);
956                                                 /* XXX: use a table */
957                                                 mult1 =
958                                                     mult1 * pow(10,
959                                                                 pwd->
960                                                                 high_band_values
961                                                                 [ch][j] * 0.05);
962                                                 mult1 =
963                                                     mult1 /
964                                                     (pwd->max_exponent[ch] *
965                                                      pwd->noise_mult);
966                                                 mult1 *= mdct_norm;
967                                                 for (i = 0; i < n; i++) {
968                                                         noise =
969                                                             pwd->noise_table[pwd->
970                                                                            noise_index];
971                                                         pwd->noise_index =
972                                                             (pwd->noise_index +
973                                                              1) &
974                                                             (NOISE_TAB_SIZE -
975                                                              1);
976                                                         *coefs++ =
977                                                             noise *
978                                                             exponents[i << bsize
979                                                                       >> esize]
980                                                             * mult1;
981                                                 }
982                                                 exponents += n << bsize;
983                                         } else {
984                                                 /* coded values + small noise */
985                                                 for (i = 0; i < n; i++) {
986                                                         noise =
987                                                             pwd->noise_table[pwd->
988                                                                            noise_index];
989                                                         pwd->noise_index =
990                                                             (pwd->noise_index +
991                                                              1) &
992                                                             (NOISE_TAB_SIZE -
993                                                              1);
994                                                         *coefs++ =
995                                                             ((*coefs1++) +
996                                                              noise) *
997                                                             exponents[i << bsize
998                                                                       >> esize]
999                                                             * mult;
1000                                                 }
1001                                                 exponents += n << bsize;
1002                                         }
1003                                 }
1004
1005                                 /* very high freqs : noise */
1006                                 n = pwd->block_len - pwd->coefs_end[bsize];
1007                                 mult1 =
1008                                     mult * exponents[((-1 << bsize)) >> esize];
1009                                 for (i = 0; i < n; i++) {
1010                                         *coefs++ =
1011                                             pwd->noise_table[pwd->noise_index] *
1012                                             mult1;
1013                                         pwd->noise_index =
1014                                             (pwd->noise_index +
1015                                              1) & (NOISE_TAB_SIZE - 1);
1016                                 }
1017                         } else {
1018                                 /* XXX: optimize more */
1019                                 for (i = 0; i < pwd->coefs_start; i++)
1020                                         *coefs++ = 0.0;
1021                                 n = nb_coefs[ch];
1022                                 for (i = 0; i < n; i++) {
1023                                         *coefs++ =
1024                                             coefs1[i] *
1025                                             exponents[i << bsize >> esize] *
1026                                             mult;
1027                                 }
1028                                 n = pwd->block_len - pwd->coefs_end[bsize];
1029                                 for (i = 0; i < n; i++)
1030                                         *coefs++ = 0.0;
1031                         }
1032                 }
1033         }
1034
1035         if (pwd->ms_stereo && pwd->channel_coded[1]) {
1036                 float a, b;
1037                 int i;
1038
1039                 /*
1040                  * Nominal case for ms stereo: we do it before mdct.
1041                  *
1042                  * No need to optimize this case because it should almost never
1043                  * happen.
1044                  */
1045                 if (!pwd->channel_coded[0]) {
1046                         PARA_NOTICE_LOG("rare ms-stereo\n");
1047                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
1048                         pwd->channel_coded[0] = 1;
1049                 }
1050                 for (i = 0; i < pwd->block_len; i++) {
1051                         a = pwd->coefs[0][i];
1052                         b = pwd->coefs[1][i];
1053                         pwd->coefs[0][i] = a + b;
1054                         pwd->coefs[1][i] = a - b;
1055                 }
1056         }
1057
1058 next:
1059         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1060                 int n4, index;
1061
1062                 n = pwd->block_len;
1063                 n4 = pwd->block_len / 2;
1064                 if (pwd->channel_coded[ch])
1065                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1066                 else if (!(pwd->ms_stereo && ch == 1))
1067                         memset(pwd->output, 0, sizeof(pwd->output));
1068
1069                 /* multiply by the window and add in the frame */
1070                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1071                 wma_window(pwd, &pwd->frame_out[ch][index]);
1072         }
1073
1074         /* update block number */
1075         pwd->block_pos += pwd->block_len;
1076         if (pwd->block_pos >= pwd->frame_len)
1077                 return 1;
1078         else
1079                 return 0;
1080 }
1081
1082 /*
1083  * Clip a signed integer value into the -32768,32767 range.
1084  *
1085  * \param a The value to clip.
1086  *
1087  * \return The clipped value.
1088  */
1089 static inline int16_t av_clip_int16(int a)
1090 {
1091         if ((a + 32768) & ~65535)
1092                 return (a >> 31) ^ 32767;
1093         else
1094                 return a;
1095 }
1096
1097 /* Decode a frame of frame_len samples. */
1098 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1099 {
1100         int ret, i, n, ch, incr;
1101         int16_t *ptr;
1102         float *iptr;
1103
1104         /* read each block */
1105         pwd->block_pos = 0;
1106         for (;;) {
1107                 ret = wma_decode_block(pwd);
1108                 if (ret < 0)
1109                         return -1;
1110                 if (ret)
1111                         break;
1112         }
1113
1114         /* convert frame to integer */
1115         n = pwd->frame_len;
1116         incr = pwd->ahi.channels;
1117         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1118                 ptr = samples + ch;
1119                 iptr = pwd->frame_out[ch];
1120
1121                 for (i = 0; i < n; i++) {
1122                         *ptr = av_clip_int16(lrintf(*iptr++));
1123                         ptr += incr;
1124                 }
1125                 /* prepare for next block */
1126                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1127                         pwd->frame_len * sizeof(float));
1128         }
1129         return 0;
1130 }
1131
1132 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1133                 int *data_size, const uint8_t *buf, int buf_size)
1134 {
1135         int ret;
1136         int16_t *samples;
1137         static int frame_count;
1138
1139         if (buf_size == 0) {
1140                 pwd->last_superframe_len = 0;
1141                 return 0;
1142         }
1143         if (buf_size < pwd->ahi.block_align)
1144                 return 0;
1145         buf_size = pwd->ahi.block_align;
1146         samples = data;
1147         init_get_bits(&pwd->gb, buf, buf_size);
1148         if (pwd->use_bit_reservoir) {
1149                 int i, nb_frames, bit_offset, pos, len;
1150                 uint8_t *q;
1151
1152                 /* read super frame header */
1153                 skip_bits(&pwd->gb, 4); /* super frame index */
1154                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1155                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1156                 ret = -E_WMA_OUTPUT_SPACE;
1157                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1158                                 * sizeof(int16_t) > *data_size)
1159                         goto fail;
1160
1161                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1162
1163                 if (pwd->last_superframe_len > 0) {
1164                         /* add bit_offset bits to last frame */
1165                         ret = -E_WMA_BAD_SUPERFRAME;
1166                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1167                                         MAX_CODED_SUPERFRAME_SIZE)
1168                                 goto fail;
1169                         q = pwd->last_superframe + pwd->last_superframe_len;
1170                         len = bit_offset;
1171                         while (len > 7) {
1172                                 *q++ = get_bits(&pwd->gb, 8);
1173                                 len -= 8;
1174                         }
1175                         if (len > 0)
1176                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1177
1178                         /* XXX: bit_offset bits into last frame */
1179                         init_get_bits(&pwd->gb, pwd->last_superframe,
1180                                 MAX_CODED_SUPERFRAME_SIZE);
1181                         /* skip unused bits */
1182                         if (pwd->last_bitoffset > 0)
1183                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1184                         /*
1185                          * This frame is stored in the last superframe and in
1186                          * the current one.
1187                          */
1188                         ret = -E_WMA_DECODE;
1189                         if (wma_decode_frame(pwd, samples) < 0)
1190                                 goto fail;
1191                         frame_count++;
1192                         samples += pwd->ahi.channels * pwd->frame_len;
1193                 }
1194
1195                 /* read each frame starting from bit_offset */
1196                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1197                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1198                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1199                 len = pos & 7;
1200                 if (len > 0)
1201                         skip_bits(&pwd->gb, len);
1202
1203                 pwd->reset_block_lengths = 1;
1204                 for (i = 0; i < nb_frames; i++) {
1205                         ret = -E_WMA_DECODE;
1206                         if (wma_decode_frame(pwd, samples) < 0)
1207                                 goto fail;
1208                         frame_count++;
1209                         samples += pwd->ahi.channels * pwd->frame_len;
1210                 }
1211
1212                 /* we copy the end of the frame in the last frame buffer */
1213                 pos = get_bits_count(&pwd->gb) +
1214                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1215                 pwd->last_bitoffset = pos & 7;
1216                 pos >>= 3;
1217                 len = buf_size - pos;
1218                 ret = -E_WMA_BAD_SUPERFRAME;
1219                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1220                         goto fail;
1221                 pwd->last_superframe_len = len;
1222                 memcpy(pwd->last_superframe, buf + pos, len);
1223         } else {
1224                 PARA_DEBUG_LOG("not using bit reservoir\n");
1225                 ret = -E_WMA_OUTPUT_SPACE;
1226                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1227                         goto fail;
1228                 /* single frame decode */
1229                 ret = -E_WMA_DECODE;
1230                 if (wma_decode_frame(pwd, samples) < 0)
1231                         goto fail;
1232                 frame_count++;
1233                 samples += pwd->ahi.channels * pwd->frame_len;
1234         }
1235         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1236                 "outbytes: %zd, eaten: %d\n",
1237                 frame_count, pwd->frame_len, pwd->block_len,
1238                 (int8_t *) samples - (int8_t *) data, pwd->ahi.block_align);
1239         *data_size = (int8_t *)samples - (int8_t *)data;
1240         return pwd->ahi.block_align;
1241 fail:
1242         /* reset the bit reservoir on errors */
1243         pwd->last_superframe_len = 0;
1244         return ret;
1245 }
1246
1247 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1248                 struct filter_node *fn)
1249 {
1250         int ret, out_size = fn->bufsize - fn->loaded;
1251         struct private_wmadec_data *pwd = fn->private_data;
1252
1253         if (out_size < 128 * 1024)
1254                 return 0;
1255         if (len <= WMA_FRAME_SKIP)
1256                 return 0;
1257         if (!pwd) {
1258                 ret = wma_decode_init(inbuffer, len, &pwd);
1259                 if (ret <= 0)
1260                         return ret;
1261                 fn->private_data = pwd;
1262                 fn->fc->channels = pwd->ahi.channels;
1263                 fn->fc->samplerate = pwd->ahi.sample_rate;
1264                 return pwd->ahi.header_len;
1265         }
1266         /* skip 31 bytes */
1267         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1268                 return 0;
1269         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1270                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1271                 len - WMA_FRAME_SKIP);
1272         if (ret < 0)
1273                 return ret;
1274         fn->loaded += out_size;
1275         return ret + WMA_FRAME_SKIP;
1276 }
1277
1278 static void wmadec_close(struct filter_node *fn)
1279 {
1280         struct private_wmadec_data *pwd = fn->private_data;
1281
1282         if (!pwd)
1283                 return;
1284         wmadec_cleanup(pwd);
1285         free(fn->buf);
1286         fn->buf = NULL;
1287         free(fn->private_data);
1288         fn->private_data = NULL;
1289 }
1290
1291 static void wmadec_open(struct filter_node *fn)
1292 {
1293         fn->bufsize = 1024 * 1024;
1294         fn->buf = para_malloc(fn->bufsize);
1295         fn->private_data = NULL;
1296         fn->loaded = 0;
1297 }
1298
1299 /**
1300  * The init function of the wma decoder.
1301  *
1302  * \param f Its fields are filled in by the function.
1303  */
1304 void wmadec_filter_init(struct filter *f)
1305 {
1306         f->open = wmadec_open;
1307         f->close = wmadec_close;
1308         f->convert = wmadec_convert;
1309 }