Make senders independent of afs and osl.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <inttypes.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <math.h>
24 #include <string.h>
25 #include <regex.h>
26 #include <sys/select.h>
27
28 #include "para.h"
29 #include "error.h"
30 #include "list.h"
31 #include "ggo.h"
32 #include "string.h"
33 #include "sched.h"
34 #include "buffer_tree.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "imdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         /** Information contained in the audio file header. */
63         struct asf_header_info ahi;
64         struct getbit_context gb;
65         /** Whether perceptual noise is added. */
66         int use_noise_coding;
67         /** Depends on number of the bits per second and the frame length. */
68         int byte_offset_bits;
69         /** Only used if ahi->use_exp_vlc is true. */
70         struct vlc exp_vlc;
71         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
72         /** The index of the first coef in high band. */
73         int high_band_start[BLOCK_NB_SIZES];
74         /** Maximal number of coded coefficients. */
75         int coefs_end[BLOCK_NB_SIZES];
76         int exponent_high_sizes[BLOCK_NB_SIZES];
77         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
78         struct vlc hgain_vlc;
79
80         /* coded values in high bands */
81         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
82         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
83
84         /* there are two possible tables for spectral coefficients */
85         struct vlc coef_vlc[2];
86         uint16_t *run_table[2];
87         uint16_t *level_table[2];
88         const struct coef_vlc_table *coef_vlcs[2];
89         /** Frame length in samples. */
90         int frame_len;
91         /** log2 of frame_len. */
92         int frame_len_bits;
93         /** Number of block sizes, one if !ahi->use_variable_block_len. */
94         int nb_block_sizes;
95         /* block info */
96         int reset_block_lengths;
97         /** log2 of current block length. */
98         int block_len_bits;
99         /** log2 of next block length. */
100         int next_block_len_bits;
101         /** log2 of previous block length. */
102         int prev_block_len_bits;
103         /** Block length in samples. */
104         int block_len;
105         /** Current position in frame. */
106         int block_pos;
107         /** True if mid/side stereo mode. */
108         uint8_t ms_stereo;
109         /** True if channel is coded. */
110         uint8_t channel_coded[MAX_CHANNELS];
111         /** log2 ratio frame/exp. length. */
112         int exponents_bsize[MAX_CHANNELS];
113
114         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
115         float max_exponent[MAX_CHANNELS];
116         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
117         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
118         float output[BLOCK_MAX_SIZE * 2];
119         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
120         float *windows[BLOCK_NB_SIZES];
121         /** Output buffer for one frame and the last for IMDCT windowing. */
122         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
123         /** Last frame info. */
124         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
125         int last_bitoffset;
126         int last_superframe_len;
127         float noise_table[NOISE_TAB_SIZE];
128         int noise_index;
129         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
130         /* lsp_to_curve tables */
131         float lsp_cos_table[BLOCK_MAX_SIZE];
132         float lsp_pow_e_table[256];
133         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
134         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
135 };
136
137 #define EXPVLCBITS 8
138 #define EXPMAX DIV_ROUND_UP(19, EXPVLCBITS)
139
140 #define HGAINVLCBITS 9
141 #define HGAINMAX DIV_ROUND_UP(13, HGAINVLCBITS)
142
143 #define VLCBITS 9
144 #define VLCMAX DIV_ROUND_UP(22, VLCBITS)
145
146 /** \cond sine_winows */
147
148 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
149
150 SINE_WINDOW(128);
151 SINE_WINDOW(256);
152 SINE_WINDOW(512);
153 SINE_WINDOW(1024);
154 SINE_WINDOW(2048);
155 SINE_WINDOW(4096);
156
157 static float *sine_windows[6] = {
158         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
159 };
160 /** \endcond sine_windows */
161
162 /* Generate a sine window. */
163 static void sine_window_init(float *window, int n)
164 {
165         int i;
166
167         for (i = 0; i < n; i++)
168                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
169 }
170
171 static void wmadec_cleanup(struct private_wmadec_data *pwd)
172 {
173         int i;
174
175         for (i = 0; i < pwd->nb_block_sizes; i++)
176                 imdct_end(pwd->mdct_ctx[i]);
177         if (pwd->ahi.use_exp_vlc)
178                 free_vlc(&pwd->exp_vlc);
179         if (pwd->use_noise_coding)
180                 free_vlc(&pwd->hgain_vlc);
181         for (i = 0; i < 2; i++) {
182                 free_vlc(&pwd->coef_vlc[i]);
183                 free(pwd->run_table[i]);
184                 free(pwd->level_table[i]);
185         }
186 }
187
188 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
189                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
190 {
191         int n = vlc_table->n;
192         const uint8_t *table_bits = vlc_table->huffbits;
193         const uint32_t *table_codes = vlc_table->huffcodes;
194         const uint16_t *levels_table = vlc_table->levels;
195         uint16_t *run_table, *level_table;
196         int i, l, j, k, level;
197
198         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
199
200         run_table = para_malloc(n * sizeof(uint16_t));
201         level_table = para_malloc(n * sizeof(uint16_t));
202         i = 2;
203         level = 1;
204         k = 0;
205         while (i < n) {
206                 l = levels_table[k++];
207                 for (j = 0; j < l; j++) {
208                         run_table[i] = j;
209                         level_table[i] = level;
210                         i++;
211                 }
212                 level++;
213         }
214         *prun_table = run_table;
215         *plevel_table = level_table;
216 }
217
218 /* compute the scale factor band sizes for each MDCT block size */
219 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
220         float high_freq)
221 {
222         struct asf_header_info *ahi = &pwd->ahi;
223         int a, b, pos, lpos, k, block_len, i, j, n;
224         const uint8_t *table;
225
226         for (k = 0; k < pwd->nb_block_sizes; k++) {
227                 int exponent_size;
228
229                 block_len = pwd->frame_len >> k;
230                 table = NULL;
231                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
232                 if (a < 3) {
233                         if (ahi->sample_rate >= 44100)
234                                 table = exponent_band_44100[a];
235                         else if (ahi->sample_rate >= 32000)
236                                 table = exponent_band_32000[a];
237                         else if (ahi->sample_rate >= 22050)
238                                 table = exponent_band_22050[a];
239                 }
240                 if (table) {
241                         n = *table++;
242                         for (i = 0; i < n; i++)
243                                 pwd->exponent_bands[k][i] = table[i];
244                         exponent_size = n;
245                 } else {
246                         j = 0;
247                         lpos = 0;
248                         for (i = 0; i < 25; i++) {
249                                 a = wma_critical_freqs[i];
250                                 b = ahi->sample_rate;
251                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
252                                 pos <<= 2;
253                                 if (pos > block_len)
254                                         pos = block_len;
255                                 if (pos > lpos)
256                                         pwd->exponent_bands[k][j++] = pos - lpos;
257                                 if (pos >= block_len)
258                                         break;
259                                 lpos = pos;
260                         }
261                         exponent_size = j;
262                 }
263
264                 /* max number of coefs */
265                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
266                 /* high freq computation */
267                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
268                         / ahi->sample_rate + 0.5);
269                 n = exponent_size;
270                 j = 0;
271                 pos = 0;
272                 for (i = 0; i < n; i++) {
273                         int start, end;
274                         start = pos;
275                         pos += pwd->exponent_bands[k][i];
276                         end = pos;
277                         if (start < pwd->high_band_start[k])
278                                 start = pwd->high_band_start[k];
279                         if (end > pwd->coefs_end[k])
280                                 end = pwd->coefs_end[k];
281                         if (end > start)
282                                 pwd->exponent_high_bands[k][j++] = end - start;
283                 }
284                 pwd->exponent_high_sizes[k] = j;
285         }
286 }
287
288 static int wma_init(struct private_wmadec_data *pwd)
289 {
290         int i;
291         float bps1, high_freq;
292         volatile float bps;
293         int sample_rate1;
294         int coef_vlc_table;
295         struct asf_header_info *ahi = &pwd->ahi;
296         int flags2 = ahi->flags2;
297
298         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
299                 || ahi->channels <= 0 || ahi->channels > 8
300                 || ahi->bit_rate <= 0)
301                 return -E_WMA_BAD_PARAMS;
302
303         /* compute MDCT block size */
304         if (ahi->sample_rate <= 16000)
305                 pwd->frame_len_bits = 9;
306         else if (ahi->sample_rate <= 22050)
307                 pwd->frame_len_bits = 10;
308         else
309                 pwd->frame_len_bits = 11;
310         pwd->frame_len = 1 << pwd->frame_len_bits;
311         if (pwd->ahi.use_variable_block_len) {
312                 int nb_max, nb;
313                 nb = ((flags2 >> 3) & 3) + 1;
314                 if ((ahi->bit_rate / ahi->channels) >= 32000)
315                         nb += 2;
316                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
317                 if (nb > nb_max)
318                         nb = nb_max;
319                 pwd->nb_block_sizes = nb + 1;
320         } else
321                 pwd->nb_block_sizes = 1;
322
323         /* init rate dependent parameters */
324         pwd->use_noise_coding = 1;
325         high_freq = ahi->sample_rate * 0.5;
326
327         /* wma2 rates are normalized */
328         sample_rate1 = ahi->sample_rate;
329         if (sample_rate1 >= 44100)
330                 sample_rate1 = 44100;
331         else if (sample_rate1 >= 22050)
332                 sample_rate1 = 22050;
333         else if (sample_rate1 >= 16000)
334                 sample_rate1 = 16000;
335         else if (sample_rate1 >= 11025)
336                 sample_rate1 = 11025;
337         else if (sample_rate1 >= 8000)
338                 sample_rate1 = 8000;
339
340         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
341         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
342         /*
343          * Compute high frequency value and choose if noise coding should be
344          * activated.
345          */
346         bps1 = bps;
347         if (ahi->channels == 2)
348                 bps1 = bps * 1.6;
349         if (sample_rate1 == 44100) {
350                 if (bps1 >= 0.61)
351                         pwd->use_noise_coding = 0;
352                 else
353                         high_freq = high_freq * 0.4;
354         } else if (sample_rate1 == 22050) {
355                 if (bps1 >= 1.16)
356                         pwd->use_noise_coding = 0;
357                 else if (bps1 >= 0.72)
358                         high_freq = high_freq * 0.7;
359                 else
360                         high_freq = high_freq * 0.6;
361         } else if (sample_rate1 == 16000) {
362                 if (bps > 0.5)
363                         high_freq = high_freq * 0.5;
364                 else
365                         high_freq = high_freq * 0.3;
366         } else if (sample_rate1 == 11025)
367                 high_freq = high_freq * 0.7;
368         else if (sample_rate1 == 8000) {
369                 if (bps <= 0.625)
370                         high_freq = high_freq * 0.5;
371                 else if (bps > 0.75)
372                         pwd->use_noise_coding = 0;
373                 else
374                         high_freq = high_freq * 0.65;
375         } else {
376                 if (bps >= 0.8)
377                         high_freq = high_freq * 0.75;
378                 else if (bps >= 0.6)
379                         high_freq = high_freq * 0.6;
380                 else
381                         high_freq = high_freq * 0.5;
382         }
383         PARA_INFO_LOG("channels=%d sample_rate=%d "
384                 "bitrate=%d block_align=%d\n",
385                 ahi->channels, ahi->sample_rate,
386                 ahi->bit_rate, ahi->block_align);
387         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
388                 "high_freq=%f bitoffset=%d\n",
389                 pwd->frame_len, bps, bps1,
390                 high_freq, pwd->byte_offset_bits);
391         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
392                 pwd->use_noise_coding, pwd->ahi.use_exp_vlc, pwd->nb_block_sizes);
393
394         compute_scale_factor_band_sizes(pwd, high_freq);
395         /* init MDCT windows : simple sinus window */
396         for (i = 0; i < pwd->nb_block_sizes; i++) {
397                 int n;
398                 n = 1 << (pwd->frame_len_bits - i);
399                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
400                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
401         }
402
403         pwd->reset_block_lengths = 1;
404
405         if (pwd->use_noise_coding) {
406                 /* init the noise generator */
407                 if (pwd->ahi.use_exp_vlc)
408                         pwd->noise_mult = 0.02;
409                 else
410                         pwd->noise_mult = 0.04;
411
412                 {
413                         unsigned int seed;
414                         float norm;
415                         seed = 1;
416                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
417                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
418                                 seed = seed * 314159 + 1;
419                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
420                         }
421                 }
422         }
423
424         /* choose the VLC tables for the coefficients */
425         coef_vlc_table = 2;
426         if (ahi->sample_rate >= 32000) {
427                 if (bps1 < 0.72)
428                         coef_vlc_table = 0;
429                 else if (bps1 < 1.16)
430                         coef_vlc_table = 1;
431         }
432         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
433         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
434         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
435                 pwd->coef_vlcs[0]);
436         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
437                 pwd->coef_vlcs[1]);
438         return 0;
439 }
440
441 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
442 {
443         float wdel, a, b;
444         int i, e, m;
445
446         wdel = M_PI / frame_len;
447         for (i = 0; i < frame_len; i++)
448                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
449
450         /* tables for x^-0.25 computation */
451         for (i = 0; i < 256; i++) {
452                 e = i - 126;
453                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
454         }
455
456         /* These two tables are needed to avoid two operations in pow_m1_4. */
457         b = 1.0;
458         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
459                 m = (1 << LSP_POW_BITS) + i;
460                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
461                 a = pow(a, -0.25);
462                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
463                 pwd->lsp_pow_m_table2[i] = b - a;
464                 b = a;
465         }
466 }
467
468 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
469 {
470         struct private_wmadec_data *pwd;
471         int ret, i;
472
473         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
474         pwd = para_calloc(sizeof(*pwd));
475         ret = read_asf_header(initial_buf, len, &pwd->ahi);
476         if (ret <= 0) {
477                 free(pwd);
478                 return ret;
479         }
480
481         ret = wma_init(pwd);
482         if (ret < 0)
483                 return ret;
484         /* init MDCT */
485         for (i = 0; i < pwd->nb_block_sizes; i++) {
486                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
487                 if (ret < 0)
488                         return ret;
489         }
490         if (pwd->use_noise_coding) {
491                 PARA_INFO_LOG("using noise coding\n");
492                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
493                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
494                         wma_hgain_huffcodes, 2);
495         }
496
497         if (pwd->ahi.use_exp_vlc) {
498                 PARA_INFO_LOG("using exp_vlc\n");
499                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
500                         wma_scale_huffbits, wma_scale_huffcodes, 4);
501         } else {
502                 PARA_INFO_LOG("using curve\n");
503                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
504         }
505         *result = pwd;
506         return pwd->ahi.header_len;
507 }
508
509 /**
510  * compute x^-0.25 with an exponent and mantissa table. We use linear
511  * interpolation to reduce the mantissa table size at a small speed
512  * expense (linear interpolation approximately doubles the number of
513  * bits of precision).
514  */
515 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
516 {
517         union {
518                 float f;
519                 unsigned int v;
520         } u, t;
521         unsigned int e, m;
522         float a, b;
523
524         u.f = x;
525         e = u.v >> 23;
526         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
527         /* build interpolation scale: 1 <= t < 2. */
528         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
529         a = pwd->lsp_pow_m_table1[m];
530         b = pwd->lsp_pow_m_table2[m];
531         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
532 }
533
534 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
535                 float *out, float *val_max_ptr, int n, float *lsp)
536 {
537         int i, j;
538         float p, q, w, v, val_max;
539
540         val_max = 0;
541         for (i = 0; i < n; i++) {
542                 p = 0.5f;
543                 q = 0.5f;
544                 w = pwd->lsp_cos_table[i];
545                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
546                         q *= w - lsp[j - 1];
547                         p *= w - lsp[j];
548                 }
549                 p *= p * (2.0f - w);
550                 q *= q * (2.0f + w);
551                 v = p + q;
552                 v = pow_m1_4(pwd, v);
553                 if (v > val_max)
554                         val_max = v;
555                 out[i] = v;
556         }
557         *val_max_ptr = val_max;
558 }
559
560 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
561 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
562 {
563         float lsp_coefs[NB_LSP_COEFS];
564         int val, i;
565
566         for (i = 0; i < NB_LSP_COEFS; i++) {
567                 if (i == 0 || i >= 8)
568                         val = get_bits(&pwd->gb, 3);
569                 else
570                         val = get_bits(&pwd->gb, 4);
571                 lsp_coefs[i] = wma_lsp_codebook[i][val];
572         }
573
574         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
575                 pwd->block_len, lsp_coefs);
576 }
577
578 /* Decode exponents coded with VLC codes. */
579 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
580 {
581         int last_exp, n, code;
582         const uint16_t *ptr, *band_ptr;
583         float v, *q, max_scale, *q_end;
584
585         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
586         ptr = band_ptr;
587         q = pwd->exponents[ch];
588         q_end = q + pwd->block_len;
589         max_scale = 0;
590         last_exp = 36;
591
592         while (q < q_end) {
593                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
594                 if (code < 0)
595                         return code;
596                 /* NOTE: this offset is the same as MPEG4 AAC ! */
597                 last_exp += code - 60;
598                 /* XXX: use a table */
599                 v = pow(10, last_exp * (1.0 / 16.0));
600                 if (v > max_scale)
601                         max_scale = v;
602                 n = *ptr++;
603                 do {
604                         *q++ = v;
605                 } while (--n);
606         }
607         pwd->max_exponent[ch] = max_scale;
608         return 0;
609 }
610
611 /* compute src0 * src1 + src2 */
612 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
613                 const float *src2, int len)
614 {
615         int i;
616
617         for (i = 0; i < len; i++)
618                 dst[i] = src0[i] * src1[i] + src2[i];
619 }
620
621 static inline void vector_mult_reverse(float *dst, const float *src0,
622                 const float *src1, int len)
623 {
624         int i;
625
626         src1 += len - 1;
627         for (i = 0; i < len; i++)
628                 dst[i] = src0[i] * src1[-i];
629 }
630
631 /**
632  * Apply MDCT window and add into output.
633  *
634  * We ensure that when the windows overlap their squared sum
635  * is always 1 (MDCT reconstruction rule).
636  */
637 static void wma_window(struct private_wmadec_data *pwd, float *out)
638 {
639         float *in = pwd->output;
640         int block_len, bsize, n;
641
642         /* left part */
643         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
644                 block_len = pwd->block_len;
645                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
646                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
647         } else {
648                 block_len = 1 << pwd->prev_block_len_bits;
649                 n = (pwd->block_len - block_len) / 2;
650                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
651                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
652                         block_len);
653                 memcpy(out + n + block_len, in + n + block_len,
654                         n * sizeof(float));
655         }
656         out += pwd->block_len;
657         in += pwd->block_len;
658         /* right part */
659         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
660                 block_len = pwd->block_len;
661                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
662                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
663         } else {
664                 block_len = 1 << pwd->next_block_len_bits;
665                 n = (pwd->block_len - block_len) / 2;
666                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
667                 memcpy(out, in, n * sizeof(float));
668                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
669                         block_len);
670                 memset(out + n + block_len, 0, n * sizeof(float));
671         }
672 }
673
674 static int wma_total_gain_to_bits(int total_gain)
675 {
676         if (total_gain < 15)
677                 return 13;
678         else if (total_gain < 32)
679                 return 12;
680         else if (total_gain < 40)
681                 return 11;
682         else if (total_gain < 45)
683                 return 10;
684         else
685                 return 9;
686 }
687
688 static int compute_high_band_values(struct private_wmadec_data *pwd,
689                 int bsize, int nb_coefs[MAX_CHANNELS])
690 {
691         int ch;
692
693         if (!pwd->use_noise_coding)
694                 return 0;
695         for (ch = 0; ch < pwd->ahi.channels; ch++) {
696                 int i, m, a;
697                 if (!pwd->channel_coded[ch])
698                         continue;
699                 m = pwd->exponent_high_sizes[bsize];
700                 for (i = 0; i < m; i++) {
701                         a = get_bit(&pwd->gb);
702                         pwd->high_band_coded[ch][i] = a;
703                         if (!a)
704                                 continue;
705                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
706                 }
707         }
708         for (ch = 0; ch < pwd->ahi.channels; ch++) {
709                 int i, n, val;
710                 if (!pwd->channel_coded[ch])
711                         continue;
712                 n = pwd->exponent_high_sizes[bsize];
713                 val = (int)0x80000000;
714                 for (i = 0; i < n; i++) {
715                         if (!pwd->high_band_coded[ch][i])
716                                 continue;
717                         if (val == (int)0x80000000)
718                                 val = get_bits(&pwd->gb, 7) - 19;
719                         else {
720                                 int code = get_vlc(&pwd->gb,
721                                         pwd->hgain_vlc.table, HGAINVLCBITS,
722                                         HGAINMAX);
723                                 if (code < 0)
724                                         return code;
725                                 val += code - 18;
726                         }
727                         pwd->high_band_values[ch][i] = val;
728                 }
729         }
730         return 1;
731 }
732
733 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
734                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
735 {
736         int ch;
737         float mdct_norm = 1.0 / (pwd->block_len / 2);
738
739         for (ch = 0; ch < pwd->ahi.channels; ch++) {
740                 int16_t *coefs1;
741                 float *coefs, *exponents, mult, mult1, noise;
742                 int i, j, n, n1, last_high_band, esize;
743                 float exp_power[HIGH_BAND_MAX_SIZE];
744
745                 if (!pwd->channel_coded[ch])
746                         continue;
747                 coefs1 = pwd->coefs1[ch];
748                 exponents = pwd->exponents[ch];
749                 esize = pwd->exponents_bsize[ch];
750                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
751                 mult *= mdct_norm;
752                 coefs = pwd->coefs[ch];
753                 if (!pwd->use_noise_coding) {
754                         /* XXX: optimize more */
755                         n = nb_coefs[ch];
756                         for (i = 0; i < n; i++)
757                                 *coefs++ = coefs1[i] *
758                                         exponents[i << bsize >> esize] * mult;
759                         n = pwd->block_len - pwd->coefs_end[bsize];
760                         for (i = 0; i < n; i++)
761                                 *coefs++ = 0.0;
762                         continue;
763                 }
764                 n1 = pwd->exponent_high_sizes[bsize];
765                 /* compute power of high bands */
766                 exponents = pwd->exponents[ch] +
767                         (pwd->high_band_start[bsize] << bsize);
768                 last_high_band = 0; /* avoid warning */
769                 for (j = 0; j < n1; j++) {
770                         n = pwd->exponent_high_bands[
771                                 pwd->frame_len_bits - pwd->block_len_bits][j];
772                         if (pwd->high_band_coded[ch][j]) {
773                                 float e2, val;
774                                 e2 = 0;
775                                 for (i = 0; i < n; i++) {
776                                         val = exponents[i << bsize >> esize];
777                                         e2 += val * val;
778                                 }
779                                 exp_power[j] = e2 / n;
780                                 last_high_band = j;
781                         }
782                         exponents += n << bsize;
783                 }
784                 /* main freqs and high freqs */
785                 exponents = pwd->exponents[ch];
786                 for (j = -1; j < n1; j++) {
787                         if (j < 0)
788                                 n = pwd->high_band_start[bsize];
789                         else
790                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
791                                         - pwd->block_len_bits][j];
792                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
793                                 /* use noise with specified power */
794                                 mult1 = sqrt(exp_power[j]
795                                         / exp_power[last_high_band]);
796                                 /* XXX: use a table */
797                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
798                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
799                                 mult1 *= mdct_norm;
800                                 for (i = 0; i < n; i++) {
801                                         noise = pwd->noise_table[pwd->noise_index];
802                                         pwd->noise_index = (pwd->noise_index + 1)
803                                                 & (NOISE_TAB_SIZE - 1);
804                                         *coefs++ = noise * exponents[
805                                                 i << bsize >> esize] * mult1;
806                                 }
807                                 exponents += n << bsize;
808                         } else {
809                                 /* coded values + small noise */
810                                 for (i = 0; i < n; i++) {
811                                         noise = pwd->noise_table[pwd->noise_index];
812                                         pwd->noise_index = (pwd->noise_index + 1)
813                                                 & (NOISE_TAB_SIZE - 1);
814                                         *coefs++ = ((*coefs1++) + noise) *
815                                                 exponents[i << bsize >> esize]
816                                                 * mult;
817                                 }
818                                 exponents += n << bsize;
819                         }
820                 }
821                 /* very high freqs: noise */
822                 n = pwd->block_len - pwd->coefs_end[bsize];
823                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
824                 for (i = 0; i < n; i++) {
825                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
826                         pwd->noise_index = (pwd->noise_index + 1)
827                                 & (NOISE_TAB_SIZE - 1);
828                 }
829         }
830 }
831
832 /**
833  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
834  * errors.
835  */
836 static int wma_decode_block(struct private_wmadec_data *pwd)
837 {
838         int ret, n, v, ch, code, bsize;
839         int coef_nb_bits, total_gain;
840         int nb_coefs[MAX_CHANNELS];
841
842         /* compute current block length */
843         if (pwd->ahi.use_variable_block_len) {
844                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
845
846                 if (pwd->reset_block_lengths) {
847                         pwd->reset_block_lengths = 0;
848                         v = get_bits(&pwd->gb, n);
849                         if (v >= pwd->nb_block_sizes)
850                                 return -E_WMA_BLOCK_SIZE;
851                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
852                         v = get_bits(&pwd->gb, n);
853                         if (v >= pwd->nb_block_sizes)
854                                 return -E_WMA_BLOCK_SIZE;
855                         pwd->block_len_bits = pwd->frame_len_bits - v;
856                 } else {
857                         /* update block lengths */
858                         pwd->prev_block_len_bits = pwd->block_len_bits;
859                         pwd->block_len_bits = pwd->next_block_len_bits;
860                 }
861                 v = get_bits(&pwd->gb, n);
862                 if (v >= pwd->nb_block_sizes)
863                         return -E_WMA_BLOCK_SIZE;
864                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
865         } else {
866                 /* fixed block len */
867                 pwd->next_block_len_bits = pwd->frame_len_bits;
868                 pwd->prev_block_len_bits = pwd->frame_len_bits;
869                 pwd->block_len_bits = pwd->frame_len_bits;
870         }
871
872         /* now check if the block length is coherent with the frame length */
873         pwd->block_len = 1 << pwd->block_len_bits;
874         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
875                 return -E_INCOHERENT_BLOCK_LEN;
876
877         if (pwd->ahi.channels == 2)
878                 pwd->ms_stereo = get_bit(&pwd->gb);
879         v = 0;
880         for (ch = 0; ch < pwd->ahi.channels; ch++) {
881                 int a = get_bit(&pwd->gb);
882                 pwd->channel_coded[ch] = a;
883                 v |= a;
884         }
885
886         bsize = pwd->frame_len_bits - pwd->block_len_bits;
887
888         /* if no channel coded, no need to go further */
889         /* XXX: fix potential framing problems */
890         if (!v)
891                 goto next;
892
893         /*
894          * Read total gain and extract corresponding number of bits for coef
895          * escape coding.
896          */
897         total_gain = 1;
898         for (;;) {
899                 int a = get_bits(&pwd->gb, 7);
900                 total_gain += a;
901                 if (a != 127)
902                         break;
903         }
904
905         coef_nb_bits = wma_total_gain_to_bits(total_gain);
906
907         /* compute number of coefficients */
908         n = pwd->coefs_end[bsize];
909         for (ch = 0; ch < pwd->ahi.channels; ch++)
910                 nb_coefs[ch] = n;
911
912         ret = compute_high_band_values(pwd, bsize, nb_coefs);
913         if (ret < 0)
914                 return ret;
915
916         /* exponents can be reused in short blocks. */
917         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
918                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
919                         if (pwd->channel_coded[ch]) {
920                                 if (pwd->ahi.use_exp_vlc) {
921                                         ret = decode_exp_vlc(pwd, ch);
922                                         if (ret < 0)
923                                                 return ret;
924                                 } else
925                                         decode_exp_lsp(pwd, ch);
926                                 pwd->exponents_bsize[ch] = bsize;
927                         }
928                 }
929         }
930
931         /* parse spectral coefficients : just RLE encoding */
932         for (ch = 0; ch < pwd->ahi.channels; ch++) {
933                 struct vlc *coef_vlc;
934                 int level, run, tindex;
935                 int16_t *ptr, *eptr;
936                 const uint16_t *level_table, *run_table;
937
938                 if (!pwd->channel_coded[ch])
939                         continue;
940                 /*
941                  * special VLC tables are used for ms stereo because there is
942                  * potentially less energy there
943                  */
944                 tindex = (ch == 1 && pwd->ms_stereo);
945                 coef_vlc = &pwd->coef_vlc[tindex];
946                 run_table = pwd->run_table[tindex];
947                 level_table = pwd->level_table[tindex];
948                 /* XXX: optimize */
949                 ptr = &pwd->coefs1[ch][0];
950                 eptr = ptr + nb_coefs[ch];
951                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
952                 for (;;) {
953                         code = get_vlc(&pwd->gb, coef_vlc->table,
954                                 VLCBITS, VLCMAX);
955                         if (code < 0)
956                                 return code;
957                         if (code == 1) /* EOB */
958                                 break;
959                         if (code == 0) { /* escape */
960                                 level = get_bits(&pwd->gb, coef_nb_bits);
961                                 /* reading block_len_bits would be better */
962                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
963                         } else { /* normal code */
964                                 run = run_table[code];
965                                 level = level_table[code];
966                         }
967                         if (!get_bit(&pwd->gb))
968                                 level = -level;
969                         ptr += run;
970                         if (ptr >= eptr) {
971                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
972                                 break;
973                         }
974                         *ptr++ = level;
975                         if (ptr >= eptr) /* EOB can be omitted */
976                                 break;
977                 }
978         }
979         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
980         if (pwd->ms_stereo && pwd->channel_coded[1]) {
981                 float a, b;
982                 int i;
983                 /*
984                  * Nominal case for ms stereo: we do it before mdct.
985                  *
986                  * No need to optimize this case because it should almost never
987                  * happen.
988                  */
989                 if (!pwd->channel_coded[0]) {
990                         PARA_NOTICE_LOG("rare ms-stereo\n");
991                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
992                         pwd->channel_coded[0] = 1;
993                 }
994                 for (i = 0; i < pwd->block_len; i++) {
995                         a = pwd->coefs[0][i];
996                         b = pwd->coefs[1][i];
997                         pwd->coefs[0][i] = a + b;
998                         pwd->coefs[1][i] = a - b;
999                 }
1000         }
1001 next:
1002         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1003                 int n4, idx;
1004
1005                 n4 = pwd->block_len / 2;
1006                 if (pwd->channel_coded[ch])
1007                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1008                 else if (!(pwd->ms_stereo && ch == 1))
1009                         memset(pwd->output, 0, sizeof(pwd->output));
1010
1011                 /* multiply by the window and add in the frame */
1012                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
1013                 wma_window(pwd, &pwd->frame_out[ch][idx]);
1014         }
1015
1016         /* update block number */
1017         pwd->block_pos += pwd->block_len;
1018         if (pwd->block_pos >= pwd->frame_len)
1019                 return 1;
1020         else
1021                 return 0;
1022 }
1023
1024 /*
1025  * Clip a signed integer value into the -32768,32767 range.
1026  *
1027  * \param a The value to clip.
1028  *
1029  * \return The clipped value.
1030  */
1031 static inline int16_t av_clip_int16(int a)
1032 {
1033         if ((a + 32768) & ~65535)
1034                 return (a >> 31) ^ 32767;
1035         else
1036                 return a;
1037 }
1038
1039 /* Decode a frame of frame_len samples. */
1040 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1041 {
1042         int ret, i, n, ch, incr;
1043         int16_t *ptr;
1044         float *iptr;
1045
1046         /* read each block */
1047         pwd->block_pos = 0;
1048         for (;;) {
1049                 ret = wma_decode_block(pwd);
1050                 if (ret < 0)
1051                         return ret;
1052                 if (ret)
1053                         break;
1054         }
1055
1056         /* convert frame to integer */
1057         n = pwd->frame_len;
1058         incr = pwd->ahi.channels;
1059         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1060                 ptr = samples + ch;
1061                 iptr = pwd->frame_out[ch];
1062
1063                 for (i = 0; i < n; i++) {
1064                         *ptr = av_clip_int16(lrintf(*iptr++));
1065                         ptr += incr;
1066                 }
1067                 /* prepare for next block */
1068                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1069                         pwd->frame_len * sizeof(float));
1070         }
1071         return 0;
1072 }
1073
1074 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1075                 int *data_size, const uint8_t *buf, int buf_size)
1076 {
1077         int ret;
1078         int16_t *samples;
1079
1080         if (buf_size == 0) {
1081                 pwd->last_superframe_len = 0;
1082                 return 0;
1083         }
1084         if (buf_size < pwd->ahi.block_align)
1085                 return 0;
1086         buf_size = pwd->ahi.block_align;
1087         samples = data;
1088         init_get_bits(&pwd->gb, buf, buf_size);
1089         if (pwd->ahi.use_bit_reservoir) {
1090                 int i, nb_frames, bit_offset, pos, len;
1091                 uint8_t *q;
1092
1093                 /* read super frame header */
1094                 skip_bits(&pwd->gb, 4); /* super frame index */
1095                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1096                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1097                 ret = -E_WMA_OUTPUT_SPACE;
1098                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1099                                 * sizeof(int16_t) > *data_size)
1100                         goto fail;
1101
1102                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1103
1104                 if (pwd->last_superframe_len > 0) {
1105                         /* add bit_offset bits to last frame */
1106                         ret = -E_WMA_BAD_SUPERFRAME;
1107                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1108                                         MAX_CODED_SUPERFRAME_SIZE)
1109                                 goto fail;
1110                         q = pwd->last_superframe + pwd->last_superframe_len;
1111                         len = bit_offset;
1112                         while (len > 7) {
1113                                 *q++ = get_bits(&pwd->gb, 8);
1114                                 len -= 8;
1115                         }
1116                         if (len > 0)
1117                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1118
1119                         /* XXX: bit_offset bits into last frame */
1120                         init_get_bits(&pwd->gb, pwd->last_superframe,
1121                                 MAX_CODED_SUPERFRAME_SIZE);
1122                         /* skip unused bits */
1123                         if (pwd->last_bitoffset > 0)
1124                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1125                         /*
1126                          * This frame is stored in the last superframe and in
1127                          * the current one.
1128                          */
1129                         ret = wma_decode_frame(pwd, samples);
1130                         if (ret < 0)
1131                                 goto fail;
1132                         samples += pwd->ahi.channels * pwd->frame_len;
1133                 }
1134
1135                 /* read each frame starting from bit_offset */
1136                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1137                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1138                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1139                 len = pos & 7;
1140                 if (len > 0)
1141                         skip_bits(&pwd->gb, len);
1142
1143                 pwd->reset_block_lengths = 1;
1144                 for (i = 0; i < nb_frames; i++) {
1145                         ret = wma_decode_frame(pwd, samples);
1146                         if (ret < 0)
1147                                 goto fail;
1148                         samples += pwd->ahi.channels * pwd->frame_len;
1149                 }
1150
1151                 /* we copy the end of the frame in the last frame buffer */
1152                 pos = get_bits_count(&pwd->gb) +
1153                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1154                 pwd->last_bitoffset = pos & 7;
1155                 pos >>= 3;
1156                 len = buf_size - pos;
1157                 ret = -E_WMA_BAD_SUPERFRAME;
1158                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1159                         goto fail;
1160                 pwd->last_superframe_len = len;
1161                 memcpy(pwd->last_superframe, buf + pos, len);
1162         } else {
1163                 PARA_DEBUG_LOG("not using bit reservoir\n");
1164                 ret = -E_WMA_OUTPUT_SPACE;
1165                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1166                         goto fail;
1167                 /* single frame decode */
1168                 ret = wma_decode_frame(pwd, samples);
1169                 if (ret < 0)
1170                         goto fail;
1171                 samples += pwd->ahi.channels * pwd->frame_len;
1172         }
1173         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1174                 pwd->frame_len, pwd->block_len,
1175                 (int)((int8_t *)samples - (int8_t *)data), pwd->ahi.block_align);
1176         *data_size = (int8_t *)samples - (int8_t *)data;
1177         return pwd->ahi.block_align;
1178 fail:
1179         /* reset the bit reservoir on errors */
1180         pwd->last_superframe_len = 0;
1181         return ret;
1182 }
1183
1184 static void wmadec_close(struct filter_node *fn)
1185 {
1186         struct private_wmadec_data *pwd = fn->private_data;
1187
1188         if (!pwd)
1189                 return;
1190         wmadec_cleanup(pwd);
1191         free(fn->private_data);
1192         fn->private_data = NULL;
1193 }
1194
1195 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1196 {
1197         struct filter_node *fn = btr_context(btrn);
1198         struct private_wmadec_data *pwd = fn->private_data;
1199
1200         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1201                 result);
1202 }
1203
1204 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1205
1206 static int wmadec_post_select(__a_unused struct sched *s, void *context)
1207 {
1208         struct filter_node *fn = context;
1209         int ret, converted, out_size;
1210         struct private_wmadec_data *pwd = fn->private_data;
1211         struct btr_node *btrn = fn->btrn;
1212         size_t len;
1213         char *in, *out;
1214
1215 next_buffer:
1216         converted = 0;
1217         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1218         if (ret < 0)
1219                 goto err;
1220         if (ret == 0)
1221                 return 0;
1222         btr_merge(btrn, fn->min_iqs);
1223         len = btr_next_buffer(btrn, (char **)&in);
1224         ret = -E_WMADEC_EOF;
1225         if (len < fn->min_iqs)
1226                 goto err;
1227         if (!pwd) {
1228                 ret = wma_decode_init(in, len, &pwd);
1229                 if (ret < 0)
1230                         goto err;
1231                 if (ret == 0) {
1232                         fn->min_iqs += 4096;
1233                         goto next_buffer;
1234                 }
1235                 fn->min_iqs = 2 * (WMA_FRAME_SKIP + pwd->ahi.block_align);
1236                 fn->private_data = pwd;
1237                 converted = pwd->ahi.header_len;
1238                 goto success;
1239         }
1240         fn->min_iqs = WMA_FRAME_SKIP + pwd->ahi.block_align;
1241         if (fn->min_iqs > len)
1242                 goto success;
1243         out_size = WMA_OUTPUT_BUFFER_SIZE;
1244         out = para_malloc(out_size);
1245         ret = wma_decode_superframe(pwd, out, &out_size,
1246                 (uint8_t *)in + WMA_FRAME_SKIP, len - WMA_FRAME_SKIP);
1247         if (ret < 0) {
1248                 free(out);
1249                 goto err;
1250         }
1251         out = para_realloc(out, out_size);
1252         if (out_size > 0)
1253                 btr_add_output(out, out_size, btrn);
1254         converted += ret + WMA_FRAME_SKIP;
1255 success:
1256         btr_consume(btrn, converted);
1257         return 0;
1258 err:
1259         assert(ret < 0);
1260         btr_remove_node(&fn->btrn);
1261         return ret;
1262 }
1263
1264 static void wmadec_open(struct filter_node *fn)
1265 {
1266         fn->private_data = NULL;
1267         fn->min_iqs = 4096;
1268 }
1269
1270 /**
1271  * The init function of the wma decoder.
1272  *
1273  * \param f Its fields are filled in by the function.
1274  */
1275 void wmadec_filter_init(struct filter *f)
1276 {
1277         f->open = wmadec_open;
1278         f->close = wmadec_close;
1279         f->execute = wmadec_execute;
1280         f->pre_select = generic_filter_pre_select;
1281         f->post_select = wmadec_post_select;
1282 }