build: Remove duplicate dependency.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <math.h>
21 #include <regex.h>
22 #include <sys/select.h>
23
24 #include "para.h"
25 #include "error.h"
26 #include "list.h"
27 #include "string.h"
28 #include "sched.h"
29 #include "buffer_tree.h"
30 #include "filter.h"
31 #include "bitstream.h"
32 #include "imdct.h"
33 #include "wma.h"
34 #include "wmadata.h"
35
36
37 /* size of blocks */
38 #define BLOCK_MIN_BITS 7
39 #define BLOCK_MAX_BITS 11
40 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
41
42 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
43
44 /* XXX: find exact max size */
45 #define HIGH_BAND_MAX_SIZE 16
46
47 /* XXX: is it a suitable value ? */
48 #define MAX_CODED_SUPERFRAME_SIZE 16384
49
50 #define MAX_CHANNELS 2
51
52 #define NOISE_TAB_SIZE 8192
53
54 #define LSP_POW_BITS 7
55
56 struct private_wmadec_data {
57         /** Information contained in the audio file header. */
58         struct asf_header_info ahi;
59         struct getbit_context gb;
60         /** Whether perceptual noise is added. */
61         int use_noise_coding;
62         /** Depends on number of the bits per second and the frame length. */
63         int byte_offset_bits;
64         /** Only used if ahi->use_exp_vlc is true. */
65         struct vlc exp_vlc;
66         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
67         /** The index of the first coef in high band. */
68         int high_band_start[BLOCK_NB_SIZES];
69         /** Maximal number of coded coefficients. */
70         int coefs_end[BLOCK_NB_SIZES];
71         int exponent_high_sizes[BLOCK_NB_SIZES];
72         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
73         struct vlc hgain_vlc;
74
75         /* coded values in high bands */
76         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
77         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
78
79         /* there are two possible tables for spectral coefficients */
80         struct vlc coef_vlc[2];
81         uint16_t *run_table[2];
82         uint16_t *level_table[2];
83         const struct coef_vlc_table *coef_vlcs[2];
84         /** Frame length in samples. */
85         int frame_len;
86         /** log2 of frame_len. */
87         int frame_len_bits;
88         /** Number of block sizes, one if !ahi->use_variable_block_len. */
89         int nb_block_sizes;
90         /* Whether to update block lengths from getbit context. */
91         bool reset_block_lengths;
92         /** log2 of current block length. */
93         int block_len_bits;
94         /** log2 of next block length. */
95         int next_block_len_bits;
96         /** log2 of previous block length. */
97         int prev_block_len_bits;
98         /** Block length in samples. */
99         int block_len;
100         /** Current position in frame. */
101         int block_pos;
102         /** True if mid/side stereo mode. */
103         uint8_t ms_stereo;
104         /** True if channel is coded. */
105         uint8_t channel_coded[MAX_CHANNELS];
106         /** log2 ratio frame/exp. length. */
107         int exponents_bsize[MAX_CHANNELS];
108
109         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
110         float max_exponent[MAX_CHANNELS];
111         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
112         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
113         float output[BLOCK_MAX_SIZE * 2];
114         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
115         float *windows[BLOCK_NB_SIZES];
116         /** Output buffer for one frame and the last for IMDCT windowing. */
117         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
118         /** Last frame info. */
119         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
120         int last_bitoffset;
121         int last_superframe_len;
122         float noise_table[NOISE_TAB_SIZE];
123         int noise_index;
124         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
125         /* lsp_to_curve tables */
126         float lsp_cos_table[BLOCK_MAX_SIZE];
127         float lsp_pow_e_table[256];
128         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
129         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
130 };
131
132 #define EXPVLCBITS 8
133 #define HGAINVLCBITS 9
134 #define VLCBITS 9
135
136 /** \cond sine_winows */
137
138 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
139
140 SINE_WINDOW(128);
141 SINE_WINDOW(256);
142 SINE_WINDOW(512);
143 SINE_WINDOW(1024);
144 SINE_WINDOW(2048);
145 SINE_WINDOW(4096);
146
147 static float *sine_windows[6] = {
148         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
149 };
150 /** \endcond sine_windows */
151
152 /* Generate a sine window. */
153 static void sine_window_init(float *window, int n)
154 {
155         int i;
156
157         for (i = 0; i < n; i++)
158                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
159 }
160
161 static void wmadec_cleanup(struct private_wmadec_data *pwd)
162 {
163         int i;
164
165         for (i = 0; i < pwd->nb_block_sizes; i++)
166                 imdct_end(pwd->mdct_ctx[i]);
167         if (pwd->ahi.use_exp_vlc)
168                 free_vlc(&pwd->exp_vlc);
169         if (pwd->use_noise_coding)
170                 free_vlc(&pwd->hgain_vlc);
171         for (i = 0; i < 2; i++) {
172                 free_vlc(&pwd->coef_vlc[i]);
173                 free(pwd->run_table[i]);
174                 free(pwd->level_table[i]);
175         }
176 }
177
178 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
179                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
180 {
181         int n = vlc_table->n;
182         const uint8_t *table_bits = vlc_table->huffbits;
183         const uint32_t *table_codes = vlc_table->huffcodes;
184         const uint16_t *levels_table = vlc_table->levels;
185         uint16_t *run_table, *level_table;
186         int i, l, j, k, level;
187
188         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
189
190         run_table = para_malloc(n * sizeof(uint16_t));
191         level_table = para_malloc(n * sizeof(uint16_t));
192         i = 2;
193         level = 1;
194         k = 0;
195         while (i < n) {
196                 l = levels_table[k++];
197                 for (j = 0; j < l; j++) {
198                         run_table[i] = j;
199                         level_table[i] = level;
200                         i++;
201                 }
202                 level++;
203         }
204         *prun_table = run_table;
205         *plevel_table = level_table;
206 }
207
208 /* compute the scale factor band sizes for each MDCT block size */
209 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
210         float high_freq)
211 {
212         struct asf_header_info *ahi = &pwd->ahi;
213         int a, b, pos, lpos, k, block_len, i, j, n;
214         const uint8_t *table;
215
216         for (k = 0; k < pwd->nb_block_sizes; k++) {
217                 int exponent_size;
218
219                 block_len = pwd->frame_len >> k;
220                 table = NULL;
221                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
222                 if (a < 3) {
223                         if (ahi->sample_rate >= 44100)
224                                 table = exponent_band_44100[a];
225                         else if (ahi->sample_rate >= 32000)
226                                 table = exponent_band_32000[a];
227                         else if (ahi->sample_rate >= 22050)
228                                 table = exponent_band_22050[a];
229                 }
230                 if (table) {
231                         n = *table++;
232                         for (i = 0; i < n; i++)
233                                 pwd->exponent_bands[k][i] = table[i];
234                         exponent_size = n;
235                 } else {
236                         j = 0;
237                         lpos = 0;
238                         for (i = 0; i < 25; i++) {
239                                 a = wma_critical_freqs[i];
240                                 b = ahi->sample_rate;
241                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
242                                 pos <<= 2;
243                                 if (pos > block_len)
244                                         pos = block_len;
245                                 if (pos > lpos)
246                                         pwd->exponent_bands[k][j++] = pos - lpos;
247                                 if (pos >= block_len)
248                                         break;
249                                 lpos = pos;
250                         }
251                         exponent_size = j;
252                 }
253
254                 /* max number of coefs */
255                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
256                 /* high freq computation */
257                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
258                         / ahi->sample_rate + 0.5);
259                 n = exponent_size;
260                 j = 0;
261                 pos = 0;
262                 for (i = 0; i < n; i++) {
263                         int start, end;
264                         start = pos;
265                         pos += pwd->exponent_bands[k][i];
266                         end = pos;
267                         if (start < pwd->high_band_start[k])
268                                 start = pwd->high_band_start[k];
269                         if (end > pwd->coefs_end[k])
270                                 end = pwd->coefs_end[k];
271                         if (end > start)
272                                 pwd->exponent_high_bands[k][j++] = end - start;
273                 }
274                 pwd->exponent_high_sizes[k] = j;
275         }
276 }
277
278 static int wma_init(struct private_wmadec_data *pwd)
279 {
280         int i;
281         float bps1, high_freq;
282         volatile float bps;
283         int sample_rate1;
284         int coef_vlc_table;
285         struct asf_header_info *ahi = &pwd->ahi;
286         int flags2 = ahi->flags2;
287
288         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
289                 || ahi->channels <= 0 || ahi->channels > 8
290                 || ahi->bit_rate <= 0)
291                 return -E_WMA_BAD_PARAMS;
292
293         /* compute MDCT block size */
294         if (ahi->sample_rate <= 16000)
295                 pwd->frame_len_bits = 9;
296         else if (ahi->sample_rate <= 22050)
297                 pwd->frame_len_bits = 10;
298         else
299                 pwd->frame_len_bits = 11;
300         pwd->frame_len = 1 << pwd->frame_len_bits;
301         if (pwd->ahi.use_variable_block_len) {
302                 int nb_max, nb;
303                 nb = ((flags2 >> 3) & 3) + 1;
304                 if ((ahi->bit_rate / ahi->channels) >= 32000)
305                         nb += 2;
306                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
307                 if (nb > nb_max)
308                         nb = nb_max;
309                 pwd->nb_block_sizes = nb + 1;
310         } else
311                 pwd->nb_block_sizes = 1;
312
313         /* init rate dependent parameters */
314         pwd->use_noise_coding = 1;
315         high_freq = ahi->sample_rate * 0.5;
316
317         /* wma2 rates are normalized */
318         sample_rate1 = ahi->sample_rate;
319         if (sample_rate1 >= 44100)
320                 sample_rate1 = 44100;
321         else if (sample_rate1 >= 22050)
322                 sample_rate1 = 22050;
323         else if (sample_rate1 >= 16000)
324                 sample_rate1 = 16000;
325         else if (sample_rate1 >= 11025)
326                 sample_rate1 = 11025;
327         else if (sample_rate1 >= 8000)
328                 sample_rate1 = 8000;
329
330         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
331         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
332         /*
333          * Compute high frequency value and choose if noise coding should be
334          * activated.
335          */
336         bps1 = bps;
337         if (ahi->channels == 2)
338                 bps1 = bps * 1.6;
339         if (sample_rate1 == 44100) {
340                 if (bps1 >= 0.61)
341                         pwd->use_noise_coding = 0;
342                 else
343                         high_freq = high_freq * 0.4;
344         } else if (sample_rate1 == 22050) {
345                 if (bps1 >= 1.16)
346                         pwd->use_noise_coding = 0;
347                 else if (bps1 >= 0.72)
348                         high_freq = high_freq * 0.7;
349                 else
350                         high_freq = high_freq * 0.6;
351         } else if (sample_rate1 == 16000) {
352                 if (bps > 0.5)
353                         high_freq = high_freq * 0.5;
354                 else
355                         high_freq = high_freq * 0.3;
356         } else if (sample_rate1 == 11025)
357                 high_freq = high_freq * 0.7;
358         else if (sample_rate1 == 8000) {
359                 if (bps <= 0.625)
360                         high_freq = high_freq * 0.5;
361                 else if (bps > 0.75)
362                         pwd->use_noise_coding = 0;
363                 else
364                         high_freq = high_freq * 0.65;
365         } else {
366                 if (bps >= 0.8)
367                         high_freq = high_freq * 0.75;
368                 else if (bps >= 0.6)
369                         high_freq = high_freq * 0.6;
370                 else
371                         high_freq = high_freq * 0.5;
372         }
373         PARA_INFO_LOG("channels=%u sample_rate=%u "
374                 "bitrate=%u block_align=%d\n",
375                 ahi->channels, ahi->sample_rate,
376                 ahi->bit_rate, ahi->block_align);
377         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
378                 "high_freq=%f bitoffset=%d\n",
379                 pwd->frame_len, bps, bps1,
380                 high_freq, pwd->byte_offset_bits);
381         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
382                 pwd->use_noise_coding, pwd->ahi.use_exp_vlc, pwd->nb_block_sizes);
383
384         compute_scale_factor_band_sizes(pwd, high_freq);
385         /* init MDCT windows : simple sinus window */
386         for (i = 0; i < pwd->nb_block_sizes; i++) {
387                 int n;
388                 n = 1 << (pwd->frame_len_bits - i);
389                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
390                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
391         }
392
393         pwd->reset_block_lengths = true;
394
395         if (pwd->use_noise_coding) {
396                 /* init the noise generator */
397                 if (pwd->ahi.use_exp_vlc)
398                         pwd->noise_mult = 0.02;
399                 else
400                         pwd->noise_mult = 0.04;
401
402                 {
403                         unsigned int seed;
404                         float norm;
405                         seed = 1;
406                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
407                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
408                                 seed = seed * 314159 + 1;
409                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
410                         }
411                 }
412         }
413
414         /* choose the VLC tables for the coefficients */
415         coef_vlc_table = 2;
416         if (ahi->sample_rate >= 32000) {
417                 if (bps1 < 0.72)
418                         coef_vlc_table = 0;
419                 else if (bps1 < 1.16)
420                         coef_vlc_table = 1;
421         }
422         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
423         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
424         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
425                 pwd->coef_vlcs[0]);
426         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
427                 pwd->coef_vlcs[1]);
428         return 0;
429 }
430
431 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd)
432 {
433         float wdel, a, b;
434         int i, e, m;
435
436         wdel = M_PI / pwd->frame_len;
437         for (i = 0; i < pwd->frame_len; i++)
438                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
439
440         /* tables for x^-0.25 computation */
441         for (i = 0; i < 256; i++) {
442                 e = i - 126;
443                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
444         }
445
446         /* These two tables are needed to avoid two operations in pow_m1_4. */
447         b = 1.0;
448         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
449                 m = (1 << LSP_POW_BITS) + i;
450                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
451                 a = pow(a, -0.25);
452                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
453                 pwd->lsp_pow_m_table2[i] = b - a;
454                 b = a;
455         }
456 }
457
458 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
459 {
460         struct private_wmadec_data *pwd;
461         int ret, i;
462
463         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
464         pwd = para_calloc(sizeof(*pwd));
465         ret = read_asf_header(initial_buf, len, &pwd->ahi);
466         if (ret <= 0) {
467                 free(pwd);
468                 return ret;
469         }
470
471         ret = wma_init(pwd);
472         if (ret < 0)
473                 return ret;
474         /* init MDCT */
475         for (i = 0; i < pwd->nb_block_sizes; i++) {
476                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
477                 if (ret < 0)
478                         return ret;
479         }
480         if (pwd->use_noise_coding) {
481                 PARA_INFO_LOG("using noise coding\n");
482                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
483                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
484                         wma_hgain_huffcodes, 2);
485         }
486
487         if (pwd->ahi.use_exp_vlc) {
488                 PARA_INFO_LOG("using exp_vlc\n");
489                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
490                         wma_scale_huffbits, wma_scale_huffcodes, 4);
491         } else {
492                 PARA_INFO_LOG("using curve\n");
493                 wma_lsp_to_curve_init(pwd);
494         }
495         *result = pwd;
496         return pwd->ahi.header_len;
497 }
498
499 /**
500  * compute x^-0.25 with an exponent and mantissa table. We use linear
501  * interpolation to reduce the mantissa table size at a small speed
502  * expense (linear interpolation approximately doubles the number of
503  * bits of precision).
504  */
505 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
506 {
507         union {
508                 float f;
509                 unsigned int v;
510         } u, t;
511         unsigned int e, m;
512         float a, b;
513
514         u.f = x;
515         e = u.v >> 23;
516         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
517         /* build interpolation scale: 1 <= t < 2. */
518         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
519         a = pwd->lsp_pow_m_table1[m];
520         b = pwd->lsp_pow_m_table2[m];
521         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
522 }
523
524 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
525                 float *out, float *val_max_ptr, int n, float *lsp)
526 {
527         int i, j;
528         float p, q, w, v, val_max;
529
530         val_max = 0;
531         for (i = 0; i < n; i++) {
532                 p = 0.5f;
533                 q = 0.5f;
534                 w = pwd->lsp_cos_table[i];
535                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
536                         q *= w - lsp[j - 1];
537                         p *= w - lsp[j];
538                 }
539                 p *= p * (2.0f - w);
540                 q *= q * (2.0f + w);
541                 v = p + q;
542                 v = pow_m1_4(pwd, v);
543                 if (v > val_max)
544                         val_max = v;
545                 out[i] = v;
546         }
547         *val_max_ptr = val_max;
548 }
549
550 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
551 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
552 {
553         float lsp_coefs[NB_LSP_COEFS];
554         int val, i;
555
556         for (i = 0; i < NB_LSP_COEFS; i++) {
557                 if (i == 0 || i >= 8)
558                         val = get_bits(&pwd->gb, 3);
559                 else
560                         val = get_bits(&pwd->gb, 4);
561                 lsp_coefs[i] = wma_lsp_codebook[i][val];
562         }
563
564         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
565                 pwd->block_len, lsp_coefs);
566 }
567
568 /* Decode exponents coded with VLC codes. */
569 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
570 {
571         int last_exp, n, code;
572         const uint16_t *ptr, *band_ptr;
573         float v, *q, max_scale, *q_end;
574
575         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
576         ptr = band_ptr;
577         q = pwd->exponents[ch];
578         q_end = q + pwd->block_len;
579         max_scale = 0;
580         last_exp = 36;
581
582         while (q < q_end) {
583                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS);
584                 if (code < 0)
585                         return code;
586                 /* NOTE: this offset is the same as MPEG4 AAC ! */
587                 last_exp += code - 60;
588                 /* XXX: use a table */
589                 v = pow(10, last_exp * (1.0 / 16.0));
590                 if (v > max_scale)
591                         max_scale = v;
592                 n = *ptr++;
593                 do {
594                         *q++ = v;
595                 } while (--n);
596         }
597         pwd->max_exponent[ch] = max_scale;
598         return 0;
599 }
600
601 /* compute src0 * src1 + src2 */
602 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
603                 const float *src2, int len)
604 {
605         int i;
606
607         for (i = 0; i < len; i++)
608                 dst[i] = src0[i] * src1[i] + src2[i];
609 }
610
611 static inline void vector_mult_reverse(float *dst, const float *src0,
612                 const float *src1, int len)
613 {
614         int i;
615
616         src1 += len - 1;
617         for (i = 0; i < len; i++)
618                 dst[i] = src0[i] * src1[-i];
619 }
620
621 /**
622  * Apply MDCT window and add into output.
623  *
624  * We ensure that when the windows overlap their squared sum
625  * is always 1 (MDCT reconstruction rule).
626  */
627 static void wma_window(struct private_wmadec_data *pwd, float *out)
628 {
629         float *in = pwd->output;
630         int block_len, bsize, n;
631
632         /* left part */
633         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
634                 block_len = pwd->block_len;
635                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
636                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
637         } else {
638                 block_len = 1 << pwd->prev_block_len_bits;
639                 n = (pwd->block_len - block_len) / 2;
640                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
641                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
642                         block_len);
643                 memcpy(out + n + block_len, in + n + block_len,
644                         n * sizeof(float));
645         }
646         out += pwd->block_len;
647         in += pwd->block_len;
648         /* right part */
649         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
650                 block_len = pwd->block_len;
651                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
652                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
653         } else {
654                 block_len = 1 << pwd->next_block_len_bits;
655                 n = (pwd->block_len - block_len) / 2;
656                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
657                 memcpy(out, in, n * sizeof(float));
658                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
659                         block_len);
660                 memset(out + n + block_len, 0, n * sizeof(float));
661         }
662 }
663
664 static int wma_total_gain_to_bits(int total_gain)
665 {
666         if (total_gain < 15)
667                 return 13;
668         else if (total_gain < 32)
669                 return 12;
670         else if (total_gain < 40)
671                 return 11;
672         else if (total_gain < 45)
673                 return 10;
674         else
675                 return 9;
676 }
677
678 static int compute_high_band_values(struct private_wmadec_data *pwd,
679                 int bsize, int nb_coefs[MAX_CHANNELS])
680 {
681         int ch;
682
683         if (!pwd->use_noise_coding)
684                 return 0;
685         for (ch = 0; ch < pwd->ahi.channels; ch++) {
686                 int i, m, a;
687                 if (!pwd->channel_coded[ch])
688                         continue;
689                 m = pwd->exponent_high_sizes[bsize];
690                 for (i = 0; i < m; i++) {
691                         a = get_bit(&pwd->gb);
692                         pwd->high_band_coded[ch][i] = a;
693                         if (!a)
694                                 continue;
695                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
696                 }
697         }
698         for (ch = 0; ch < pwd->ahi.channels; ch++) {
699                 int i, n, val;
700                 if (!pwd->channel_coded[ch])
701                         continue;
702                 n = pwd->exponent_high_sizes[bsize];
703                 val = (int)0x80000000;
704                 for (i = 0; i < n; i++) {
705                         if (!pwd->high_band_coded[ch][i])
706                                 continue;
707                         if (val == (int)0x80000000)
708                                 val = get_bits(&pwd->gb, 7) - 19;
709                         else {
710                                 int code = get_vlc(&pwd->gb,
711                                         pwd->hgain_vlc.table, HGAINVLCBITS);
712                                 if (code < 0)
713                                         return code;
714                                 val += code - 18;
715                         }
716                         pwd->high_band_values[ch][i] = val;
717                 }
718         }
719         return 1;
720 }
721
722 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
723                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
724 {
725         int ch;
726         float mdct_norm = 1.0 / (pwd->block_len / 2);
727
728         for (ch = 0; ch < pwd->ahi.channels; ch++) {
729                 int16_t *coefs1;
730                 float *coefs, *exponents, mult, mult1, noise;
731                 int i, j, n, n1, last_high_band, esize;
732                 float exp_power[HIGH_BAND_MAX_SIZE];
733
734                 if (!pwd->channel_coded[ch])
735                         continue;
736                 coefs1 = pwd->coefs1[ch];
737                 exponents = pwd->exponents[ch];
738                 esize = pwd->exponents_bsize[ch];
739                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
740                 mult *= mdct_norm;
741                 coefs = pwd->coefs[ch];
742                 if (!pwd->use_noise_coding) {
743                         /* XXX: optimize more */
744                         n = nb_coefs[ch];
745                         for (i = 0; i < n; i++)
746                                 *coefs++ = coefs1[i] *
747                                         exponents[i << bsize >> esize] * mult;
748                         n = pwd->block_len - pwd->coefs_end[bsize];
749                         for (i = 0; i < n; i++)
750                                 *coefs++ = 0.0;
751                         continue;
752                 }
753                 n1 = pwd->exponent_high_sizes[bsize];
754                 /* compute power of high bands */
755                 exponents = pwd->exponents[ch] +
756                         (pwd->high_band_start[bsize] << bsize);
757                 last_high_band = 0; /* avoid warning */
758                 for (j = 0; j < n1; j++) {
759                         n = pwd->exponent_high_bands[
760                                 pwd->frame_len_bits - pwd->block_len_bits][j];
761                         if (pwd->high_band_coded[ch][j]) {
762                                 float e2, val;
763                                 e2 = 0;
764                                 for (i = 0; i < n; i++) {
765                                         val = exponents[i << bsize >> esize];
766                                         e2 += val * val;
767                                 }
768                                 exp_power[j] = e2 / n;
769                                 last_high_band = j;
770                         }
771                         exponents += n << bsize;
772                 }
773                 /* main freqs and high freqs */
774                 exponents = pwd->exponents[ch];
775                 for (j = -1; j < n1; j++) {
776                         if (j < 0)
777                                 n = pwd->high_band_start[bsize];
778                         else
779                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
780                                         - pwd->block_len_bits][j];
781                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
782                                 /* use noise with specified power */
783                                 mult1 = sqrt(exp_power[j]
784                                         / exp_power[last_high_band]);
785                                 /* XXX: use a table */
786                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
787                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
788                                 mult1 *= mdct_norm;
789                                 for (i = 0; i < n; i++) {
790                                         noise = pwd->noise_table[pwd->noise_index];
791                                         pwd->noise_index = (pwd->noise_index + 1)
792                                                 & (NOISE_TAB_SIZE - 1);
793                                         *coefs++ = noise * exponents[
794                                                 i << bsize >> esize] * mult1;
795                                 }
796                                 exponents += n << bsize;
797                         } else {
798                                 /* coded values + small noise */
799                                 for (i = 0; i < n; i++) {
800                                         noise = pwd->noise_table[pwd->noise_index];
801                                         pwd->noise_index = (pwd->noise_index + 1)
802                                                 & (NOISE_TAB_SIZE - 1);
803                                         *coefs++ = ((*coefs1++) + noise) *
804                                                 exponents[i << bsize >> esize]
805                                                 * mult;
806                                 }
807                                 exponents += n << bsize;
808                         }
809                 }
810                 /* very high freqs: noise */
811                 n = pwd->block_len - pwd->coefs_end[bsize];
812                 mult1 = mult * exponents[(-(1 << bsize)) >> esize];
813                 for (i = 0; i < n; i++) {
814                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
815                         pwd->noise_index = (pwd->noise_index + 1)
816                                 & (NOISE_TAB_SIZE - 1);
817                 }
818         }
819 }
820
821 /**
822  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
823  * errors.
824  */
825 static int wma_decode_block(struct private_wmadec_data *pwd)
826 {
827         int ret, n, v, ch, code, bsize;
828         int coef_nb_bits, total_gain;
829         int nb_coefs[MAX_CHANNELS];
830
831         /* compute current block length */
832         if (pwd->ahi.use_variable_block_len) {
833                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
834
835                 if (pwd->reset_block_lengths) {
836                         pwd->reset_block_lengths = false;
837                         v = get_bits(&pwd->gb, n);
838                         if (v >= pwd->nb_block_sizes)
839                                 return -E_WMA_BLOCK_SIZE;
840                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
841                         v = get_bits(&pwd->gb, n);
842                         if (v >= pwd->nb_block_sizes)
843                                 return -E_WMA_BLOCK_SIZE;
844                         pwd->block_len_bits = pwd->frame_len_bits - v;
845                 } else {
846                         /* update block lengths */
847                         pwd->prev_block_len_bits = pwd->block_len_bits;
848                         pwd->block_len_bits = pwd->next_block_len_bits;
849                 }
850                 v = get_bits(&pwd->gb, n);
851                 if (v >= pwd->nb_block_sizes)
852                         return -E_WMA_BLOCK_SIZE;
853                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
854         } else {
855                 /* fixed block len */
856                 pwd->next_block_len_bits = pwd->frame_len_bits;
857                 pwd->prev_block_len_bits = pwd->frame_len_bits;
858                 pwd->block_len_bits = pwd->frame_len_bits;
859         }
860
861         /* now check if the block length is coherent with the frame length */
862         pwd->block_len = 1 << pwd->block_len_bits;
863         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
864                 return -E_INCOHERENT_BLOCK_LEN;
865
866         if (pwd->ahi.channels == 2)
867                 pwd->ms_stereo = get_bit(&pwd->gb);
868         v = 0;
869         for (ch = 0; ch < pwd->ahi.channels; ch++) {
870                 int a = get_bit(&pwd->gb);
871                 pwd->channel_coded[ch] = a;
872                 v |= a;
873         }
874
875         bsize = pwd->frame_len_bits - pwd->block_len_bits;
876
877         /* if no channel coded, no need to go further */
878         /* XXX: fix potential framing problems */
879         if (!v)
880                 goto next;
881
882         /*
883          * Read total gain and extract corresponding number of bits for coef
884          * escape coding.
885          */
886         total_gain = 1;
887         for (;;) {
888                 int a = get_bits(&pwd->gb, 7);
889                 total_gain += a;
890                 if (a != 127)
891                         break;
892         }
893
894         coef_nb_bits = wma_total_gain_to_bits(total_gain);
895
896         /* compute number of coefficients */
897         n = pwd->coefs_end[bsize];
898         for (ch = 0; ch < pwd->ahi.channels; ch++)
899                 nb_coefs[ch] = n;
900
901         ret = compute_high_band_values(pwd, bsize, nb_coefs);
902         if (ret < 0)
903                 return ret;
904
905         /* exponents can be reused in short blocks. */
906         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
907                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
908                         if (pwd->channel_coded[ch]) {
909                                 if (pwd->ahi.use_exp_vlc) {
910                                         ret = decode_exp_vlc(pwd, ch);
911                                         if (ret < 0)
912                                                 return ret;
913                                 } else
914                                         decode_exp_lsp(pwd, ch);
915                                 pwd->exponents_bsize[ch] = bsize;
916                         }
917                 }
918         }
919
920         /* parse spectral coefficients : just RLE encoding */
921         for (ch = 0; ch < pwd->ahi.channels; ch++) {
922                 struct vlc *coef_vlc;
923                 int level, run, tindex;
924                 int16_t *ptr, *eptr;
925                 const uint16_t *level_table, *run_table;
926
927                 if (!pwd->channel_coded[ch])
928                         continue;
929                 /*
930                  * special VLC tables are used for ms stereo because there is
931                  * potentially less energy there
932                  */
933                 tindex = (ch == 1 && pwd->ms_stereo);
934                 coef_vlc = &pwd->coef_vlc[tindex];
935                 run_table = pwd->run_table[tindex];
936                 level_table = pwd->level_table[tindex];
937                 /* XXX: optimize */
938                 ptr = &pwd->coefs1[ch][0];
939                 eptr = ptr + nb_coefs[ch];
940                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
941                 for (;;) {
942                         code = get_vlc(&pwd->gb, coef_vlc->table, VLCBITS);
943                         if (code < 0)
944                                 return code;
945                         if (code == 1) /* EOB */
946                                 break;
947                         if (code == 0) { /* escape */
948                                 level = get_bits(&pwd->gb, coef_nb_bits);
949                                 /* reading block_len_bits would be better */
950                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
951                         } else { /* normal code */
952                                 run = run_table[code];
953                                 level = level_table[code];
954                         }
955                         if (!get_bit(&pwd->gb))
956                                 level = -level;
957                         ptr += run;
958                         if (ptr >= eptr) {
959                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
960                                 break;
961                         }
962                         *ptr++ = level;
963                         if (ptr >= eptr) /* EOB can be omitted */
964                                 break;
965                 }
966         }
967         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
968         if (pwd->ms_stereo && pwd->channel_coded[1]) {
969                 float a, b;
970                 int i;
971                 /*
972                  * Nominal case for ms stereo: we do it before mdct.
973                  *
974                  * No need to optimize this case because it should almost never
975                  * happen.
976                  */
977                 if (!pwd->channel_coded[0]) {
978                         PARA_NOTICE_LOG("rare ms-stereo\n");
979                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
980                         pwd->channel_coded[0] = 1;
981                 }
982                 for (i = 0; i < pwd->block_len; i++) {
983                         a = pwd->coefs[0][i];
984                         b = pwd->coefs[1][i];
985                         pwd->coefs[0][i] = a + b;
986                         pwd->coefs[1][i] = a - b;
987                 }
988         }
989 next:
990         for (ch = 0; ch < pwd->ahi.channels; ch++) {
991                 int n4, idx;
992
993                 n4 = pwd->block_len / 2;
994                 if (pwd->channel_coded[ch])
995                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
996                 else if (!(pwd->ms_stereo && ch == 1))
997                         memset(pwd->output, 0, sizeof(pwd->output));
998
999                 /* multiply by the window and add in the frame */
1000                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
1001                 wma_window(pwd, &pwd->frame_out[ch][idx]);
1002         }
1003
1004         /* update block number */
1005         pwd->block_pos += pwd->block_len;
1006         if (pwd->block_pos >= pwd->frame_len)
1007                 return 1;
1008         else
1009                 return 0;
1010 }
1011
1012 /*
1013  * Clip a signed integer value into the -32768,32767 range.
1014  *
1015  * \param a The value to clip.
1016  *
1017  * \return The clipped value.
1018  */
1019 static inline int16_t av_clip_int16(int a)
1020 {
1021         if ((a + 32768) & ~65535)
1022                 return (a >> 31) ^ 32767;
1023         else
1024                 return a;
1025 }
1026
1027 /* Decode a frame of frame_len samples. */
1028 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1029 {
1030         int ret, i, ch;
1031         int16_t *ptr;
1032         float *iptr;
1033
1034         /* read each block */
1035         pwd->block_pos = 0;
1036         for (;;) {
1037                 ret = wma_decode_block(pwd);
1038                 if (ret < 0)
1039                         return ret;
1040                 if (ret)
1041                         break;
1042         }
1043
1044         /* convert frame to integer */
1045         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1046                 ptr = samples + ch;
1047                 iptr = pwd->frame_out[ch];
1048
1049                 for (i = 0; i < pwd->frame_len; i++) {
1050                         *ptr = av_clip_int16(lrintf(*iptr++));
1051                         ptr += pwd->ahi.channels;
1052                 }
1053                 /* prepare for next block */
1054                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1055                         pwd->frame_len * sizeof(float));
1056         }
1057         return 0;
1058 }
1059
1060 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1061                 int *data_size, const uint8_t *buf, int buf_size)
1062 {
1063         int ret;
1064         int16_t *samples;
1065
1066         if (buf_size == 0) {
1067                 pwd->last_superframe_len = 0;
1068                 *data_size = 0;
1069                 return 0;
1070         }
1071         if (buf_size < pwd->ahi.block_align) {
1072                 *data_size = 0;
1073                 return 0;
1074         }
1075         buf_size = pwd->ahi.block_align;
1076         samples = data;
1077         init_get_bits(&pwd->gb, buf, buf_size);
1078         if (pwd->ahi.use_bit_reservoir) {
1079                 int i, nb_frames, bit_offset, pos, len;
1080                 uint8_t *q;
1081
1082                 /* read super frame header */
1083                 skip_bits(&pwd->gb, 4); /* super frame index */
1084                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1085                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1086                 ret = -E_WMA_OUTPUT_SPACE;
1087                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1088                                 * sizeof(int16_t) > *data_size)
1089                         goto fail;
1090
1091                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1092
1093                 if (pwd->last_superframe_len > 0) {
1094                         /* add bit_offset bits to last frame */
1095                         ret = -E_WMA_BAD_SUPERFRAME;
1096                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1097                                         MAX_CODED_SUPERFRAME_SIZE)
1098                                 goto fail;
1099                         q = pwd->last_superframe + pwd->last_superframe_len;
1100                         len = bit_offset;
1101                         while (len > 7) {
1102                                 *q++ = get_bits(&pwd->gb, 8);
1103                                 len -= 8;
1104                         }
1105                         if (len > 0)
1106                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1107
1108                         /* XXX: bit_offset bits into last frame */
1109                         init_get_bits(&pwd->gb, pwd->last_superframe,
1110                                 MAX_CODED_SUPERFRAME_SIZE);
1111                         /* skip unused bits */
1112                         if (pwd->last_bitoffset > 0)
1113                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1114                         /*
1115                          * This frame is stored in the last superframe and in
1116                          * the current one.
1117                          */
1118                         ret = wma_decode_frame(pwd, samples);
1119                         if (ret < 0)
1120                                 goto fail;
1121                         samples += pwd->ahi.channels * pwd->frame_len;
1122                 }
1123
1124                 /* read each frame starting from bit_offset */
1125                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1126                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1127                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1128                 len = pos & 7;
1129                 if (len > 0)
1130                         skip_bits(&pwd->gb, len);
1131
1132                 pwd->reset_block_lengths = true;
1133                 for (i = 0; i < nb_frames; i++) {
1134                         ret = wma_decode_frame(pwd, samples);
1135                         if (ret < 0)
1136                                 goto fail;
1137                         samples += pwd->ahi.channels * pwd->frame_len;
1138                 }
1139
1140                 /* we copy the end of the frame in the last frame buffer */
1141                 pos = get_bits_count(&pwd->gb) +
1142                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1143                 pwd->last_bitoffset = pos & 7;
1144                 pos >>= 3;
1145                 len = buf_size - pos;
1146                 ret = -E_WMA_BAD_SUPERFRAME;
1147                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1148                         goto fail;
1149                 pwd->last_superframe_len = len;
1150                 memcpy(pwd->last_superframe, buf + pos, len);
1151         } else {
1152                 PARA_DEBUG_LOG("not using bit reservoir\n");
1153                 ret = -E_WMA_OUTPUT_SPACE;
1154                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1155                         goto fail;
1156                 /* single frame decode */
1157                 ret = wma_decode_frame(pwd, samples);
1158                 if (ret < 0)
1159                         goto fail;
1160                 samples += pwd->ahi.channels * pwd->frame_len;
1161         }
1162         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1163                 pwd->frame_len, pwd->block_len,
1164                 (int)((int8_t *)samples - (int8_t *)data), pwd->ahi.block_align);
1165         *data_size = (int8_t *)samples - (int8_t *)data;
1166         return pwd->ahi.block_align;
1167 fail:
1168         /* reset the bit reservoir on errors */
1169         pwd->last_superframe_len = 0;
1170         return ret;
1171 }
1172
1173 static void wmadec_close(struct filter_node *fn)
1174 {
1175         struct private_wmadec_data *pwd = fn->private_data;
1176
1177         if (!pwd)
1178                 return;
1179         wmadec_cleanup(pwd);
1180         free(fn->private_data);
1181         fn->private_data = NULL;
1182 }
1183
1184 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1185 {
1186         struct filter_node *fn = btr_context(btrn);
1187         struct private_wmadec_data *pwd = fn->private_data;
1188
1189         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1190                 result);
1191 }
1192
1193 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1194
1195 static int wmadec_post_select(__a_unused struct sched *s, void *context)
1196 {
1197         struct filter_node *fn = context;
1198         int ret, converted, out_size;
1199         struct private_wmadec_data *pwd = fn->private_data;
1200         struct btr_node *btrn = fn->btrn;
1201         size_t len;
1202         char *in, *out;
1203
1204 next_buffer:
1205         converted = 0;
1206         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1207         if (ret < 0)
1208                 goto err;
1209         if (ret == 0)
1210                 return 0;
1211         btr_merge(btrn, fn->min_iqs);
1212         len = btr_next_buffer(btrn, &in);
1213         ret = -E_WMADEC_EOF;
1214         if (len < fn->min_iqs)
1215                 goto err;
1216         if (!pwd) {
1217                 ret = wma_decode_init(in, len, &pwd);
1218                 if (ret < 0)
1219                         goto err;
1220                 if (ret == 0) {
1221                         fn->min_iqs += 4096;
1222                         goto next_buffer;
1223                 }
1224                 fn->min_iqs = 2 * pwd->ahi.packet_size;
1225                 fn->private_data = pwd;
1226                 converted = pwd->ahi.header_len;
1227                 goto success;
1228         }
1229         fn->min_iqs = pwd->ahi.packet_size;
1230         if (fn->min_iqs > len)
1231                 goto success;
1232         out_size = WMA_OUTPUT_BUFFER_SIZE;
1233         out = para_malloc(out_size);
1234         ret = wma_decode_superframe(pwd, out, &out_size,
1235                 (uint8_t *)in + WMA_FRAME_SKIP, len - WMA_FRAME_SKIP);
1236         if (ret < 0) {
1237                 free(out);
1238                 goto err;
1239         }
1240         if (out_size > 0) {
1241                 out = para_realloc(out, out_size);
1242                 btr_add_output(out, out_size, btrn);
1243         } else
1244                 free(out);
1245         converted += pwd->ahi.packet_size;
1246 success:
1247         btr_consume(btrn, converted);
1248         return 0;
1249 err:
1250         assert(ret < 0);
1251         btr_remove_node(&fn->btrn);
1252         return ret;
1253 }
1254
1255 static void wmadec_open(struct filter_node *fn)
1256 {
1257         fn->private_data = NULL;
1258         fn->min_iqs = 4096;
1259 }
1260
1261 const struct filter lsg_filter_cmd_com_wmadec_user_data = {
1262         .open = wmadec_open,
1263         .close = wmadec_close,
1264         .execute = wmadec_execute,
1265         .pre_select = generic_filter_pre_select,
1266         .post_select = wmadec_post_select,
1267 };