gui: Try to link against libncursesw.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27 #include <sys/select.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "buffer_tree.h"
36 #include "filter.h"
37 #include "bitstream.h"
38 #include "imdct.h"
39 #include "wma.h"
40 #include "wmadata.h"
41
42
43 /* size of blocks */
44 #define BLOCK_MIN_BITS 7
45 #define BLOCK_MAX_BITS 11
46 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
47
48 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
49
50 /* XXX: find exact max size */
51 #define HIGH_BAND_MAX_SIZE 16
52
53 /* XXX: is it a suitable value ? */
54 #define MAX_CODED_SUPERFRAME_SIZE 16384
55
56 #define MAX_CHANNELS 2
57
58 #define NOISE_TAB_SIZE 8192
59
60 #define LSP_POW_BITS 7
61
62 struct private_wmadec_data {
63         /** Information contained in the audio file header. */
64         struct asf_header_info ahi;
65         struct getbit_context gb;
66         /** Whether to use the bit reservoir. */
67         int use_bit_reservoir;
68         /** Whether to use variable block length. */
69         int use_variable_block_len;
70         /** Whether to use exponent coding. */
71         int use_exp_vlc;
72         /** Whether perceptual noise is added. */
73         int use_noise_coding;
74         /** Depends on number of the bits per second and the frame length. */
75         int byte_offset_bits;
76         /** Only used if use_exp_vlc is true. */
77         struct vlc exp_vlc;
78         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
79         /** The index of the first coef in high band. */
80         int high_band_start[BLOCK_NB_SIZES];
81         /** Maximal number of coded coefficients. */
82         int coefs_end[BLOCK_NB_SIZES];
83         int exponent_high_sizes[BLOCK_NB_SIZES];
84         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
85         struct vlc hgain_vlc;
86
87         /* coded values in high bands */
88         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
89         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
90
91         /* there are two possible tables for spectral coefficients */
92         struct vlc coef_vlc[2];
93         uint16_t *run_table[2];
94         uint16_t *level_table[2];
95         const struct coef_vlc_table *coef_vlcs[2];
96         /** Frame length in samples. */
97         int frame_len;
98         /** log2 of frame_len. */
99         int frame_len_bits;
100         /** Number of block sizes. */
101         int nb_block_sizes;
102         /* block info */
103         int reset_block_lengths;
104         /** log2 of current block length. */
105         int block_len_bits;
106         /** log2 of next block length. */
107         int next_block_len_bits;
108         /** log2 of previous block length. */
109         int prev_block_len_bits;
110         /** Block length in samples. */
111         int block_len;
112         /** Current position in frame. */
113         int block_pos;
114         /** True if mid/side stereo mode. */
115         uint8_t ms_stereo;
116         /** True if channel is coded. */
117         uint8_t channel_coded[MAX_CHANNELS];
118         /** log2 ratio frame/exp. length. */
119         int exponents_bsize[MAX_CHANNELS];
120
121         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
122         float max_exponent[MAX_CHANNELS];
123         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
124         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
125         float output[BLOCK_MAX_SIZE * 2];
126         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
127         float *windows[BLOCK_NB_SIZES];
128         /** Output buffer for one frame and the last for IMDCT windowing. */
129         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
130         /** Last frame info. */
131         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
132         int last_bitoffset;
133         int last_superframe_len;
134         float noise_table[NOISE_TAB_SIZE];
135         int noise_index;
136         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
137         /* lsp_to_curve tables */
138         float lsp_cos_table[BLOCK_MAX_SIZE];
139         float lsp_pow_e_table[256];
140         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
141         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
142 };
143
144 #define EXPVLCBITS 8
145 #define EXPMAX DIV_ROUND_UP(19, EXPVLCBITS)
146
147 #define HGAINVLCBITS 9
148 #define HGAINMAX DIV_ROUND_UP(13, HGAINVLCBITS)
149
150 #define VLCBITS 9
151 #define VLCMAX DIV_ROUND_UP(22, VLCBITS)
152
153 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
154
155 SINE_WINDOW(128);
156 SINE_WINDOW(256);
157 SINE_WINDOW(512);
158 SINE_WINDOW(1024);
159 SINE_WINDOW(2048);
160 SINE_WINDOW(4096);
161
162 static float *sine_windows[6] = {
163         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
164 };
165
166 /* Generate a sine window. */
167 static void sine_window_init(float *window, int n)
168 {
169         int i;
170
171         for (i = 0; i < n; i++)
172                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
173 }
174
175 static void wmadec_cleanup(struct private_wmadec_data *pwd)
176 {
177         int i;
178
179         for (i = 0; i < pwd->nb_block_sizes; i++)
180                 imdct_end(pwd->mdct_ctx[i]);
181         if (pwd->use_exp_vlc)
182                 free_vlc(&pwd->exp_vlc);
183         if (pwd->use_noise_coding)
184                 free_vlc(&pwd->hgain_vlc);
185         for (i = 0; i < 2; i++) {
186                 free_vlc(&pwd->coef_vlc[i]);
187                 free(pwd->run_table[i]);
188                 free(pwd->level_table[i]);
189         }
190 }
191
192 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
193                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
194 {
195         int n = vlc_table->n;
196         const uint8_t *table_bits = vlc_table->huffbits;
197         const uint32_t *table_codes = vlc_table->huffcodes;
198         const uint16_t *levels_table = vlc_table->levels;
199         uint16_t *run_table, *level_table;
200         int i, l, j, k, level;
201
202         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
203
204         run_table = para_malloc(n * sizeof(uint16_t));
205         level_table = para_malloc(n * sizeof(uint16_t));
206         i = 2;
207         level = 1;
208         k = 0;
209         while (i < n) {
210                 l = levels_table[k++];
211                 for (j = 0; j < l; j++) {
212                         run_table[i] = j;
213                         level_table[i] = level;
214                         i++;
215                 }
216                 level++;
217         }
218         *prun_table = run_table;
219         *plevel_table = level_table;
220 }
221
222 /* compute the scale factor band sizes for each MDCT block size */
223 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
224         float high_freq)
225 {
226         struct asf_header_info *ahi = &pwd->ahi;
227         int a, b, pos, lpos, k, block_len, i, j, n;
228         const uint8_t *table;
229
230         for (k = 0; k < pwd->nb_block_sizes; k++) {
231                 int exponent_size;
232
233                 block_len = pwd->frame_len >> k;
234                 table = NULL;
235                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
236                 if (a < 3) {
237                         if (ahi->sample_rate >= 44100)
238                                 table = exponent_band_44100[a];
239                         else if (ahi->sample_rate >= 32000)
240                                 table = exponent_band_32000[a];
241                         else if (ahi->sample_rate >= 22050)
242                                 table = exponent_band_22050[a];
243                 }
244                 if (table) {
245                         n = *table++;
246                         for (i = 0; i < n; i++)
247                                 pwd->exponent_bands[k][i] = table[i];
248                         exponent_size = n;
249                 } else {
250                         j = 0;
251                         lpos = 0;
252                         for (i = 0; i < 25; i++) {
253                                 a = wma_critical_freqs[i];
254                                 b = ahi->sample_rate;
255                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
256                                 pos <<= 2;
257                                 if (pos > block_len)
258                                         pos = block_len;
259                                 if (pos > lpos)
260                                         pwd->exponent_bands[k][j++] = pos - lpos;
261                                 if (pos >= block_len)
262                                         break;
263                                 lpos = pos;
264                         }
265                         exponent_size = j;
266                 }
267
268                 /* max number of coefs */
269                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
270                 /* high freq computation */
271                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
272                         / ahi->sample_rate + 0.5);
273                 n = exponent_size;
274                 j = 0;
275                 pos = 0;
276                 for (i = 0; i < n; i++) {
277                         int start, end;
278                         start = pos;
279                         pos += pwd->exponent_bands[k][i];
280                         end = pos;
281                         if (start < pwd->high_band_start[k])
282                                 start = pwd->high_band_start[k];
283                         if (end > pwd->coefs_end[k])
284                                 end = pwd->coefs_end[k];
285                         if (end > start)
286                                 pwd->exponent_high_bands[k][j++] = end - start;
287                 }
288                 pwd->exponent_high_sizes[k] = j;
289         }
290 }
291
292 static int wma_init(struct private_wmadec_data *pwd)
293 {
294         int i;
295         float bps1, high_freq;
296         volatile float bps;
297         int sample_rate1;
298         int coef_vlc_table;
299         struct asf_header_info *ahi = &pwd->ahi;
300         int flags2 = ahi->flags2;
301
302         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
303                 || ahi->channels <= 0 || ahi->channels > 8
304                 || ahi->bit_rate <= 0)
305                 return -E_WMA_BAD_PARAMS;
306
307         /* compute MDCT block size */
308         if (ahi->sample_rate <= 16000)
309                 pwd->frame_len_bits = 9;
310         else if (ahi->sample_rate <= 22050)
311                 pwd->frame_len_bits = 10;
312         else
313                 pwd->frame_len_bits = 11;
314         pwd->frame_len = 1 << pwd->frame_len_bits;
315         if (pwd->use_variable_block_len) {
316                 int nb_max, nb;
317                 nb = ((flags2 >> 3) & 3) + 1;
318                 if ((ahi->bit_rate / ahi->channels) >= 32000)
319                         nb += 2;
320                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
321                 if (nb > nb_max)
322                         nb = nb_max;
323                 pwd->nb_block_sizes = nb + 1;
324         } else
325                 pwd->nb_block_sizes = 1;
326
327         /* init rate dependent parameters */
328         pwd->use_noise_coding = 1;
329         high_freq = ahi->sample_rate * 0.5;
330
331         /* wma2 rates are normalized */
332         sample_rate1 = ahi->sample_rate;
333         if (sample_rate1 >= 44100)
334                 sample_rate1 = 44100;
335         else if (sample_rate1 >= 22050)
336                 sample_rate1 = 22050;
337         else if (sample_rate1 >= 16000)
338                 sample_rate1 = 16000;
339         else if (sample_rate1 >= 11025)
340                 sample_rate1 = 11025;
341         else if (sample_rate1 >= 8000)
342                 sample_rate1 = 8000;
343
344         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
345         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
346         /*
347          * Compute high frequency value and choose if noise coding should be
348          * activated.
349          */
350         bps1 = bps;
351         if (ahi->channels == 2)
352                 bps1 = bps * 1.6;
353         if (sample_rate1 == 44100) {
354                 if (bps1 >= 0.61)
355                         pwd->use_noise_coding = 0;
356                 else
357                         high_freq = high_freq * 0.4;
358         } else if (sample_rate1 == 22050) {
359                 if (bps1 >= 1.16)
360                         pwd->use_noise_coding = 0;
361                 else if (bps1 >= 0.72)
362                         high_freq = high_freq * 0.7;
363                 else
364                         high_freq = high_freq * 0.6;
365         } else if (sample_rate1 == 16000) {
366                 if (bps > 0.5)
367                         high_freq = high_freq * 0.5;
368                 else
369                         high_freq = high_freq * 0.3;
370         } else if (sample_rate1 == 11025)
371                 high_freq = high_freq * 0.7;
372         else if (sample_rate1 == 8000) {
373                 if (bps <= 0.625)
374                         high_freq = high_freq * 0.5;
375                 else if (bps > 0.75)
376                         pwd->use_noise_coding = 0;
377                 else
378                         high_freq = high_freq * 0.65;
379         } else {
380                 if (bps >= 0.8)
381                         high_freq = high_freq * 0.75;
382                 else if (bps >= 0.6)
383                         high_freq = high_freq * 0.6;
384                 else
385                         high_freq = high_freq * 0.5;
386         }
387         PARA_INFO_LOG("channels=%d sample_rate=%d "
388                 "bitrate=%d block_align=%d\n",
389                 ahi->channels, ahi->sample_rate,
390                 ahi->bit_rate, ahi->block_align);
391         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
392                 "high_freq=%f bitoffset=%d\n",
393                 pwd->frame_len, bps, bps1,
394                 high_freq, pwd->byte_offset_bits);
395         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
396                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
397
398         compute_scale_factor_band_sizes(pwd, high_freq);
399         /* init MDCT windows : simple sinus window */
400         for (i = 0; i < pwd->nb_block_sizes; i++) {
401                 int n;
402                 n = 1 << (pwd->frame_len_bits - i);
403                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
404                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
405         }
406
407         pwd->reset_block_lengths = 1;
408
409         if (pwd->use_noise_coding) {
410                 /* init the noise generator */
411                 if (pwd->use_exp_vlc)
412                         pwd->noise_mult = 0.02;
413                 else
414                         pwd->noise_mult = 0.04;
415
416                 {
417                         unsigned int seed;
418                         float norm;
419                         seed = 1;
420                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
421                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
422                                 seed = seed * 314159 + 1;
423                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
424                         }
425                 }
426         }
427
428         /* choose the VLC tables for the coefficients */
429         coef_vlc_table = 2;
430         if (ahi->sample_rate >= 32000) {
431                 if (bps1 < 0.72)
432                         coef_vlc_table = 0;
433                 else if (bps1 < 1.16)
434                         coef_vlc_table = 1;
435         }
436         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
437         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
438         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
439                 pwd->coef_vlcs[0]);
440         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
441                 pwd->coef_vlcs[1]);
442         return 0;
443 }
444
445 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
446 {
447         float wdel, a, b;
448         int i, e, m;
449
450         wdel = M_PI / frame_len;
451         for (i = 0; i < frame_len; i++)
452                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
453
454         /* tables for x^-0.25 computation */
455         for (i = 0; i < 256; i++) {
456                 e = i - 126;
457                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
458         }
459
460         /* These two tables are needed to avoid two operations in pow_m1_4. */
461         b = 1.0;
462         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
463                 m = (1 << LSP_POW_BITS) + i;
464                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
465                 a = pow(a, -0.25);
466                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
467                 pwd->lsp_pow_m_table2[i] = b - a;
468                 b = a;
469         }
470 }
471
472 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
473 {
474         struct private_wmadec_data *pwd;
475         int ret, i;
476
477         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
478         pwd = para_calloc(sizeof(*pwd));
479         ret = read_asf_header(initial_buf, len, &pwd->ahi);
480         if (ret <= 0) {
481                 free(pwd);
482                 return ret;
483         }
484
485         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
486         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
487         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
488
489         ret = wma_init(pwd);
490         if (ret < 0)
491                 return ret;
492         /* init MDCT */
493         for (i = 0; i < pwd->nb_block_sizes; i++) {
494                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
495                 if (ret < 0)
496                         return ret;
497         }
498         if (pwd->use_noise_coding) {
499                 PARA_INFO_LOG("using noise coding\n");
500                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
501                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
502                         wma_hgain_huffcodes, 2);
503         }
504
505         if (pwd->use_exp_vlc) {
506                 PARA_INFO_LOG("using exp_vlc\n");
507                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
508                         wma_scale_huffbits, wma_scale_huffcodes, 4);
509         } else {
510                 PARA_INFO_LOG("using curve\n");
511                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
512         }
513         *result = pwd;
514         return pwd->ahi.header_len;
515 }
516
517 /**
518  * compute x^-0.25 with an exponent and mantissa table. We use linear
519  * interpolation to reduce the mantissa table size at a small speed
520  * expense (linear interpolation approximately doubles the number of
521  * bits of precision).
522  */
523 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
524 {
525         union {
526                 float f;
527                 unsigned int v;
528         } u, t;
529         unsigned int e, m;
530         float a, b;
531
532         u.f = x;
533         e = u.v >> 23;
534         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
535         /* build interpolation scale: 1 <= t < 2. */
536         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
537         a = pwd->lsp_pow_m_table1[m];
538         b = pwd->lsp_pow_m_table2[m];
539         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
540 }
541
542 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
543                 float *out, float *val_max_ptr, int n, float *lsp)
544 {
545         int i, j;
546         float p, q, w, v, val_max;
547
548         val_max = 0;
549         for (i = 0; i < n; i++) {
550                 p = 0.5f;
551                 q = 0.5f;
552                 w = pwd->lsp_cos_table[i];
553                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
554                         q *= w - lsp[j - 1];
555                         p *= w - lsp[j];
556                 }
557                 p *= p * (2.0f - w);
558                 q *= q * (2.0f + w);
559                 v = p + q;
560                 v = pow_m1_4(pwd, v);
561                 if (v > val_max)
562                         val_max = v;
563                 out[i] = v;
564         }
565         *val_max_ptr = val_max;
566 }
567
568 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
569 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
570 {
571         float lsp_coefs[NB_LSP_COEFS];
572         int val, i;
573
574         for (i = 0; i < NB_LSP_COEFS; i++) {
575                 if (i == 0 || i >= 8)
576                         val = get_bits(&pwd->gb, 3);
577                 else
578                         val = get_bits(&pwd->gb, 4);
579                 lsp_coefs[i] = wma_lsp_codebook[i][val];
580         }
581
582         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
583                 pwd->block_len, lsp_coefs);
584 }
585
586 /* Decode exponents coded with VLC codes. */
587 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
588 {
589         int last_exp, n, code;
590         const uint16_t *ptr, *band_ptr;
591         float v, *q, max_scale, *q_end;
592
593         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
594         ptr = band_ptr;
595         q = pwd->exponents[ch];
596         q_end = q + pwd->block_len;
597         max_scale = 0;
598         last_exp = 36;
599
600         while (q < q_end) {
601                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
602                 if (code < 0)
603                         return code;
604                 /* NOTE: this offset is the same as MPEG4 AAC ! */
605                 last_exp += code - 60;
606                 /* XXX: use a table */
607                 v = pow(10, last_exp * (1.0 / 16.0));
608                 if (v > max_scale)
609                         max_scale = v;
610                 n = *ptr++;
611                 do {
612                         *q++ = v;
613                 } while (--n);
614         }
615         pwd->max_exponent[ch] = max_scale;
616         return 0;
617 }
618
619 /* compute src0 * src1 + src2 */
620 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
621                 const float *src2, int len)
622 {
623         int i;
624
625         for (i = 0; i < len; i++)
626                 dst[i] = src0[i] * src1[i] + src2[i];
627 }
628
629 static inline void vector_mult_reverse(float *dst, const float *src0,
630                 const float *src1, int len)
631 {
632         int i;
633
634         src1 += len - 1;
635         for (i = 0; i < len; i++)
636                 dst[i] = src0[i] * src1[-i];
637 }
638
639 /**
640  * Apply MDCT window and add into output.
641  *
642  * We ensure that when the windows overlap their squared sum
643  * is always 1 (MDCT reconstruction rule).
644  */
645 static void wma_window(struct private_wmadec_data *pwd, float *out)
646 {
647         float *in = pwd->output;
648         int block_len, bsize, n;
649
650         /* left part */
651         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
652                 block_len = pwd->block_len;
653                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
654                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
655         } else {
656                 block_len = 1 << pwd->prev_block_len_bits;
657                 n = (pwd->block_len - block_len) / 2;
658                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
659                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
660                         block_len);
661                 memcpy(out + n + block_len, in + n + block_len,
662                         n * sizeof(float));
663         }
664         out += pwd->block_len;
665         in += pwd->block_len;
666         /* right part */
667         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
668                 block_len = pwd->block_len;
669                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
670                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
671         } else {
672                 block_len = 1 << pwd->next_block_len_bits;
673                 n = (pwd->block_len - block_len) / 2;
674                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
675                 memcpy(out, in, n * sizeof(float));
676                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
677                         block_len);
678                 memset(out + n + block_len, 0, n * sizeof(float));
679         }
680 }
681
682 static int wma_total_gain_to_bits(int total_gain)
683 {
684         if (total_gain < 15)
685                 return 13;
686         else if (total_gain < 32)
687                 return 12;
688         else if (total_gain < 40)
689                 return 11;
690         else if (total_gain < 45)
691                 return 10;
692         else
693                 return 9;
694 }
695
696 static int compute_high_band_values(struct private_wmadec_data *pwd,
697                 int bsize, int nb_coefs[MAX_CHANNELS])
698 {
699         int ch;
700
701         if (!pwd->use_noise_coding)
702                 return 0;
703         for (ch = 0; ch < pwd->ahi.channels; ch++) {
704                 int i, m, a;
705                 if (!pwd->channel_coded[ch])
706                         continue;
707                 m = pwd->exponent_high_sizes[bsize];
708                 for (i = 0; i < m; i++) {
709                         a = get_bit(&pwd->gb);
710                         pwd->high_band_coded[ch][i] = a;
711                         if (!a)
712                                 continue;
713                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
714                 }
715         }
716         for (ch = 0; ch < pwd->ahi.channels; ch++) {
717                 int i, n, val;
718                 if (!pwd->channel_coded[ch])
719                         continue;
720                 n = pwd->exponent_high_sizes[bsize];
721                 val = (int)0x80000000;
722                 for (i = 0; i < n; i++) {
723                         if (!pwd->high_band_coded[ch][i])
724                                 continue;
725                         if (val == (int)0x80000000)
726                                 val = get_bits(&pwd->gb, 7) - 19;
727                         else {
728                                 int code = get_vlc(&pwd->gb,
729                                         pwd->hgain_vlc.table, HGAINVLCBITS,
730                                         HGAINMAX);
731                                 if (code < 0)
732                                         return code;
733                                 val += code - 18;
734                         }
735                         pwd->high_band_values[ch][i] = val;
736                 }
737         }
738         return 1;
739 }
740
741 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
742                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
743 {
744         int ch;
745         float mdct_norm = 1.0 / (pwd->block_len / 2);
746
747         for (ch = 0; ch < pwd->ahi.channels; ch++) {
748                 int16_t *coefs1;
749                 float *coefs, *exponents, mult, mult1, noise;
750                 int i, j, n, n1, last_high_band, esize;
751                 float exp_power[HIGH_BAND_MAX_SIZE];
752
753                 if (!pwd->channel_coded[ch])
754                         continue;
755                 coefs1 = pwd->coefs1[ch];
756                 exponents = pwd->exponents[ch];
757                 esize = pwd->exponents_bsize[ch];
758                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
759                 mult *= mdct_norm;
760                 coefs = pwd->coefs[ch];
761                 if (!pwd->use_noise_coding) {
762                         /* XXX: optimize more */
763                         n = nb_coefs[ch];
764                         for (i = 0; i < n; i++)
765                                 *coefs++ = coefs1[i] *
766                                         exponents[i << bsize >> esize] * mult;
767                         n = pwd->block_len - pwd->coefs_end[bsize];
768                         for (i = 0; i < n; i++)
769                                 *coefs++ = 0.0;
770                         continue;
771                 }
772                 n1 = pwd->exponent_high_sizes[bsize];
773                 /* compute power of high bands */
774                 exponents = pwd->exponents[ch] +
775                         (pwd->high_band_start[bsize] << bsize);
776                 last_high_band = 0; /* avoid warning */
777                 for (j = 0; j < n1; j++) {
778                         n = pwd->exponent_high_bands[
779                                 pwd->frame_len_bits - pwd->block_len_bits][j];
780                         if (pwd->high_band_coded[ch][j]) {
781                                 float e2, val;
782                                 e2 = 0;
783                                 for (i = 0; i < n; i++) {
784                                         val = exponents[i << bsize >> esize];
785                                         e2 += val * val;
786                                 }
787                                 exp_power[j] = e2 / n;
788                                 last_high_band = j;
789                         }
790                         exponents += n << bsize;
791                 }
792                 /* main freqs and high freqs */
793                 exponents = pwd->exponents[ch];
794                 for (j = -1; j < n1; j++) {
795                         if (j < 0)
796                                 n = pwd->high_band_start[bsize];
797                         else
798                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
799                                         - pwd->block_len_bits][j];
800                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
801                                 /* use noise with specified power */
802                                 mult1 = sqrt(exp_power[j]
803                                         / exp_power[last_high_band]);
804                                 /* XXX: use a table */
805                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
806                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
807                                 mult1 *= mdct_norm;
808                                 for (i = 0; i < n; i++) {
809                                         noise = pwd->noise_table[pwd->noise_index];
810                                         pwd->noise_index = (pwd->noise_index + 1)
811                                                 & (NOISE_TAB_SIZE - 1);
812                                         *coefs++ = noise * exponents[
813                                                 i << bsize >> esize] * mult1;
814                                 }
815                                 exponents += n << bsize;
816                         } else {
817                                 /* coded values + small noise */
818                                 for (i = 0; i < n; i++) {
819                                         noise = pwd->noise_table[pwd->noise_index];
820                                         pwd->noise_index = (pwd->noise_index + 1)
821                                                 & (NOISE_TAB_SIZE - 1);
822                                         *coefs++ = ((*coefs1++) + noise) *
823                                                 exponents[i << bsize >> esize]
824                                                 * mult;
825                                 }
826                                 exponents += n << bsize;
827                         }
828                 }
829                 /* very high freqs: noise */
830                 n = pwd->block_len - pwd->coefs_end[bsize];
831                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
832                 for (i = 0; i < n; i++) {
833                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
834                         pwd->noise_index = (pwd->noise_index + 1)
835                                 & (NOISE_TAB_SIZE - 1);
836                 }
837         }
838 }
839
840 /**
841  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
842  * errors.
843  */
844 static int wma_decode_block(struct private_wmadec_data *pwd)
845 {
846         int ret, n, v, ch, code, bsize;
847         int coef_nb_bits, total_gain;
848         int nb_coefs[MAX_CHANNELS];
849
850         /* compute current block length */
851         if (pwd->use_variable_block_len) {
852                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
853
854                 if (pwd->reset_block_lengths) {
855                         pwd->reset_block_lengths = 0;
856                         v = get_bits(&pwd->gb, n);
857                         if (v >= pwd->nb_block_sizes)
858                                 return -E_WMA_BLOCK_SIZE;
859                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
860                         v = get_bits(&pwd->gb, n);
861                         if (v >= pwd->nb_block_sizes)
862                                 return -E_WMA_BLOCK_SIZE;
863                         pwd->block_len_bits = pwd->frame_len_bits - v;
864                 } else {
865                         /* update block lengths */
866                         pwd->prev_block_len_bits = pwd->block_len_bits;
867                         pwd->block_len_bits = pwd->next_block_len_bits;
868                 }
869                 v = get_bits(&pwd->gb, n);
870                 if (v >= pwd->nb_block_sizes)
871                         return -E_WMA_BLOCK_SIZE;
872                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
873         } else {
874                 /* fixed block len */
875                 pwd->next_block_len_bits = pwd->frame_len_bits;
876                 pwd->prev_block_len_bits = pwd->frame_len_bits;
877                 pwd->block_len_bits = pwd->frame_len_bits;
878         }
879
880         /* now check if the block length is coherent with the frame length */
881         pwd->block_len = 1 << pwd->block_len_bits;
882         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
883                 return -E_INCOHERENT_BLOCK_LEN;
884
885         if (pwd->ahi.channels == 2)
886                 pwd->ms_stereo = get_bit(&pwd->gb);
887         v = 0;
888         for (ch = 0; ch < pwd->ahi.channels; ch++) {
889                 int a = get_bit(&pwd->gb);
890                 pwd->channel_coded[ch] = a;
891                 v |= a;
892         }
893
894         bsize = pwd->frame_len_bits - pwd->block_len_bits;
895
896         /* if no channel coded, no need to go further */
897         /* XXX: fix potential framing problems */
898         if (!v)
899                 goto next;
900
901         /*
902          * Read total gain and extract corresponding number of bits for coef
903          * escape coding.
904          */
905         total_gain = 1;
906         for (;;) {
907                 int a = get_bits(&pwd->gb, 7);
908                 total_gain += a;
909                 if (a != 127)
910                         break;
911         }
912
913         coef_nb_bits = wma_total_gain_to_bits(total_gain);
914
915         /* compute number of coefficients */
916         n = pwd->coefs_end[bsize];
917         for (ch = 0; ch < pwd->ahi.channels; ch++)
918                 nb_coefs[ch] = n;
919
920         ret = compute_high_band_values(pwd, bsize, nb_coefs);
921         if (ret < 0)
922                 return ret;
923
924         /* exponents can be reused in short blocks. */
925         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
926                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
927                         if (pwd->channel_coded[ch]) {
928                                 if (pwd->use_exp_vlc) {
929                                         ret = decode_exp_vlc(pwd, ch);
930                                         if (ret < 0)
931                                                 return ret;
932                                 } else
933                                         decode_exp_lsp(pwd, ch);
934                                 pwd->exponents_bsize[ch] = bsize;
935                         }
936                 }
937         }
938
939         /* parse spectral coefficients : just RLE encoding */
940         for (ch = 0; ch < pwd->ahi.channels; ch++) {
941                 struct vlc *coef_vlc;
942                 int level, run, tindex;
943                 int16_t *ptr, *eptr;
944                 const uint16_t *level_table, *run_table;
945
946                 if (!pwd->channel_coded[ch])
947                         continue;
948                 /*
949                  * special VLC tables are used for ms stereo because there is
950                  * potentially less energy there
951                  */
952                 tindex = (ch == 1 && pwd->ms_stereo);
953                 coef_vlc = &pwd->coef_vlc[tindex];
954                 run_table = pwd->run_table[tindex];
955                 level_table = pwd->level_table[tindex];
956                 /* XXX: optimize */
957                 ptr = &pwd->coefs1[ch][0];
958                 eptr = ptr + nb_coefs[ch];
959                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
960                 for (;;) {
961                         code = get_vlc(&pwd->gb, coef_vlc->table,
962                                 VLCBITS, VLCMAX);
963                         if (code < 0)
964                                 return code;
965                         if (code == 1) /* EOB */
966                                 break;
967                         if (code == 0) { /* escape */
968                                 level = get_bits(&pwd->gb, coef_nb_bits);
969                                 /* reading block_len_bits would be better */
970                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
971                         } else { /* normal code */
972                                 run = run_table[code];
973                                 level = level_table[code];
974                         }
975                         if (!get_bit(&pwd->gb))
976                                 level = -level;
977                         ptr += run;
978                         if (ptr >= eptr) {
979                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
980                                 break;
981                         }
982                         *ptr++ = level;
983                         if (ptr >= eptr) /* EOB can be omitted */
984                                 break;
985                 }
986         }
987         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
988         if (pwd->ms_stereo && pwd->channel_coded[1]) {
989                 float a, b;
990                 int i;
991                 /*
992                  * Nominal case for ms stereo: we do it before mdct.
993                  *
994                  * No need to optimize this case because it should almost never
995                  * happen.
996                  */
997                 if (!pwd->channel_coded[0]) {
998                         PARA_NOTICE_LOG("rare ms-stereo\n");
999                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
1000                         pwd->channel_coded[0] = 1;
1001                 }
1002                 for (i = 0; i < pwd->block_len; i++) {
1003                         a = pwd->coefs[0][i];
1004                         b = pwd->coefs[1][i];
1005                         pwd->coefs[0][i] = a + b;
1006                         pwd->coefs[1][i] = a - b;
1007                 }
1008         }
1009 next:
1010         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1011                 int n4, idx;
1012
1013                 n4 = pwd->block_len / 2;
1014                 if (pwd->channel_coded[ch])
1015                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1016                 else if (!(pwd->ms_stereo && ch == 1))
1017                         memset(pwd->output, 0, sizeof(pwd->output));
1018
1019                 /* multiply by the window and add in the frame */
1020                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
1021                 wma_window(pwd, &pwd->frame_out[ch][idx]);
1022         }
1023
1024         /* update block number */
1025         pwd->block_pos += pwd->block_len;
1026         if (pwd->block_pos >= pwd->frame_len)
1027                 return 1;
1028         else
1029                 return 0;
1030 }
1031
1032 /*
1033  * Clip a signed integer value into the -32768,32767 range.
1034  *
1035  * \param a The value to clip.
1036  *
1037  * \return The clipped value.
1038  */
1039 static inline int16_t av_clip_int16(int a)
1040 {
1041         if ((a + 32768) & ~65535)
1042                 return (a >> 31) ^ 32767;
1043         else
1044                 return a;
1045 }
1046
1047 /* Decode a frame of frame_len samples. */
1048 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1049 {
1050         int ret, i, n, ch, incr;
1051         int16_t *ptr;
1052         float *iptr;
1053
1054         /* read each block */
1055         pwd->block_pos = 0;
1056         for (;;) {
1057                 ret = wma_decode_block(pwd);
1058                 if (ret < 0)
1059                         return ret;
1060                 if (ret)
1061                         break;
1062         }
1063
1064         /* convert frame to integer */
1065         n = pwd->frame_len;
1066         incr = pwd->ahi.channels;
1067         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1068                 ptr = samples + ch;
1069                 iptr = pwd->frame_out[ch];
1070
1071                 for (i = 0; i < n; i++) {
1072                         *ptr = av_clip_int16(lrintf(*iptr++));
1073                         ptr += incr;
1074                 }
1075                 /* prepare for next block */
1076                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1077                         pwd->frame_len * sizeof(float));
1078         }
1079         return 0;
1080 }
1081
1082 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1083                 int *data_size, const uint8_t *buf, int buf_size)
1084 {
1085         int ret;
1086         int16_t *samples;
1087
1088         if (buf_size == 0) {
1089                 pwd->last_superframe_len = 0;
1090                 return 0;
1091         }
1092         if (buf_size < pwd->ahi.block_align)
1093                 return 0;
1094         buf_size = pwd->ahi.block_align;
1095         samples = data;
1096         init_get_bits(&pwd->gb, buf, buf_size);
1097         if (pwd->use_bit_reservoir) {
1098                 int i, nb_frames, bit_offset, pos, len;
1099                 uint8_t *q;
1100
1101                 /* read super frame header */
1102                 skip_bits(&pwd->gb, 4); /* super frame index */
1103                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1104                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1105                 ret = -E_WMA_OUTPUT_SPACE;
1106                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1107                                 * sizeof(int16_t) > *data_size)
1108                         goto fail;
1109
1110                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1111
1112                 if (pwd->last_superframe_len > 0) {
1113                         /* add bit_offset bits to last frame */
1114                         ret = -E_WMA_BAD_SUPERFRAME;
1115                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1116                                         MAX_CODED_SUPERFRAME_SIZE)
1117                                 goto fail;
1118                         q = pwd->last_superframe + pwd->last_superframe_len;
1119                         len = bit_offset;
1120                         while (len > 7) {
1121                                 *q++ = get_bits(&pwd->gb, 8);
1122                                 len -= 8;
1123                         }
1124                         if (len > 0)
1125                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1126
1127                         /* XXX: bit_offset bits into last frame */
1128                         init_get_bits(&pwd->gb, pwd->last_superframe,
1129                                 MAX_CODED_SUPERFRAME_SIZE);
1130                         /* skip unused bits */
1131                         if (pwd->last_bitoffset > 0)
1132                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1133                         /*
1134                          * This frame is stored in the last superframe and in
1135                          * the current one.
1136                          */
1137                         ret = wma_decode_frame(pwd, samples);
1138                         if (ret < 0)
1139                                 goto fail;
1140                         samples += pwd->ahi.channels * pwd->frame_len;
1141                 }
1142
1143                 /* read each frame starting from bit_offset */
1144                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1145                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1146                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1147                 len = pos & 7;
1148                 if (len > 0)
1149                         skip_bits(&pwd->gb, len);
1150
1151                 pwd->reset_block_lengths = 1;
1152                 for (i = 0; i < nb_frames; i++) {
1153                         ret = wma_decode_frame(pwd, samples);
1154                         if (ret < 0)
1155                                 goto fail;
1156                         samples += pwd->ahi.channels * pwd->frame_len;
1157                 }
1158
1159                 /* we copy the end of the frame in the last frame buffer */
1160                 pos = get_bits_count(&pwd->gb) +
1161                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1162                 pwd->last_bitoffset = pos & 7;
1163                 pos >>= 3;
1164                 len = buf_size - pos;
1165                 ret = -E_WMA_BAD_SUPERFRAME;
1166                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1167                         goto fail;
1168                 pwd->last_superframe_len = len;
1169                 memcpy(pwd->last_superframe, buf + pos, len);
1170         } else {
1171                 PARA_DEBUG_LOG("not using bit reservoir\n");
1172                 ret = -E_WMA_OUTPUT_SPACE;
1173                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1174                         goto fail;
1175                 /* single frame decode */
1176                 ret = wma_decode_frame(pwd, samples);
1177                 if (ret < 0)
1178                         goto fail;
1179                 samples += pwd->ahi.channels * pwd->frame_len;
1180         }
1181         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1182                 pwd->frame_len, pwd->block_len,
1183                 (int)((int8_t *)samples - (int8_t *)data), pwd->ahi.block_align);
1184         *data_size = (int8_t *)samples - (int8_t *)data;
1185         return pwd->ahi.block_align;
1186 fail:
1187         /* reset the bit reservoir on errors */
1188         pwd->last_superframe_len = 0;
1189         return ret;
1190 }
1191
1192 static void wmadec_close(struct filter_node *fn)
1193 {
1194         struct private_wmadec_data *pwd = fn->private_data;
1195
1196         if (!pwd)
1197                 return;
1198         wmadec_cleanup(pwd);
1199         free(fn->private_data);
1200         fn->private_data = NULL;
1201 }
1202
1203 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1204 {
1205         struct filter_node *fn = btr_context(btrn);
1206         struct private_wmadec_data *pwd = fn->private_data;
1207
1208         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1209                 result);
1210 }
1211
1212 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1213
1214 static void wmadec_post_select(__a_unused struct sched *s, struct task *t)
1215 {
1216         struct filter_node *fn = container_of(t, struct filter_node, task);
1217         int ret, converted, out_size;
1218         struct private_wmadec_data *pwd = fn->private_data;
1219         struct btr_node *btrn = fn->btrn;
1220         size_t len;
1221         char *in, *out;
1222
1223 next_buffer:
1224         converted = 0;
1225         t->error = 0;
1226         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1227         if (ret < 0)
1228                 goto err;
1229         if (ret == 0)
1230                 return;
1231         btr_merge(btrn, fn->min_iqs);
1232         len = btr_next_buffer(btrn, (char **)&in);
1233         ret = -E_WMADEC_EOF;
1234         if (len < fn->min_iqs)
1235                 goto err;
1236         if (!pwd) {
1237                 ret = wma_decode_init(in, len, &pwd);
1238                 if (ret < 0)
1239                         goto err;
1240                 if (ret == 0) {
1241                         fn->min_iqs += 4096;
1242                         goto next_buffer;
1243                 }
1244                 fn->min_iqs = 2 * (WMA_FRAME_SKIP + pwd->ahi.block_align);
1245                 fn->private_data = pwd;
1246                 converted = pwd->ahi.header_len;
1247                 goto success;
1248         }
1249         fn->min_iqs = WMA_FRAME_SKIP + pwd->ahi.block_align;
1250         if (fn->min_iqs > len)
1251                 goto success;
1252         out_size = WMA_OUTPUT_BUFFER_SIZE;
1253         out = para_malloc(out_size);
1254         ret = wma_decode_superframe(pwd, out, &out_size,
1255                 (uint8_t *)in + WMA_FRAME_SKIP, len - WMA_FRAME_SKIP);
1256         if (ret < 0) {
1257                 free(out);
1258                 goto err;
1259         }
1260         out = para_realloc(out, out_size);
1261         if (out_size > 0)
1262                 btr_add_output(out, out_size, btrn);
1263         converted += ret + WMA_FRAME_SKIP;
1264 success:
1265         btr_consume(btrn, converted);
1266         return;
1267 err:
1268         assert(ret < 0);
1269         t->error = ret;
1270         btr_remove_node(&fn->btrn);
1271 }
1272
1273 static void wmadec_open(struct filter_node *fn)
1274 {
1275         fn->private_data = NULL;
1276         fn->min_iqs = 4096;
1277 }
1278
1279 /**
1280  * The init function of the wma decoder.
1281  *
1282  * \param f Its fields are filled in by the function.
1283  */
1284 void wmadec_filter_init(struct filter *f)
1285 {
1286         f->open = wmadec_open;
1287         f->close = wmadec_close;
1288         f->execute = wmadec_execute;
1289         f->pre_select = generic_filter_pre_select;
1290         f->post_select = wmadec_post_select;
1291 }