]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
Add a few more people to CREDITS.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** * \file wmadec_filter.c paraslash's WMA decoder.  */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <math.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <math.h>
26 #include <string.h>
27 #include <regex.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "mdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         struct asf_header_info ahi;
63         struct getbit_context gb;
64         int use_bit_reservoir;
65         int use_variable_block_len;
66         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
67         int use_noise_coding;   ///< true if perceptual noise is added
68         int byte_offset_bits;
69         struct vlc exp_vlc;
70         int exponent_sizes[BLOCK_NB_SIZES];
71         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
72         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
73         int coefs_start;        ///< first coded coef
74         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
75         int exponent_high_sizes[BLOCK_NB_SIZES];
76         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
77         struct vlc hgain_vlc;
78
79         /* coded values in high bands */
80         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
82
83         /* there are two possible tables for spectral coefficients */
84         struct vlc coef_vlc[2];
85         uint16_t *run_table[2];
86         uint16_t *level_table[2];
87         uint16_t *int_table[2];
88         const struct coef_vlc_table *coef_vlcs[2];
89         /* frame info */
90         int frame_len;          ///< frame length in samples
91         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
92         int nb_block_sizes;     ///< number of block sizes
93         /* block info */
94         int reset_block_lengths;
95         int block_len_bits;     ///< log2 of current block length
96         int next_block_len_bits;        ///< log2 of next block length
97         int prev_block_len_bits;        ///< log2 of prev block length
98         int block_len;          ///< block length in samples
99         int block_num;          ///< block number in current frame
100         int block_pos;          ///< current position in frame
101         uint8_t ms_stereo;      ///< true if mid/side stereo mode
102         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
103         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
104         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float max_exponent[MAX_CHANNELS];
106         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
107         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
108         float output[BLOCK_MAX_SIZE * 2];
109         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
110         float *windows[BLOCK_NB_SIZES];
111         /* output buffer for one frame and the last for IMDCT windowing */
112         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
113         /* last frame info */
114         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
115         int last_bitoffset;
116         int last_superframe_len;
117         float noise_table[NOISE_TAB_SIZE];
118         int noise_index;
119         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
120         /* lsp_to_curve tables */
121         float lsp_cos_table[BLOCK_MAX_SIZE];
122         float lsp_pow_e_table[256];
123         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
124         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
125 };
126
127 #define EXPVLCBITS 8
128 #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
129
130 #define HGAINVLCBITS 9
131 #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
132
133 #define VLCBITS 9
134 #define VLCMAX ((22+VLCBITS-1)/VLCBITS)
135
136 static int wmadec_cleanup(struct private_wmadec_data *s)
137 {
138         int i;
139
140         for (i = 0; i < s->nb_block_sizes; i++)
141                 mdct_end(s->mdct_ctx[i]);
142
143         if (s->use_exp_vlc)
144                 free_vlc(&s->exp_vlc);
145         if (s->use_noise_coding)
146                 free_vlc(&s->hgain_vlc);
147         for (i = 0; i < 2; i++) {
148                 free_vlc(&s->coef_vlc[i]);
149                 free(s->run_table[i]);
150                 free(s->level_table[i]);
151                 free(s->int_table[i]);
152         }
153         return 0;
154 }
155
156 /* XXX: use same run/length optimization as mpeg decoders */
157 //FIXME maybe split decode / encode or pass flag
158 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
159                 uint16_t **plevel_table, uint16_t **pint_table,
160                 const struct coef_vlc_table *vlc_table)
161 {
162         int n = vlc_table->n;
163         const uint8_t *table_bits = vlc_table->huffbits;
164         const uint32_t *table_codes = vlc_table->huffcodes;
165         const uint16_t *levels_table = vlc_table->levels;
166         uint16_t *run_table, *level_table, *int_table;
167         int i, l, j, k, level;
168
169         init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4);
170
171         run_table = para_malloc(n * sizeof (uint16_t));
172         level_table = para_malloc(n * sizeof (uint16_t));
173         int_table = para_malloc(n * sizeof (uint16_t));
174         i = 2;
175         level = 1;
176         k = 0;
177         while (i < n) {
178                 int_table[k] = i;
179                 l = levels_table[k++];
180                 for (j = 0; j < l; j++) {
181                         run_table[i] = j;
182                         level_table[i] = level;
183                         i++;
184                 }
185                 level++;
186         }
187         *prun_table = run_table;
188         *plevel_table = level_table;
189         *pint_table = int_table;
190 }
191
192 /* compute the scale factor band sizes for each MDCT block size */
193 static void compute_scale_factor_band_sizes(struct private_wmadec_data *s,
194         float high_freq)
195 {
196         struct asf_header_info *ahi = &s->ahi;
197         int a, b, pos, lpos, k, block_len, i, j, n;
198         const uint8_t *table;
199
200         s->coefs_start = 0;
201         for (k = 0; k < s->nb_block_sizes; k++) {
202                 block_len = s->frame_len >> k;
203
204                 table = NULL;
205                 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
206                 if (a < 3) {
207                         if (ahi->sample_rate >= 44100)
208                                 table = exponent_band_44100[a];
209                         else if (ahi->sample_rate >= 32000)
210                                 table = exponent_band_32000[a];
211                         else if (ahi->sample_rate >= 22050)
212                                 table = exponent_band_22050[a];
213                 }
214                 if (table) {
215                         n = *table++;
216                         for (i = 0; i < n; i++)
217                                 s->exponent_bands[k][i] = table[i];
218                         s->exponent_sizes[k] = n;
219                 } else {
220                         j = 0;
221                         lpos = 0;
222                         for (i = 0; i < 25; i++) {
223                                 a = wma_critical_freqs[i];
224                                 b = ahi->sample_rate;
225                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
226                                 pos <<= 2;
227                                 if (pos > block_len)
228                                         pos = block_len;
229                                 if (pos > lpos)
230                                         s->exponent_bands[k][j++] = pos - lpos;
231                                 if (pos >= block_len)
232                                         break;
233                                 lpos = pos;
234                         }
235                         s->exponent_sizes[k] = j;
236                 }
237
238                 /* max number of coefs */
239                 s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
240                 /* high freq computation */
241                 s->high_band_start[k] = (int) ((block_len * 2 * high_freq)
242                         / ahi->sample_rate + 0.5);
243                 n = s->exponent_sizes[k];
244                 j = 0;
245                 pos = 0;
246                 for (i = 0; i < n; i++) {
247                         int start, end;
248                         start = pos;
249                         pos += s->exponent_bands[k][i];
250                         end = pos;
251                         if (start < s->high_band_start[k])
252                                 start = s->high_band_start[k];
253                         if (end > s->coefs_end[k])
254                                 end = s->coefs_end[k];
255                         if (end > start)
256                                 s->exponent_high_bands[k][j++] = end - start;
257                 }
258                 s->exponent_high_sizes[k] = j;
259         }
260 }
261
262 static int wma_init(struct private_wmadec_data *s, int flags2, struct asf_header_info *ahi)
263 {
264         int i;
265         float bps1, high_freq;
266         volatile float bps;
267         int sample_rate1;
268         int coef_vlc_table;
269
270         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
271                 || ahi->channels <= 0 || ahi->channels > 8
272                 || ahi->bit_rate <= 0)
273                 return -E_WMA_BAD_PARAMS;
274
275         /* compute MDCT block size */
276         if (ahi->sample_rate <= 16000) {
277                 s->frame_len_bits = 9;
278         } else if (ahi->sample_rate <= 22050) {
279                 s->frame_len_bits = 10;
280         } else {
281                 s->frame_len_bits = 11;
282         }
283         s->frame_len = 1 << s->frame_len_bits;
284         if (s->use_variable_block_len) {
285                 int nb_max, nb;
286                 nb = ((flags2 >> 3) & 3) + 1;
287                 if ((ahi->bit_rate / ahi->channels) >= 32000)
288                         nb += 2;
289                 nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
290                 if (nb > nb_max)
291                         nb = nb_max;
292                 s->nb_block_sizes = nb + 1;
293         } else {
294                 s->nb_block_sizes = 1;
295         }
296
297         /* init rate dependent parameters */
298         s->use_noise_coding = 1;
299         high_freq = ahi->sample_rate * 0.5;
300
301         /* wma2 rates are normalized */
302         sample_rate1 = ahi->sample_rate;
303         if (sample_rate1 >= 44100)
304                 sample_rate1 = 44100;
305         else if (sample_rate1 >= 22050)
306                 sample_rate1 = 22050;
307         else if (sample_rate1 >= 16000)
308                 sample_rate1 = 16000;
309         else if (sample_rate1 >= 11025)
310                 sample_rate1 = 11025;
311         else if (sample_rate1 >= 8000)
312                 sample_rate1 = 8000;
313
314         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
315         s->byte_offset_bits = wma_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
316         /*
317          * Compute high frequency value and choose if noise coding should be
318          * activated.
319          */
320         bps1 = bps;
321         if (ahi->channels == 2)
322                 bps1 = bps * 1.6;
323         if (sample_rate1 == 44100) {
324                 if (bps1 >= 0.61)
325                         s->use_noise_coding = 0;
326                 else
327                         high_freq = high_freq * 0.4;
328         } else if (sample_rate1 == 22050) {
329                 if (bps1 >= 1.16)
330                         s->use_noise_coding = 0;
331                 else if (bps1 >= 0.72)
332                         high_freq = high_freq * 0.7;
333                 else
334                         high_freq = high_freq * 0.6;
335         } else if (sample_rate1 == 16000) {
336                 if (bps > 0.5)
337                         high_freq = high_freq * 0.5;
338                 else
339                         high_freq = high_freq * 0.3;
340         } else if (sample_rate1 == 11025) {
341                 high_freq = high_freq * 0.7;
342         } else if (sample_rate1 == 8000) {
343                 if (bps <= 0.625) {
344                         high_freq = high_freq * 0.5;
345                 } else if (bps > 0.75) {
346                         s->use_noise_coding = 0;
347                 } else {
348                         high_freq = high_freq * 0.65;
349                 }
350         } else {
351                 if (bps >= 0.8) {
352                         high_freq = high_freq * 0.75;
353                 } else if (bps >= 0.6) {
354                         high_freq = high_freq * 0.6;
355                 } else {
356                         high_freq = high_freq * 0.5;
357                 }
358         }
359         PARA_INFO_LOG("channels=%d sample_rate=%d "
360                 "bitrate=%d block_align=%d\n",
361                 ahi->channels, ahi->sample_rate,
362                 ahi->bit_rate, ahi->block_align);
363         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
364                 "high_freq=%f bitoffset=%d\n",
365                 s->frame_len, bps, bps1,
366                 high_freq, s->byte_offset_bits);
367         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
368                 s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
369
370         compute_scale_factor_band_sizes(s, high_freq);
371         /* init MDCT windows : simple sinus window */
372         for (i = 0; i < s->nb_block_sizes; i++) {
373                 int n;
374                 n = 1 << (s->frame_len_bits - i);
375                 sine_window_init(ff_sine_windows[s->frame_len_bits - i - 7], n);
376                 s->windows[i] = ff_sine_windows[s->frame_len_bits - i - 7];
377         }
378
379         s->reset_block_lengths = 1;
380
381         if (s->use_noise_coding) {
382                 /* init the noise generator */
383                 if (s->use_exp_vlc)
384                         s->noise_mult = 0.02;
385                 else
386                         s->noise_mult = 0.04;
387
388                 {
389                         unsigned int seed;
390                         float norm;
391                         seed = 1;
392                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
393                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
394                                 seed = seed * 314159 + 1;
395                                 s->noise_table[i] = (float) ((int) seed) * norm;
396                         }
397                 }
398         }
399
400         /* choose the VLC tables for the coefficients */
401         coef_vlc_table = 2;
402         if (ahi->sample_rate >= 32000) {
403                 if (bps1 < 0.72)
404                         coef_vlc_table = 0;
405                 else if (bps1 < 1.16)
406                         coef_vlc_table = 1;
407         }
408         s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
409         s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
410         init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
411                 &s->int_table[0], s->coef_vlcs[0]);
412         init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
413                 &s->int_table[1], s->coef_vlcs[1]);
414         return 0;
415 }
416
417 static void wma_lsp_to_curve_init(struct private_wmadec_data *s, int frame_len)
418 {
419         float wdel, a, b;
420         int i, e, m;
421
422         wdel = M_PI / frame_len;
423         for (i = 0; i < frame_len; i++)
424                 s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
425
426         /* tables for x^-0.25 computation */
427         for (i = 0; i < 256; i++) {
428                 e = i - 126;
429                 s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
430         }
431
432         /* These two tables are needed to avoid two operations in pow_m1_4. */
433         b = 1.0;
434         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
435                 m = (1 << LSP_POW_BITS) + i;
436                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
437                 a = pow(a, -0.25);
438                 s->lsp_pow_m_table1[i] = 2 * a - b;
439                 s->lsp_pow_m_table2[i] = b - a;
440                 b = a;
441         }
442 }
443
444 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
445 {
446         struct private_wmadec_data *s;
447         int ret, i;
448
449         if (len < 18)
450                 return 0;
451
452         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
453         s = para_calloc(sizeof(*s));
454         ret = read_asf_header(initial_buf, len, &s->ahi);
455         if (ret < 0)
456                 return ret;
457
458         s->use_exp_vlc = s->ahi.flags2 & 0x0001;
459         s->use_bit_reservoir = s->ahi.flags2 & 0x0002;
460         s->use_variable_block_len = s->ahi.flags2 & 0x0004;
461
462         ret = wma_init(s, s->ahi.flags2, &s->ahi);
463         if (ret < 0)
464                 return ret;
465         /* init MDCT */
466         for (i = 0; i < s->nb_block_sizes; i++) {
467                 ret = mdct_init(s->frame_len_bits - i + 1, 1, &s->mdct_ctx[i]);
468                 if (ret < 0)
469                         return ret;
470         }
471         if (s->use_noise_coding) {
472                 PARA_INFO_LOG("using noise coding\n");
473                 init_vlc(&s->hgain_vlc, HGAINVLCBITS,
474                         sizeof (ff_wma_hgain_huffbits), ff_wma_hgain_huffbits,
475                         1, 1, ff_wma_hgain_huffcodes, 2, 2);
476         }
477
478         if (s->use_exp_vlc) {
479                 PARA_INFO_LOG("using exp_vlc\n");
480                 init_vlc(&s->exp_vlc, EXPVLCBITS,
481                 sizeof (ff_wma_scale_huffbits), ff_wma_scale_huffbits,
482                 1, 1, ff_wma_scale_huffcodes, 4, 4);
483         } else {
484                 PARA_INFO_LOG("using curve\n");
485                 wma_lsp_to_curve_init(s, s->frame_len);
486         }
487         *result = s;
488         return s->ahi.header_len;
489 }
490
491 /**
492  * compute x^-0.25 with an exponent and mantissa table. We use linear
493  * interpolation to reduce the mantissa table size at a small speed
494  * expense (linear interpolation approximately doubles the number of
495  * bits of precision).
496  */
497 static inline float pow_m1_4(struct private_wmadec_data *s, float x)
498 {
499         union {
500                 float f;
501                 unsigned int v;
502         } u, t;
503         unsigned int e, m;
504         float a, b;
505
506         u.f = x;
507         e = u.v >> 23;
508         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
509         /* build interpolation scale: 1 <= t < 2. */
510         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
511         a = s->lsp_pow_m_table1[m];
512         b = s->lsp_pow_m_table2[m];
513         return s->lsp_pow_e_table[e] * (a + b * t.f);
514 }
515
516 static void wma_lsp_to_curve(struct private_wmadec_data *s,
517                 float *out, float *val_max_ptr, int n, float *lsp)
518 {
519         int i, j;
520         float p, q, w, v, val_max;
521
522         val_max = 0;
523         for (i = 0; i < n; i++) {
524                 p = 0.5f;
525                 q = 0.5f;
526                 w = s->lsp_cos_table[i];
527                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
528                         q *= w - lsp[j - 1];
529                         p *= w - lsp[j];
530                 }
531                 p *= p * (2.0f - w);
532                 q *= q * (2.0f + w);
533                 v = p + q;
534                 v = pow_m1_4(s, v);
535                 if (v > val_max)
536                         val_max = v;
537                 out[i] = v;
538         }
539         *val_max_ptr = val_max;
540 }
541
542 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
543 static void decode_exp_lsp(struct private_wmadec_data *s, int ch)
544 {
545         float lsp_coefs[NB_LSP_COEFS];
546         int val, i;
547
548         for (i = 0; i < NB_LSP_COEFS; i++) {
549                 if (i == 0 || i >= 8)
550                         val = get_bits(&s->gb, 3);
551                 else
552                         val = get_bits(&s->gb, 4);
553                 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
554         }
555
556         wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
557                          s->block_len, lsp_coefs);
558 }
559
560 /*
561  * Parse a vlc code, faster then get_vlc().
562  *
563  * \param bits The number of bits which will be read at once, must be
564  * identical to nb_bits in init_vlc()
565  *
566  * \param max_depth The number of times bits bits must be read to completely
567  * read the longest vlc code = (max_vlc_length + bits - 1) / bits.
568  */
569 static int get_vlc2(struct getbit_context *s, VLC_TYPE(*table)[2],
570                 int bits, int max_depth)
571 {
572         int code;
573
574         OPEN_READER(re, s)
575         UPDATE_CACHE(re, s)
576         GET_VLC(code, re, s, table, bits, max_depth)
577         CLOSE_READER(re, s)
578         return code;
579 }
580
581 /* Decode exponents coded with VLC codes. */
582 static int decode_exp_vlc(struct private_wmadec_data *s, int ch)
583 {
584         int last_exp, n, code;
585         const uint16_t *ptr, *band_ptr;
586         float v, *q, max_scale, *q_end;
587
588         band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
589         ptr = band_ptr;
590         q = s->exponents[ch];
591         q_end = q + s->block_len;
592         max_scale = 0;
593         last_exp = 36;
594
595         while (q < q_end) {
596                 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
597                 if (code < 0)
598                         return -1;
599                 /* NOTE: this offset is the same as MPEG4 AAC ! */
600                 last_exp += code - 60;
601                 /* XXX: use a table */
602                 v = pow(10, last_exp * (1.0 / 16.0));
603                 if (v > max_scale)
604                         max_scale = v;
605                 n = *ptr++;
606                 do {
607                         *q++ = v;
608                 } while (--n);
609         }
610         s->max_exponent[ch] = max_scale;
611         return 0;
612 }
613
614 static void vector_fmul_add(float *dst, const float *src0, const float *src1,
615                 const float *src2, int src3, int len, int step)
616 {
617         int i;
618         for (i = 0; i < len; i++)
619                 dst[i * step] = src0[i] * src1[i] + src2[i] + src3;
620 }
621
622 static void vector_fmul_reverse_c(float *dst, const float *src0,
623                 const float *src1, int len)
624 {
625         int i;
626         src1 += len - 1;
627         for (i = 0; i < len; i++)
628                 dst[i] = src0[i] * src1[-i];
629 }
630
631 /**
632  * Apply MDCT window and add into output.
633  *
634  * We ensure that when the windows overlap their squared sum
635  * is always 1 (MDCT reconstruction rule).
636  */
637 static void wma_window(struct private_wmadec_data *s, float *out)
638 {
639         float *in = s->output;
640         int block_len, bsize, n;
641
642         /* left part */
643         if (s->block_len_bits <= s->prev_block_len_bits) {
644                 block_len = s->block_len;
645                 bsize = s->frame_len_bits - s->block_len_bits;
646
647                 vector_fmul_add(out, in, s->windows[bsize],
648                                          out, 0, block_len, 1);
649
650         } else {
651                 block_len = 1 << s->prev_block_len_bits;
652                 n = (s->block_len - block_len) / 2;
653                 bsize = s->frame_len_bits - s->prev_block_len_bits;
654
655                 vector_fmul_add(out + n, in + n, s->windows[bsize],
656                                          out + n, 0, block_len, 1);
657
658                 memcpy(out + n + block_len, in + n + block_len,
659                        n * sizeof (float));
660         }
661
662         out += s->block_len;
663         in += s->block_len;
664
665         /* right part */
666         if (s->block_len_bits <= s->next_block_len_bits) {
667                 block_len = s->block_len;
668                 bsize = s->frame_len_bits - s->block_len_bits;
669
670                 vector_fmul_reverse_c(out, in, s->windows[bsize], block_len);
671
672         } else {
673                 block_len = 1 << s->next_block_len_bits;
674                 n = (s->block_len - block_len) / 2;
675                 bsize = s->frame_len_bits - s->next_block_len_bits;
676
677                 memcpy(out, in, n * sizeof (float));
678
679                 vector_fmul_reverse_c(out + n, in + n, s->windows[bsize],
680                                       block_len);
681
682                 memset(out + n + block_len, 0, n * sizeof (float));
683         }
684 }
685
686 static int wma_total_gain_to_bits(int total_gain)
687 {
688         if (total_gain < 15)
689                 return 13;
690         else if (total_gain < 32)
691                 return 12;
692         else if (total_gain < 40)
693                 return 11;
694         else if (total_gain < 45)
695                 return 10;
696         else
697                 return 9;
698 }
699
700 /**
701  * @return 0 if OK. 1 if last block of frame. return -1 if
702  * unrecorrable error.
703  */
704 static int wma_decode_block(struct private_wmadec_data *s)
705 {
706         int n, v, ch, code, bsize;
707         int coef_nb_bits, total_gain;
708         int nb_coefs[MAX_CHANNELS];
709         float mdct_norm;
710
711         /* compute current block length */
712         if (s->use_variable_block_len) {
713                 n = wma_log2(s->nb_block_sizes - 1) + 1;
714
715                 if (s->reset_block_lengths) {
716                         s->reset_block_lengths = 0;
717                         v = get_bits(&s->gb, n);
718                         if (v >= s->nb_block_sizes)
719                                 return -1;
720                         s->prev_block_len_bits = s->frame_len_bits - v;
721                         v = get_bits(&s->gb, n);
722                         if (v >= s->nb_block_sizes)
723                                 return -1;
724                         s->block_len_bits = s->frame_len_bits - v;
725                 } else {
726                         /* update block lengths */
727                         s->prev_block_len_bits = s->block_len_bits;
728                         s->block_len_bits = s->next_block_len_bits;
729                 }
730                 v = get_bits(&s->gb, n);
731                 if (v >= s->nb_block_sizes)
732                         return -1;
733                 s->next_block_len_bits = s->frame_len_bits - v;
734         } else {
735                 /* fixed block len */
736                 s->next_block_len_bits = s->frame_len_bits;
737                 s->prev_block_len_bits = s->frame_len_bits;
738                 s->block_len_bits = s->frame_len_bits;
739         }
740
741         /* now check if the block length is coherent with the frame length */
742         s->block_len = 1 << s->block_len_bits;
743         if ((s->block_pos + s->block_len) > s->frame_len)
744                 return -E_INCOHERENT_BLOCK_LEN;
745
746         if (s->ahi.channels == 2) {
747                 s->ms_stereo = get_bits1(&s->gb);
748         }
749         v = 0;
750         for (ch = 0; ch < s->ahi.channels; ch++) {
751                 int a = get_bits1(&s->gb);
752                 s->channel_coded[ch] = a;
753                 v |= a;
754         }
755
756         bsize = s->frame_len_bits - s->block_len_bits;
757
758         /* if no channel coded, no need to go further */
759         /* XXX: fix potential framing problems */
760         if (!v)
761                 goto next;
762
763         /* read total gain and extract corresponding number of bits for
764            coef escape coding */
765         total_gain = 1;
766         for (;;) {
767                 int a = get_bits(&s->gb, 7);
768                 total_gain += a;
769                 if (a != 127)
770                         break;
771         }
772
773         coef_nb_bits = wma_total_gain_to_bits(total_gain);
774
775         /* compute number of coefficients */
776         n = s->coefs_end[bsize] - s->coefs_start;
777         for (ch = 0; ch < s->ahi.channels; ch++)
778                 nb_coefs[ch] = n;
779
780         /* complex coding */
781         if (s->use_noise_coding) {
782
783                 for (ch = 0; ch < s->ahi.channels; ch++) {
784                         if (s->channel_coded[ch]) {
785                                 int i, m, a;
786                                 m = s->exponent_high_sizes[bsize];
787                                 for (i = 0; i < m; i++) {
788                                         a = get_bits1(&s->gb);
789                                         s->high_band_coded[ch][i] = a;
790                                         /* if noise coding, the coefficients are not transmitted */
791                                         if (a)
792                                                 nb_coefs[ch] -=
793                                                     s->
794                                                     exponent_high_bands[bsize]
795                                                     [i];
796                                 }
797                         }
798                 }
799                 for (ch = 0; ch < s->ahi.channels; ch++) {
800                         if (s->channel_coded[ch]) {
801                                 int i, val;
802
803                                 n = s->exponent_high_sizes[bsize];
804                                 val = (int) 0x80000000;
805                                 for (i = 0; i < n; i++) {
806                                         if (s->high_band_coded[ch][i]) {
807                                                 if (val == (int) 0x80000000) {
808                                                         val =
809                                                             get_bits(&s->gb,
810                                                                      7) - 19;
811                                                 } else {
812                                                         code =
813                                                             get_vlc2(&s->gb,
814                                                                      s->
815                                                                      hgain_vlc.
816                                                                      table,
817                                                                      HGAINVLCBITS,
818                                                                      HGAINMAX);
819                                                         if (code < 0)
820                                                                 return -1;
821                                                         val += code - 18;
822                                                 }
823                                                 s->high_band_values[ch][i] =
824                                                     val;
825                                         }
826                                 }
827                         }
828                 }
829         }
830
831         /* exponents can be reused in short blocks. */
832         if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb)) {
833                 for (ch = 0; ch < s->ahi.channels; ch++) {
834                         if (s->channel_coded[ch]) {
835                                 if (s->use_exp_vlc) {
836                                         if (decode_exp_vlc(s, ch) < 0)
837                                                 return -1;
838                                 } else {
839                                         decode_exp_lsp(s, ch);
840                                 }
841                                 s->exponents_bsize[ch] = bsize;
842                         }
843                 }
844         }
845
846         /* parse spectral coefficients : just RLE encoding */
847         for (ch = 0; ch < s->ahi.channels; ch++) {
848                 if (s->channel_coded[ch]) {
849                         struct vlc *coef_vlc;
850                         int level, run, sign, tindex;
851                         int16_t *ptr, *eptr;
852                         const uint16_t *level_table, *run_table;
853
854                         /* special VLC tables are used for ms stereo because
855                            there is potentially less energy there */
856                         tindex = (ch == 1 && s->ms_stereo);
857                         coef_vlc = &s->coef_vlc[tindex];
858                         run_table = s->run_table[tindex];
859                         level_table = s->level_table[tindex];
860                         /* XXX: optimize */
861                         ptr = &s->coefs1[ch][0];
862                         eptr = ptr + nb_coefs[ch];
863                         memset(ptr, 0, s->block_len * sizeof(int16_t));
864                         for (;;) {
865                                 code =
866                                     get_vlc2(&s->gb, coef_vlc->table, VLCBITS,
867                                              VLCMAX);
868                                 if (code < 0)
869                                         return -1;
870                                 if (code == 1) {
871                                         /* EOB */
872                                         break;
873                                 } else if (code == 0) {
874                                         /* escape */
875                                         level = get_bits(&s->gb, coef_nb_bits);
876                                         /* NOTE: this is rather suboptimal. reading
877                                            block_len_bits would be better */
878                                         run =
879                                             get_bits(&s->gb, s->frame_len_bits);
880                                 } else {
881                                         /* normal code */
882                                         run = run_table[code];
883                                         level = level_table[code];
884                                 }
885                                 sign = get_bits1(&s->gb);
886                                 if (!sign)
887                                         level = -level;
888                                 ptr += run;
889                                 if (ptr >= eptr) {
890                                         PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
891                                         break;
892                                 }
893                                 *ptr++ = level;
894                                 /* NOTE: EOB can be omitted */
895                                 if (ptr >= eptr)
896                                         break;
897                         }
898                 }
899         }
900
901         /* normalize */
902         {
903                 int n4 = s->block_len / 2;
904                 mdct_norm = 1.0 / (float) n4;
905         }
906
907         /* finally compute the MDCT coefficients */
908         for (ch = 0; ch < s->ahi.channels; ch++) {
909                 if (s->channel_coded[ch]) {
910                         int16_t *coefs1;
911                         float *coefs, *exponents, mult, mult1, noise;
912                         int i, j, n1, last_high_band, esize;
913                         float exp_power[HIGH_BAND_MAX_SIZE];
914
915                         coefs1 = s->coefs1[ch];
916                         exponents = s->exponents[ch];
917                         esize = s->exponents_bsize[ch];
918                         mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
919                         mult *= mdct_norm;
920                         coefs = s->coefs[ch];
921                         if (s->use_noise_coding) {
922                                 mult1 = mult;
923                                 /* very low freqs : noise */
924                                 for (i = 0; i < s->coefs_start; i++) {
925                                         *coefs++ =
926                                             s->noise_table[s->noise_index] *
927                                             exponents[i << bsize >> esize] *
928                                             mult1;
929                                         s->noise_index =
930                                             (s->noise_index +
931                                              1) & (NOISE_TAB_SIZE - 1);
932                                 }
933
934                                 n1 = s->exponent_high_sizes[bsize];
935
936                                 /* compute power of high bands */
937                                 exponents = s->exponents[ch] +
938                                     (s->high_band_start[bsize] << bsize);
939                                 last_high_band = 0;     /* avoid warning */
940                                 for (j = 0; j < n1; j++) {
941                                         n = s->exponent_high_bands[s->
942                                                                    frame_len_bits
943                                                                    -
944                                                                    s->
945                                                                    block_len_bits]
946                                             [j];
947                                         if (s->high_band_coded[ch][j]) {
948                                                 float e2, val;
949                                                 e2 = 0;
950                                                 for (i = 0; i < n; i++) {
951                                                         val = exponents[i << bsize
952                                                                       >> esize];
953                                                         e2 += val * val;
954                                                 }
955                                                 exp_power[j] = e2 / n;
956                                                 last_high_band = j;
957                                         }
958                                         exponents += n << bsize;
959                                 }
960
961                                 /* main freqs and high freqs */
962                                 exponents =
963                                     s->exponents[ch] +
964                                     (s->coefs_start << bsize);
965                                 for (j = -1; j < n1; j++) {
966                                         if (j < 0) {
967                                                 n = s->high_band_start[bsize] -
968                                                     s->coefs_start;
969                                         } else {
970                                                 n = s->exponent_high_bands[s->
971                                                                            frame_len_bits
972                                                                            -
973                                                                            s->
974                                                                            block_len_bits]
975                                                     [j];
976                                         }
977                                         if (j >= 0 && s->high_band_coded[ch][j]) {
978                                                 /* use noise with specified power */
979                                                 mult1 =
980                                                     sqrt(exp_power[j] /
981                                                          exp_power
982                                                          [last_high_band]);
983                                                 /* XXX: use a table */
984                                                 mult1 =
985                                                     mult1 * pow(10,
986                                                                 s->
987                                                                 high_band_values
988                                                                 [ch][j] * 0.05);
989                                                 mult1 =
990                                                     mult1 /
991                                                     (s->max_exponent[ch] *
992                                                      s->noise_mult);
993                                                 mult1 *= mdct_norm;
994                                                 for (i = 0; i < n; i++) {
995                                                         noise =
996                                                             s->noise_table[s->
997                                                                            noise_index];
998                                                         s->noise_index =
999                                                             (s->noise_index +
1000                                                              1) &
1001                                                             (NOISE_TAB_SIZE -
1002                                                              1);
1003                                                         *coefs++ =
1004                                                             noise *
1005                                                             exponents[i << bsize
1006                                                                       >> esize]
1007                                                             * mult1;
1008                                                 }
1009                                                 exponents += n << bsize;
1010                                         } else {
1011                                                 /* coded values + small noise */
1012                                                 for (i = 0; i < n; i++) {
1013                                                         noise =
1014                                                             s->noise_table[s->
1015                                                                            noise_index];
1016                                                         s->noise_index =
1017                                                             (s->noise_index +
1018                                                              1) &
1019                                                             (NOISE_TAB_SIZE -
1020                                                              1);
1021                                                         *coefs++ =
1022                                                             ((*coefs1++) +
1023                                                              noise) *
1024                                                             exponents[i << bsize
1025                                                                       >> esize]
1026                                                             * mult;
1027                                                 }
1028                                                 exponents += n << bsize;
1029                                         }
1030                                 }
1031
1032                                 /* very high freqs : noise */
1033                                 n = s->block_len - s->coefs_end[bsize];
1034                                 mult1 =
1035                                     mult * exponents[((-1 << bsize)) >> esize];
1036                                 for (i = 0; i < n; i++) {
1037                                         *coefs++ =
1038                                             s->noise_table[s->noise_index] *
1039                                             mult1;
1040                                         s->noise_index =
1041                                             (s->noise_index +
1042                                              1) & (NOISE_TAB_SIZE - 1);
1043                                 }
1044                         } else {
1045                                 /* XXX: optimize more */
1046                                 for (i = 0; i < s->coefs_start; i++)
1047                                         *coefs++ = 0.0;
1048                                 n = nb_coefs[ch];
1049                                 for (i = 0; i < n; i++) {
1050                                         *coefs++ =
1051                                             coefs1[i] *
1052                                             exponents[i << bsize >> esize] *
1053                                             mult;
1054                                 }
1055                                 n = s->block_len - s->coefs_end[bsize];
1056                                 for (i = 0; i < n; i++)
1057                                         *coefs++ = 0.0;
1058                         }
1059                 }
1060         }
1061
1062         if (s->ms_stereo && s->channel_coded[1]) {
1063                 float a, b;
1064                 int i;
1065
1066                 /*
1067                  * Nominal case for ms stereo: we do it before mdct.
1068                  *
1069                  * No need to optimize this case because it should almost never
1070                  * happen.
1071                  */
1072                 if (!s->channel_coded[0]) {
1073                         PARA_NOTICE_LOG("rare ms-stereo\n");
1074                         memset(s->coefs[0], 0, sizeof(float) * s->block_len);
1075                         s->channel_coded[0] = 1;
1076                 }
1077                 for (i = 0; i < s->block_len; i++) {
1078                         a = s->coefs[0][i];
1079                         b = s->coefs[1][i];
1080                         s->coefs[0][i] = a + b;
1081                         s->coefs[1][i] = a - b;
1082                 }
1083         }
1084
1085 next:
1086         for (ch = 0; ch < s->ahi.channels; ch++) {
1087                 int n4, index;
1088
1089                 n = s->block_len;
1090                 n4 = s->block_len / 2;
1091                 if (s->channel_coded[ch])
1092                         imdct(s->mdct_ctx[bsize], s->output, s->coefs[ch]);
1093                 else if (!(s->ms_stereo && ch == 1))
1094                         memset(s->output, 0, sizeof (s->output));
1095
1096                 /* multiply by the window and add in the frame */
1097                 index = (s->frame_len / 2) + s->block_pos - n4;
1098                 wma_window(s, &s->frame_out[ch][index]);
1099         }
1100
1101         /* update block number */
1102         s->block_num++;
1103         s->block_pos += s->block_len;
1104         if (s->block_pos >= s->frame_len)
1105                 return 1;
1106         else
1107                 return 0;
1108 }
1109
1110 /*
1111  * Clip a signed integer value into the -32768,32767 range.
1112  *
1113  * \param a The value to clip.
1114  *
1115  * \return The clipped value.
1116  */
1117 static inline int16_t av_clip_int16(int a)
1118 {
1119         if ((a + 32768) & ~65535)
1120                 return (a >> 31) ^ 32767;
1121         else
1122                 return a;
1123 }
1124
1125 /* Decode a frame of frame_len samples. */
1126 static int wma_decode_frame(struct private_wmadec_data *s, int16_t * samples)
1127 {
1128         int ret, i, n, ch, incr;
1129         int16_t *ptr;
1130         float *iptr;
1131
1132         /* read each block */
1133         s->block_num = 0;
1134         s->block_pos = 0;
1135         for (;;) {
1136                 ret = wma_decode_block(s);
1137                 if (ret < 0)
1138                         return -1;
1139                 if (ret)
1140                         break;
1141         }
1142
1143         /* convert frame to integer */
1144         n = s->frame_len;
1145         incr = s->ahi.channels;
1146         for (ch = 0; ch < s->ahi.channels; ch++) {
1147                 ptr = samples + ch;
1148                 iptr = s->frame_out[ch];
1149
1150                 for (i = 0; i < n; i++) {
1151                         *ptr = av_clip_int16(lrintf(*iptr++));
1152                         ptr += incr;
1153                 }
1154                 /* prepare for next block */
1155                 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
1156                         s->frame_len * sizeof (float));
1157         }
1158         return 0;
1159 }
1160
1161 static int wma_decode_superframe(struct private_wmadec_data *s, void *data,
1162                 int *data_size, const uint8_t *buf, int buf_size)
1163 {
1164         int ret, nb_frames, bit_offset, i, pos, len;
1165         uint8_t *q;
1166         int16_t *samples;
1167         static int frame_count;
1168
1169         if (buf_size == 0) {
1170                 s->last_superframe_len = 0;
1171                 return 0;
1172         }
1173         if (buf_size < s->ahi.block_align)
1174                 return 0;
1175         buf_size = s->ahi.block_align;
1176         samples = data;
1177         init_get_bits(&s->gb, buf, buf_size * 8);
1178         if (s->use_bit_reservoir) {
1179                 /* read super frame header */
1180                 skip_bits(&s->gb, 4);   /* super frame index */
1181                 nb_frames = get_bits(&s->gb, 4) - 1;
1182                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1183                 ret = -E_WMA_OUTPUT_SPACE;
1184                 if ((nb_frames + 1) * s->ahi.channels * s->frame_len
1185                                 * sizeof(int16_t) > *data_size)
1186                         goto fail;
1187
1188                 bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
1189
1190                 if (s->last_superframe_len > 0) {
1191                         /* add bit_offset bits to last frame */
1192                         ret = -E_WMA_BAD_SUPERFRAME;
1193                         if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
1194                                         MAX_CODED_SUPERFRAME_SIZE)
1195                                 goto fail;
1196                         q = s->last_superframe + s->last_superframe_len;
1197                         len = bit_offset;
1198                         while (len > 7) {
1199                                 *q++ = get_bits(&s->gb, 8);
1200                                 len -= 8;
1201                         }
1202                         if (len > 0) {
1203                                 *q++ = get_bits(&s->gb, len) << (8 - len);
1204                         }
1205
1206                         /* XXX: bit_offset bits into last frame */
1207                         init_get_bits(&s->gb, s->last_superframe,
1208                                 MAX_CODED_SUPERFRAME_SIZE * 8);
1209                         /* skip unused bits */
1210                         if (s->last_bitoffset > 0)
1211                                 skip_bits(&s->gb, s->last_bitoffset);
1212                         /*
1213                          * This frame is stored in the last superframe and in
1214                          * the current one.
1215                          */
1216                         ret = -E_WMA_DECODE;
1217                         if (wma_decode_frame(s, samples) < 0)
1218                                 goto fail;
1219                         frame_count++;
1220                         samples += s->ahi.channels * s->frame_len;
1221                 }
1222
1223                 /* read each frame starting from bit_offset */
1224                 pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
1225                 init_get_bits(&s->gb, buf + (pos >> 3),
1226                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)) * 8);
1227                 len = pos & 7;
1228                 if (len > 0)
1229                         skip_bits(&s->gb, len);
1230
1231                 s->reset_block_lengths = 1;
1232                 for (i = 0; i < nb_frames; i++) {
1233                         ret = -E_WMA_DECODE;
1234                         if (wma_decode_frame(s, samples) < 0)
1235                                 goto fail;
1236                         frame_count++;
1237                         samples += s->ahi.channels * s->frame_len;
1238                 }
1239
1240                 /* we copy the end of the frame in the last frame buffer */
1241                 pos = get_bits_count(&s->gb) +
1242                         ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
1243                 s->last_bitoffset = pos & 7;
1244                 pos >>= 3;
1245                 len = buf_size - pos;
1246                 ret = -E_WMA_BAD_SUPERFRAME;
1247                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
1248                         goto fail;
1249                 }
1250                 s->last_superframe_len = len;
1251                 memcpy(s->last_superframe, buf + pos, len);
1252         } else {
1253                 PARA_DEBUG_LOG("not using bit reservoir\n");
1254                 ret = -E_WMA_OUTPUT_SPACE;
1255                 if (s->ahi.channels * s->frame_len * sizeof(int16_t) > *data_size)
1256                         goto fail;
1257                 /* single frame decode */
1258                 ret = -E_WMA_DECODE;
1259                 if (wma_decode_frame(s, samples) < 0)
1260                         goto fail;
1261                 frame_count++;
1262                 samples += s->ahi.channels * s->frame_len;
1263         }
1264         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1265                 "outbytes: %d, eaten: %d\n",
1266                 frame_count, s->frame_len, s->block_len,
1267                 (int8_t *) samples - (int8_t *) data, s->ahi.block_align);
1268         *data_size = (int8_t *)samples - (int8_t *)data;
1269         return s->ahi.block_align;
1270 fail:
1271         /* reset the bit reservoir on errors */
1272         s->last_superframe_len = 0;
1273         return ret;
1274 }
1275
1276 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1277                 struct filter_node *fn)
1278 {
1279         int ret, out_size = fn->bufsize - fn->loaded;
1280         struct private_wmadec_data *pwd = fn->private_data;
1281
1282         if (out_size < 128 * 1024)
1283                 return 0;
1284         if (!pwd) {
1285                 ret = wma_decode_init(inbuffer, len, &pwd);
1286                 if (ret <= 0)
1287                         return ret;
1288                 fn->private_data = pwd;
1289                 fn->fc->channels = pwd->ahi.channels;
1290                 fn->fc->samplerate = pwd->ahi.sample_rate;
1291                 return pwd->ahi.header_len;
1292         }
1293         /* skip 31 bytes */
1294         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1295                 return 0;
1296         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1297                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1298                 len - WMA_FRAME_SKIP);
1299         if (ret < 0)
1300                 return ret;
1301         fn->loaded += out_size;
1302         return ret + WMA_FRAME_SKIP;
1303 }
1304
1305 static void wmadec_close(struct filter_node *fn)
1306 {
1307         struct private_wmadec_data *pwd = fn->private_data;
1308         if (!pwd)
1309                 return;
1310         wmadec_cleanup(pwd);
1311         free(fn->buf);
1312         fn->buf = NULL;
1313         free(fn->private_data);
1314         fn->private_data = NULL;
1315 }
1316
1317 static void wmadec_open(struct filter_node *fn)
1318 {
1319         fn->bufsize = 1024 * 1024;
1320         fn->buf = para_malloc(fn->bufsize);
1321         fn->private_data = NULL;
1322         fn->loaded = 0;
1323 }
1324
1325 /**
1326  * The init function of the wma decoder.
1327  *
1328  * \param f Its fields are filled in by the function.
1329  */
1330 void wmadec_filter_init(struct filter *f)
1331 {
1332         f->open = wmadec_open;
1333         f->close = wmadec_close;
1334         f->convert = wmadec_convert;
1335 }