Remove some unused error codes.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27 #include <sys/select.h>
28 #include <stdbool.h>
29
30 #include "para.h"
31 #include "error.h"
32 #include "list.h"
33 #include "ggo.h"
34 #include "string.h"
35 #include "sched.h"
36 #include "buffer_tree.h"
37 #include "filter.h"
38 #include "bitstream.h"
39 #include "imdct.h"
40 #include "wma.h"
41 #include "wmadata.h"
42
43
44 /* size of blocks */
45 #define BLOCK_MIN_BITS 7
46 #define BLOCK_MAX_BITS 11
47 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
48
49 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
50
51 /* XXX: find exact max size */
52 #define HIGH_BAND_MAX_SIZE 16
53
54 /* XXX: is it a suitable value ? */
55 #define MAX_CODED_SUPERFRAME_SIZE 16384
56
57 #define MAX_CHANNELS 2
58
59 #define NOISE_TAB_SIZE 8192
60
61 #define LSP_POW_BITS 7
62
63 struct private_wmadec_data {
64         /** Information contained in the audio file header. */
65         struct asf_header_info ahi;
66         struct getbit_context gb;
67         /** Whether to use the bit reservoir. */
68         int use_bit_reservoir;
69         /** Whether to use variable block length. */
70         int use_variable_block_len;
71         /** Whether to use exponent coding. */
72         int use_exp_vlc;
73         /** Whether perceptual noise is added. */
74         int use_noise_coding;
75         int byte_offset_bits;
76         struct vlc exp_vlc;
77         int exponent_sizes[BLOCK_NB_SIZES];
78         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
79         /** The index of the first coef in high band. */
80         int high_band_start[BLOCK_NB_SIZES];
81         /** Maximal number of coded coefficients. */
82         int coefs_end[BLOCK_NB_SIZES];
83         int exponent_high_sizes[BLOCK_NB_SIZES];
84         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
85         struct vlc hgain_vlc;
86
87         /* coded values in high bands */
88         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
89         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
90
91         /* there are two possible tables for spectral coefficients */
92         struct vlc coef_vlc[2];
93         uint16_t *run_table[2];
94         uint16_t *level_table[2];
95         const struct coef_vlc_table *coef_vlcs[2];
96         /** Frame length in samples. */
97         int frame_len;
98         /** log2 of frame_len. */
99         int frame_len_bits;
100         /** Number of block sizes. */
101         int nb_block_sizes;
102         /* block info */
103         int reset_block_lengths;
104         /** log2 of current block length. */
105         int block_len_bits;
106         /** log2 of next block length. */
107         int next_block_len_bits;
108         /** log2 of previous block length. */
109         int prev_block_len_bits;
110         /** Block length in samples. */
111         int block_len;
112         /** Current position in frame. */
113         int block_pos;
114         /** True if mid/side stereo mode. */
115         uint8_t ms_stereo;
116         /** True if channel is coded. */
117         uint8_t channel_coded[MAX_CHANNELS];
118         /** log2 ratio frame/exp. length. */
119         int exponents_bsize[MAX_CHANNELS];
120
121         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
122         float max_exponent[MAX_CHANNELS];
123         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
124         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
125         float output[BLOCK_MAX_SIZE * 2];
126         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
127         float *windows[BLOCK_NB_SIZES];
128         /** Output buffer for one frame and the last for IMDCT windowing. */
129         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
130         /** Last frame info. */
131         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
132         int last_bitoffset;
133         int last_superframe_len;
134         float noise_table[NOISE_TAB_SIZE];
135         int noise_index;
136         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
137         /* lsp_to_curve tables */
138         float lsp_cos_table[BLOCK_MAX_SIZE];
139         float lsp_pow_e_table[256];
140         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
141         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
142 };
143
144 #define EXPVLCBITS 8
145 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
146
147 #define HGAINVLCBITS 9
148 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
149
150 #define VLCBITS 9
151 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
152
153 #define SINE_WINDOW(x) float sine_ ## x[x] __a_aligned(16)
154
155 SINE_WINDOW(128);
156 SINE_WINDOW(256);
157 SINE_WINDOW(512);
158 SINE_WINDOW(1024);
159 SINE_WINDOW(2048);
160 SINE_WINDOW(4096);
161
162 static float *sine_windows[6] = {
163         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
164 };
165
166 /* Generate a sine window. */
167 static void sine_window_init(float *window, int n)
168 {
169         int i;
170
171         for (i = 0; i < n; i++)
172                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
173 }
174
175 static void wmadec_cleanup(struct private_wmadec_data *pwd)
176 {
177         int i;
178
179         for (i = 0; i < pwd->nb_block_sizes; i++)
180                 imdct_end(pwd->mdct_ctx[i]);
181         if (pwd->use_exp_vlc)
182                 free_vlc(&pwd->exp_vlc);
183         if (pwd->use_noise_coding)
184                 free_vlc(&pwd->hgain_vlc);
185         for (i = 0; i < 2; i++) {
186                 free_vlc(&pwd->coef_vlc[i]);
187                 free(pwd->run_table[i]);
188                 free(pwd->level_table[i]);
189         }
190 }
191
192 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
193                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
194 {
195         int n = vlc_table->n;
196         const uint8_t *table_bits = vlc_table->huffbits;
197         const uint32_t *table_codes = vlc_table->huffcodes;
198         const uint16_t *levels_table = vlc_table->levels;
199         uint16_t *run_table, *level_table;
200         int i, l, j, k, level;
201
202         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
203
204         run_table = para_malloc(n * sizeof(uint16_t));
205         level_table = para_malloc(n * sizeof(uint16_t));
206         i = 2;
207         level = 1;
208         k = 0;
209         while (i < n) {
210                 l = levels_table[k++];
211                 for (j = 0; j < l; j++) {
212                         run_table[i] = j;
213                         level_table[i] = level;
214                         i++;
215                 }
216                 level++;
217         }
218         *prun_table = run_table;
219         *plevel_table = level_table;
220 }
221
222 /* compute the scale factor band sizes for each MDCT block size */
223 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
224         float high_freq)
225 {
226         struct asf_header_info *ahi = &pwd->ahi;
227         int a, b, pos, lpos, k, block_len, i, j, n;
228         const uint8_t *table;
229
230         for (k = 0; k < pwd->nb_block_sizes; k++) {
231                 block_len = pwd->frame_len >> k;
232
233                 table = NULL;
234                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
235                 if (a < 3) {
236                         if (ahi->sample_rate >= 44100)
237                                 table = exponent_band_44100[a];
238                         else if (ahi->sample_rate >= 32000)
239                                 table = exponent_band_32000[a];
240                         else if (ahi->sample_rate >= 22050)
241                                 table = exponent_band_22050[a];
242                 }
243                 if (table) {
244                         n = *table++;
245                         for (i = 0; i < n; i++)
246                                 pwd->exponent_bands[k][i] = table[i];
247                         pwd->exponent_sizes[k] = n;
248                 } else {
249                         j = 0;
250                         lpos = 0;
251                         for (i = 0; i < 25; i++) {
252                                 a = wma_critical_freqs[i];
253                                 b = ahi->sample_rate;
254                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
255                                 pos <<= 2;
256                                 if (pos > block_len)
257                                         pos = block_len;
258                                 if (pos > lpos)
259                                         pwd->exponent_bands[k][j++] = pos - lpos;
260                                 if (pos >= block_len)
261                                         break;
262                                 lpos = pos;
263                         }
264                         pwd->exponent_sizes[k] = j;
265                 }
266
267                 /* max number of coefs */
268                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
269                 /* high freq computation */
270                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
271                         / ahi->sample_rate + 0.5);
272                 n = pwd->exponent_sizes[k];
273                 j = 0;
274                 pos = 0;
275                 for (i = 0; i < n; i++) {
276                         int start, end;
277                         start = pos;
278                         pos += pwd->exponent_bands[k][i];
279                         end = pos;
280                         if (start < pwd->high_band_start[k])
281                                 start = pwd->high_band_start[k];
282                         if (end > pwd->coefs_end[k])
283                                 end = pwd->coefs_end[k];
284                         if (end > start)
285                                 pwd->exponent_high_bands[k][j++] = end - start;
286                 }
287                 pwd->exponent_high_sizes[k] = j;
288         }
289 }
290
291 static int wma_init(struct private_wmadec_data *pwd)
292 {
293         int i;
294         float bps1, high_freq;
295         volatile float bps;
296         int sample_rate1;
297         int coef_vlc_table;
298         struct asf_header_info *ahi = &pwd->ahi;
299         int flags2 = ahi->flags2;
300
301         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
302                 || ahi->channels <= 0 || ahi->channels > 8
303                 || ahi->bit_rate <= 0)
304                 return -E_WMA_BAD_PARAMS;
305
306         /* compute MDCT block size */
307         if (ahi->sample_rate <= 16000)
308                 pwd->frame_len_bits = 9;
309         else if (ahi->sample_rate <= 22050)
310                 pwd->frame_len_bits = 10;
311         else
312                 pwd->frame_len_bits = 11;
313         pwd->frame_len = 1 << pwd->frame_len_bits;
314         if (pwd->use_variable_block_len) {
315                 int nb_max, nb;
316                 nb = ((flags2 >> 3) & 3) + 1;
317                 if ((ahi->bit_rate / ahi->channels) >= 32000)
318                         nb += 2;
319                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
320                 if (nb > nb_max)
321                         nb = nb_max;
322                 pwd->nb_block_sizes = nb + 1;
323         } else
324                 pwd->nb_block_sizes = 1;
325
326         /* init rate dependent parameters */
327         pwd->use_noise_coding = 1;
328         high_freq = ahi->sample_rate * 0.5;
329
330         /* wma2 rates are normalized */
331         sample_rate1 = ahi->sample_rate;
332         if (sample_rate1 >= 44100)
333                 sample_rate1 = 44100;
334         else if (sample_rate1 >= 22050)
335                 sample_rate1 = 22050;
336         else if (sample_rate1 >= 16000)
337                 sample_rate1 = 16000;
338         else if (sample_rate1 >= 11025)
339                 sample_rate1 = 11025;
340         else if (sample_rate1 >= 8000)
341                 sample_rate1 = 8000;
342
343         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
344         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
345         /*
346          * Compute high frequency value and choose if noise coding should be
347          * activated.
348          */
349         bps1 = bps;
350         if (ahi->channels == 2)
351                 bps1 = bps * 1.6;
352         if (sample_rate1 == 44100) {
353                 if (bps1 >= 0.61)
354                         pwd->use_noise_coding = 0;
355                 else
356                         high_freq = high_freq * 0.4;
357         } else if (sample_rate1 == 22050) {
358                 if (bps1 >= 1.16)
359                         pwd->use_noise_coding = 0;
360                 else if (bps1 >= 0.72)
361                         high_freq = high_freq * 0.7;
362                 else
363                         high_freq = high_freq * 0.6;
364         } else if (sample_rate1 == 16000) {
365                 if (bps > 0.5)
366                         high_freq = high_freq * 0.5;
367                 else
368                         high_freq = high_freq * 0.3;
369         } else if (sample_rate1 == 11025)
370                 high_freq = high_freq * 0.7;
371         else if (sample_rate1 == 8000) {
372                 if (bps <= 0.625)
373                         high_freq = high_freq * 0.5;
374                 else if (bps > 0.75)
375                         pwd->use_noise_coding = 0;
376                 else
377                         high_freq = high_freq * 0.65;
378         } else {
379                 if (bps >= 0.8)
380                         high_freq = high_freq * 0.75;
381                 else if (bps >= 0.6)
382                         high_freq = high_freq * 0.6;
383                 else
384                         high_freq = high_freq * 0.5;
385         }
386         PARA_INFO_LOG("channels=%d sample_rate=%d "
387                 "bitrate=%d block_align=%d\n",
388                 ahi->channels, ahi->sample_rate,
389                 ahi->bit_rate, ahi->block_align);
390         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
391                 "high_freq=%f bitoffset=%d\n",
392                 pwd->frame_len, bps, bps1,
393                 high_freq, pwd->byte_offset_bits);
394         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
395                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
396
397         compute_scale_factor_band_sizes(pwd, high_freq);
398         /* init MDCT windows : simple sinus window */
399         for (i = 0; i < pwd->nb_block_sizes; i++) {
400                 int n;
401                 n = 1 << (pwd->frame_len_bits - i);
402                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
403                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
404         }
405
406         pwd->reset_block_lengths = 1;
407
408         if (pwd->use_noise_coding) {
409                 /* init the noise generator */
410                 if (pwd->use_exp_vlc)
411                         pwd->noise_mult = 0.02;
412                 else
413                         pwd->noise_mult = 0.04;
414
415                 {
416                         unsigned int seed;
417                         float norm;
418                         seed = 1;
419                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
420                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
421                                 seed = seed * 314159 + 1;
422                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
423                         }
424                 }
425         }
426
427         /* choose the VLC tables for the coefficients */
428         coef_vlc_table = 2;
429         if (ahi->sample_rate >= 32000) {
430                 if (bps1 < 0.72)
431                         coef_vlc_table = 0;
432                 else if (bps1 < 1.16)
433                         coef_vlc_table = 1;
434         }
435         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
436         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
437         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
438                 pwd->coef_vlcs[0]);
439         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
440                 pwd->coef_vlcs[1]);
441         return 0;
442 }
443
444 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
445 {
446         float wdel, a, b;
447         int i, e, m;
448
449         wdel = M_PI / frame_len;
450         for (i = 0; i < frame_len; i++)
451                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
452
453         /* tables for x^-0.25 computation */
454         for (i = 0; i < 256; i++) {
455                 e = i - 126;
456                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
457         }
458
459         /* These two tables are needed to avoid two operations in pow_m1_4. */
460         b = 1.0;
461         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
462                 m = (1 << LSP_POW_BITS) + i;
463                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
464                 a = pow(a, -0.25);
465                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
466                 pwd->lsp_pow_m_table2[i] = b - a;
467                 b = a;
468         }
469 }
470
471 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
472 {
473         struct private_wmadec_data *pwd;
474         int ret, i;
475
476         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
477         pwd = para_calloc(sizeof(*pwd));
478         ret = read_asf_header(initial_buf, len, &pwd->ahi);
479         if (ret <= 0) {
480                 free(pwd);
481                 return ret;
482         }
483
484         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
485         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
486         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
487
488         ret = wma_init(pwd);
489         if (ret < 0)
490                 return ret;
491         /* init MDCT */
492         for (i = 0; i < pwd->nb_block_sizes; i++) {
493                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
494                 if (ret < 0)
495                         return ret;
496         }
497         if (pwd->use_noise_coding) {
498                 PARA_INFO_LOG("using noise coding\n");
499                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
500                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
501                         wma_hgain_huffcodes, 2);
502         }
503
504         if (pwd->use_exp_vlc) {
505                 PARA_INFO_LOG("using exp_vlc\n");
506                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
507                 sizeof(wma_scale_huffbits), wma_scale_huffbits,
508                 wma_scale_huffcodes, 4);
509         } else {
510                 PARA_INFO_LOG("using curve\n");
511                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
512         }
513         *result = pwd;
514         return pwd->ahi.header_len;
515 }
516
517 /**
518  * compute x^-0.25 with an exponent and mantissa table. We use linear
519  * interpolation to reduce the mantissa table size at a small speed
520  * expense (linear interpolation approximately doubles the number of
521  * bits of precision).
522  */
523 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
524 {
525         union {
526                 float f;
527                 unsigned int v;
528         } u, t;
529         unsigned int e, m;
530         float a, b;
531
532         u.f = x;
533         e = u.v >> 23;
534         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
535         /* build interpolation scale: 1 <= t < 2. */
536         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
537         a = pwd->lsp_pow_m_table1[m];
538         b = pwd->lsp_pow_m_table2[m];
539         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
540 }
541
542 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
543                 float *out, float *val_max_ptr, int n, float *lsp)
544 {
545         int i, j;
546         float p, q, w, v, val_max;
547
548         val_max = 0;
549         for (i = 0; i < n; i++) {
550                 p = 0.5f;
551                 q = 0.5f;
552                 w = pwd->lsp_cos_table[i];
553                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
554                         q *= w - lsp[j - 1];
555                         p *= w - lsp[j];
556                 }
557                 p *= p * (2.0f - w);
558                 q *= q * (2.0f + w);
559                 v = p + q;
560                 v = pow_m1_4(pwd, v);
561                 if (v > val_max)
562                         val_max = v;
563                 out[i] = v;
564         }
565         *val_max_ptr = val_max;
566 }
567
568 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
569 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
570 {
571         float lsp_coefs[NB_LSP_COEFS];
572         int val, i;
573
574         for (i = 0; i < NB_LSP_COEFS; i++) {
575                 if (i == 0 || i >= 8)
576                         val = get_bits(&pwd->gb, 3);
577                 else
578                         val = get_bits(&pwd->gb, 4);
579                 lsp_coefs[i] = wma_lsp_codebook[i][val];
580         }
581
582         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
583                 pwd->block_len, lsp_coefs);
584 }
585
586 /* Decode exponents coded with VLC codes. */
587 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
588 {
589         int last_exp, n, code;
590         const uint16_t *ptr, *band_ptr;
591         float v, *q, max_scale, *q_end;
592
593         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
594         ptr = band_ptr;
595         q = pwd->exponents[ch];
596         q_end = q + pwd->block_len;
597         max_scale = 0;
598         last_exp = 36;
599
600         while (q < q_end) {
601                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
602                 if (code < 0)
603                         return code;
604                 /* NOTE: this offset is the same as MPEG4 AAC ! */
605                 last_exp += code - 60;
606                 /* XXX: use a table */
607                 v = pow(10, last_exp * (1.0 / 16.0));
608                 if (v > max_scale)
609                         max_scale = v;
610                 n = *ptr++;
611                 do {
612                         *q++ = v;
613                 } while (--n);
614         }
615         pwd->max_exponent[ch] = max_scale;
616         return 0;
617 }
618
619 /* compute src0 * src1 + src2 */
620 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
621                 const float *src2, int len)
622 {
623         int i;
624
625         for (i = 0; i < len; i++)
626                 dst[i] = src0[i] * src1[i] + src2[i];
627 }
628
629 static inline void vector_mult_reverse(float *dst, const float *src0,
630                 const float *src1, int len)
631 {
632         int i;
633
634         src1 += len - 1;
635         for (i = 0; i < len; i++)
636                 dst[i] = src0[i] * src1[-i];
637 }
638
639 /**
640  * Apply MDCT window and add into output.
641  *
642  * We ensure that when the windows overlap their squared sum
643  * is always 1 (MDCT reconstruction rule).
644  */
645 static void wma_window(struct private_wmadec_data *pwd, float *out)
646 {
647         float *in = pwd->output;
648         int block_len, bsize, n;
649
650         /* left part */
651         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
652                 block_len = pwd->block_len;
653                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
654                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
655         } else {
656                 block_len = 1 << pwd->prev_block_len_bits;
657                 n = (pwd->block_len - block_len) / 2;
658                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
659                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
660                         block_len);
661                 memcpy(out + n + block_len, in + n + block_len,
662                         n * sizeof(float));
663         }
664         out += pwd->block_len;
665         in += pwd->block_len;
666         /* right part */
667         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
668                 block_len = pwd->block_len;
669                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
670                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
671         } else {
672                 block_len = 1 << pwd->next_block_len_bits;
673                 n = (pwd->block_len - block_len) / 2;
674                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
675                 memcpy(out, in, n * sizeof(float));
676                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
677                         block_len);
678                 memset(out + n + block_len, 0, n * sizeof(float));
679         }
680 }
681
682 static int wma_total_gain_to_bits(int total_gain)
683 {
684         if (total_gain < 15)
685                 return 13;
686         else if (total_gain < 32)
687                 return 12;
688         else if (total_gain < 40)
689                 return 11;
690         else if (total_gain < 45)
691                 return 10;
692         else
693                 return 9;
694 }
695
696 static int compute_high_band_values(struct private_wmadec_data *pwd,
697                 int bsize, int nb_coefs[MAX_CHANNELS])
698 {
699         int ch;
700
701         if (!pwd->use_noise_coding)
702                 return 0;
703         for (ch = 0; ch < pwd->ahi.channels; ch++) {
704                 int i, m, a;
705                 if (!pwd->channel_coded[ch])
706                         continue;
707                 m = pwd->exponent_high_sizes[bsize];
708                 for (i = 0; i < m; i++) {
709                         a = get_bit(&pwd->gb);
710                         pwd->high_band_coded[ch][i] = a;
711                         if (!a)
712                                 continue;
713                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
714                 }
715         }
716         for (ch = 0; ch < pwd->ahi.channels; ch++) {
717                 int i, n, val;
718                 if (!pwd->channel_coded[ch])
719                         continue;
720                 n = pwd->exponent_high_sizes[bsize];
721                 val = (int)0x80000000;
722                 for (i = 0; i < n; i++) {
723                         if (!pwd->high_band_coded[ch][i])
724                                 continue;
725                         if (val == (int)0x80000000)
726                                 val = get_bits(&pwd->gb, 7) - 19;
727                         else {
728                                 int code = get_vlc(&pwd->gb,
729                                         pwd->hgain_vlc.table, HGAINVLCBITS,
730                                         HGAINMAX);
731                                 if (code < 0)
732                                         return code;
733                                 val += code - 18;
734                         }
735                         pwd->high_band_values[ch][i] = val;
736                 }
737         }
738         return 1;
739 }
740
741 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
742                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
743 {
744         int ch;
745         float mdct_norm = 1.0 / (pwd->block_len / 2);
746
747         for (ch = 0; ch < pwd->ahi.channels; ch++) {
748                 int16_t *coefs1;
749                 float *coefs, *exponents, mult, mult1, noise;
750                 int i, j, n, n1, last_high_band, esize;
751                 float exp_power[HIGH_BAND_MAX_SIZE];
752
753                 if (!pwd->channel_coded[ch])
754                         continue;
755                 coefs1 = pwd->coefs1[ch];
756                 exponents = pwd->exponents[ch];
757                 esize = pwd->exponents_bsize[ch];
758                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
759                 mult *= mdct_norm;
760                 coefs = pwd->coefs[ch];
761                 if (!pwd->use_noise_coding) {
762                         /* XXX: optimize more */
763                         n = nb_coefs[ch];
764                         for (i = 0; i < n; i++)
765                                 *coefs++ = coefs1[i] *
766                                         exponents[i << bsize >> esize] * mult;
767                         n = pwd->block_len - pwd->coefs_end[bsize];
768                         for (i = 0; i < n; i++)
769                                 *coefs++ = 0.0;
770                         continue;
771                 }
772                 mult1 = mult;
773                 n1 = pwd->exponent_high_sizes[bsize];
774                 /* compute power of high bands */
775                 exponents = pwd->exponents[ch] +
776                         (pwd->high_band_start[bsize] << bsize);
777                 last_high_band = 0; /* avoid warning */
778                 for (j = 0; j < n1; j++) {
779                         n = pwd->exponent_high_bands[
780                                 pwd->frame_len_bits - pwd->block_len_bits][j];
781                         if (pwd->high_band_coded[ch][j]) {
782                                 float e2, val;
783                                 e2 = 0;
784                                 for (i = 0; i < n; i++) {
785                                         val = exponents[i << bsize >> esize];
786                                         e2 += val * val;
787                                 }
788                                 exp_power[j] = e2 / n;
789                                 last_high_band = j;
790                         }
791                         exponents += n << bsize;
792                 }
793                 /* main freqs and high freqs */
794                 exponents = pwd->exponents[ch];
795                 for (j = -1; j < n1; j++) {
796                         if (j < 0)
797                                 n = pwd->high_band_start[bsize];
798                         else
799                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
800                                         - pwd->block_len_bits][j];
801                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
802                                 /* use noise with specified power */
803                                 mult1 = sqrt(exp_power[j]
804                                         / exp_power[last_high_band]);
805                                 /* XXX: use a table */
806                                 mult1 = mult1 * pow(10,
807                                         pwd->high_band_values[ch][j] * 0.05);
808                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
809                                 mult1 *= mdct_norm;
810                                 for (i = 0; i < n; i++) {
811                                         noise = pwd->noise_table[pwd->noise_index];
812                                         pwd->noise_index = (pwd->noise_index + 1)
813                                                 & (NOISE_TAB_SIZE - 1);
814                                         *coefs++ = noise * exponents[
815                                                 i << bsize >> esize] * mult1;
816                                 }
817                                 exponents += n << bsize;
818                         } else {
819                                 /* coded values + small noise */
820                                 for (i = 0; i < n; i++) {
821                                         noise = pwd->noise_table[pwd->noise_index];
822                                         pwd->noise_index = (pwd->noise_index + 1)
823                                                 & (NOISE_TAB_SIZE - 1);
824                                         *coefs++ = ((*coefs1++) + noise) *
825                                                 exponents[i << bsize >> esize]
826                                                 * mult;
827                                 }
828                                 exponents += n << bsize;
829                         }
830                 }
831                 /* very high freqs: noise */
832                 n = pwd->block_len - pwd->coefs_end[bsize];
833                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
834                 for (i = 0; i < n; i++) {
835                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
836                         pwd->noise_index = (pwd->noise_index + 1)
837                                 & (NOISE_TAB_SIZE - 1);
838                 }
839         }
840 }
841
842 /**
843  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
844  * errors.
845  */
846 static int wma_decode_block(struct private_wmadec_data *pwd)
847 {
848         int ret, n, v, ch, code, bsize;
849         int coef_nb_bits, total_gain;
850         int nb_coefs[MAX_CHANNELS];
851
852         /* compute current block length */
853         if (pwd->use_variable_block_len) {
854                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
855
856                 if (pwd->reset_block_lengths) {
857                         pwd->reset_block_lengths = 0;
858                         v = get_bits(&pwd->gb, n);
859                         if (v >= pwd->nb_block_sizes)
860                                 return -E_WMA_BLOCK_SIZE;
861                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
862                         v = get_bits(&pwd->gb, n);
863                         if (v >= pwd->nb_block_sizes)
864                                 return -E_WMA_BLOCK_SIZE;
865                         pwd->block_len_bits = pwd->frame_len_bits - v;
866                 } else {
867                         /* update block lengths */
868                         pwd->prev_block_len_bits = pwd->block_len_bits;
869                         pwd->block_len_bits = pwd->next_block_len_bits;
870                 }
871                 v = get_bits(&pwd->gb, n);
872                 if (v >= pwd->nb_block_sizes)
873                         return -E_WMA_BLOCK_SIZE;
874                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
875         } else {
876                 /* fixed block len */
877                 pwd->next_block_len_bits = pwd->frame_len_bits;
878                 pwd->prev_block_len_bits = pwd->frame_len_bits;
879                 pwd->block_len_bits = pwd->frame_len_bits;
880         }
881
882         /* now check if the block length is coherent with the frame length */
883         pwd->block_len = 1 << pwd->block_len_bits;
884         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
885                 return -E_INCOHERENT_BLOCK_LEN;
886
887         if (pwd->ahi.channels == 2)
888                 pwd->ms_stereo = get_bit(&pwd->gb);
889         v = 0;
890         for (ch = 0; ch < pwd->ahi.channels; ch++) {
891                 int a = get_bit(&pwd->gb);
892                 pwd->channel_coded[ch] = a;
893                 v |= a;
894         }
895
896         bsize = pwd->frame_len_bits - pwd->block_len_bits;
897
898         /* if no channel coded, no need to go further */
899         /* XXX: fix potential framing problems */
900         if (!v)
901                 goto next;
902
903         /*
904          * Read total gain and extract corresponding number of bits for coef
905          * escape coding.
906          */
907         total_gain = 1;
908         for (;;) {
909                 int a = get_bits(&pwd->gb, 7);
910                 total_gain += a;
911                 if (a != 127)
912                         break;
913         }
914
915         coef_nb_bits = wma_total_gain_to_bits(total_gain);
916
917         /* compute number of coefficients */
918         n = pwd->coefs_end[bsize];
919         for (ch = 0; ch < pwd->ahi.channels; ch++)
920                 nb_coefs[ch] = n;
921
922         ret = compute_high_band_values(pwd, bsize, nb_coefs);
923         if (ret < 0)
924                 return ret;
925
926         /* exponents can be reused in short blocks. */
927         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
928                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
929                         if (pwd->channel_coded[ch]) {
930                                 if (pwd->use_exp_vlc) {
931                                         ret = decode_exp_vlc(pwd, ch);
932                                         if (ret < 0)
933                                                 return ret;
934                                 } else
935                                         decode_exp_lsp(pwd, ch);
936                                 pwd->exponents_bsize[ch] = bsize;
937                         }
938                 }
939         }
940
941         /* parse spectral coefficients : just RLE encoding */
942         for (ch = 0; ch < pwd->ahi.channels; ch++) {
943                 struct vlc *coef_vlc;
944                 int level, run, tindex;
945                 int16_t *ptr, *eptr;
946                 const uint16_t *level_table, *run_table;
947
948                 if (!pwd->channel_coded[ch])
949                         continue;
950                 /*
951                  * special VLC tables are used for ms stereo because there is
952                  * potentially less energy there
953                  */
954                 tindex = (ch == 1 && pwd->ms_stereo);
955                 coef_vlc = &pwd->coef_vlc[tindex];
956                 run_table = pwd->run_table[tindex];
957                 level_table = pwd->level_table[tindex];
958                 /* XXX: optimize */
959                 ptr = &pwd->coefs1[ch][0];
960                 eptr = ptr + nb_coefs[ch];
961                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
962                 for (;;) {
963                         code = get_vlc(&pwd->gb, coef_vlc->table,
964                                 VLCBITS, VLCMAX);
965                         if (code < 0)
966                                 return code;
967                         if (code == 1) /* EOB */
968                                 break;
969                         if (code == 0) { /* escape */
970                                 level = get_bits(&pwd->gb, coef_nb_bits);
971                                 /* reading block_len_bits would be better */
972                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
973                         } else { /* normal code */
974                                 run = run_table[code];
975                                 level = level_table[code];
976                         }
977                         if (!get_bit(&pwd->gb))
978                                 level = -level;
979                         ptr += run;
980                         if (ptr >= eptr) {
981                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
982                                 break;
983                         }
984                         *ptr++ = level;
985                         if (ptr >= eptr) /* EOB can be omitted */
986                                 break;
987                 }
988         }
989         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
990         if (pwd->ms_stereo && pwd->channel_coded[1]) {
991                 float a, b;
992                 int i;
993                 /*
994                  * Nominal case for ms stereo: we do it before mdct.
995                  *
996                  * No need to optimize this case because it should almost never
997                  * happen.
998                  */
999                 if (!pwd->channel_coded[0]) {
1000                         PARA_NOTICE_LOG("rare ms-stereo\n");
1001                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
1002                         pwd->channel_coded[0] = 1;
1003                 }
1004                 for (i = 0; i < pwd->block_len; i++) {
1005                         a = pwd->coefs[0][i];
1006                         b = pwd->coefs[1][i];
1007                         pwd->coefs[0][i] = a + b;
1008                         pwd->coefs[1][i] = a - b;
1009                 }
1010         }
1011 next:
1012         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1013                 int n4, index;
1014
1015                 n = pwd->block_len;
1016                 n4 = pwd->block_len / 2;
1017                 if (pwd->channel_coded[ch])
1018                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1019                 else if (!(pwd->ms_stereo && ch == 1))
1020                         memset(pwd->output, 0, sizeof(pwd->output));
1021
1022                 /* multiply by the window and add in the frame */
1023                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1024                 wma_window(pwd, &pwd->frame_out[ch][index]);
1025         }
1026
1027         /* update block number */
1028         pwd->block_pos += pwd->block_len;
1029         if (pwd->block_pos >= pwd->frame_len)
1030                 return 1;
1031         else
1032                 return 0;
1033 }
1034
1035 /*
1036  * Clip a signed integer value into the -32768,32767 range.
1037  *
1038  * \param a The value to clip.
1039  *
1040  * \return The clipped value.
1041  */
1042 static inline int16_t av_clip_int16(int a)
1043 {
1044         if ((a + 32768) & ~65535)
1045                 return (a >> 31) ^ 32767;
1046         else
1047                 return a;
1048 }
1049
1050 /* Decode a frame of frame_len samples. */
1051 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1052 {
1053         int ret, i, n, ch, incr;
1054         int16_t *ptr;
1055         float *iptr;
1056
1057         /* read each block */
1058         pwd->block_pos = 0;
1059         for (;;) {
1060                 ret = wma_decode_block(pwd);
1061                 if (ret < 0)
1062                         return ret;
1063                 if (ret)
1064                         break;
1065         }
1066
1067         /* convert frame to integer */
1068         n = pwd->frame_len;
1069         incr = pwd->ahi.channels;
1070         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1071                 ptr = samples + ch;
1072                 iptr = pwd->frame_out[ch];
1073
1074                 for (i = 0; i < n; i++) {
1075                         *ptr = av_clip_int16(lrintf(*iptr++));
1076                         ptr += incr;
1077                 }
1078                 /* prepare for next block */
1079                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1080                         pwd->frame_len * sizeof(float));
1081         }
1082         return 0;
1083 }
1084
1085 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1086                 int *data_size, const uint8_t *buf, int buf_size)
1087 {
1088         int ret;
1089         int16_t *samples;
1090
1091         if (buf_size == 0) {
1092                 pwd->last_superframe_len = 0;
1093                 return 0;
1094         }
1095         if (buf_size < pwd->ahi.block_align)
1096                 return 0;
1097         buf_size = pwd->ahi.block_align;
1098         samples = data;
1099         init_get_bits(&pwd->gb, buf, buf_size);
1100         if (pwd->use_bit_reservoir) {
1101                 int i, nb_frames, bit_offset, pos, len;
1102                 uint8_t *q;
1103
1104                 /* read super frame header */
1105                 skip_bits(&pwd->gb, 4); /* super frame index */
1106                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1107                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1108                 ret = -E_WMA_OUTPUT_SPACE;
1109                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1110                                 * sizeof(int16_t) > *data_size)
1111                         goto fail;
1112
1113                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1114
1115                 if (pwd->last_superframe_len > 0) {
1116                         /* add bit_offset bits to last frame */
1117                         ret = -E_WMA_BAD_SUPERFRAME;
1118                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1119                                         MAX_CODED_SUPERFRAME_SIZE)
1120                                 goto fail;
1121                         q = pwd->last_superframe + pwd->last_superframe_len;
1122                         len = bit_offset;
1123                         while (len > 7) {
1124                                 *q++ = get_bits(&pwd->gb, 8);
1125                                 len -= 8;
1126                         }
1127                         if (len > 0)
1128                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1129
1130                         /* XXX: bit_offset bits into last frame */
1131                         init_get_bits(&pwd->gb, pwd->last_superframe,
1132                                 MAX_CODED_SUPERFRAME_SIZE);
1133                         /* skip unused bits */
1134                         if (pwd->last_bitoffset > 0)
1135                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1136                         /*
1137                          * This frame is stored in the last superframe and in
1138                          * the current one.
1139                          */
1140                         ret = wma_decode_frame(pwd, samples);
1141                         if (ret < 0)
1142                                 goto fail;
1143                         samples += pwd->ahi.channels * pwd->frame_len;
1144                 }
1145
1146                 /* read each frame starting from bit_offset */
1147                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1148                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1149                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1150                 len = pos & 7;
1151                 if (len > 0)
1152                         skip_bits(&pwd->gb, len);
1153
1154                 pwd->reset_block_lengths = 1;
1155                 for (i = 0; i < nb_frames; i++) {
1156                         ret = wma_decode_frame(pwd, samples);
1157                         if (ret < 0)
1158                                 goto fail;
1159                         samples += pwd->ahi.channels * pwd->frame_len;
1160                 }
1161
1162                 /* we copy the end of the frame in the last frame buffer */
1163                 pos = get_bits_count(&pwd->gb) +
1164                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1165                 pwd->last_bitoffset = pos & 7;
1166                 pos >>= 3;
1167                 len = buf_size - pos;
1168                 ret = -E_WMA_BAD_SUPERFRAME;
1169                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1170                         goto fail;
1171                 pwd->last_superframe_len = len;
1172                 memcpy(pwd->last_superframe, buf + pos, len);
1173         } else {
1174                 PARA_DEBUG_LOG("not using bit reservoir\n");
1175                 ret = -E_WMA_OUTPUT_SPACE;
1176                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1177                         goto fail;
1178                 /* single frame decode */
1179                 ret = wma_decode_frame(pwd, samples);
1180                 if (ret < 0)
1181                         goto fail;
1182                 samples += pwd->ahi.channels * pwd->frame_len;
1183         }
1184         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1185                 pwd->frame_len, pwd->block_len,
1186                 (int)((int8_t *)samples - (int8_t *)data), pwd->ahi.block_align);
1187         *data_size = (int8_t *)samples - (int8_t *)data;
1188         return pwd->ahi.block_align;
1189 fail:
1190         /* reset the bit reservoir on errors */
1191         pwd->last_superframe_len = 0;
1192         return ret;
1193 }
1194
1195 static void wmadec_close(struct filter_node *fn)
1196 {
1197         struct private_wmadec_data *pwd = fn->private_data;
1198
1199         if (!pwd)
1200                 return;
1201         wmadec_cleanup(pwd);
1202         free(fn->private_data);
1203         fn->private_data = NULL;
1204 }
1205
1206 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1207 {
1208         struct filter_node *fn = btr_context(btrn);
1209         struct private_wmadec_data *pwd = fn->private_data;
1210
1211         if (!strcmp(cmd, "samplerate")) {
1212                 if (pwd->ahi.sample_rate == 0)
1213                         return -E_BTR_NAVAIL;
1214                 *result = make_message("%u", pwd->ahi.sample_rate);
1215                 return 1;
1216         }
1217         if (!strcmp(cmd, "channels")) {
1218                 if (pwd->ahi.channels == 0)
1219                         return -E_BTR_NAVAIL;
1220                 *result = make_message("%u", pwd->ahi.channels);
1221                 return 1;
1222         }
1223         return -ERRNO_TO_PARA_ERROR(ENOTSUP);
1224 }
1225
1226 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1227
1228 static void wmadec_post_select(__a_unused struct sched *s, struct task *t)
1229 {
1230         struct filter_node *fn = container_of(t, struct filter_node, task);
1231         int ret, converted;
1232         struct private_wmadec_data *pwd = fn->private_data;
1233         struct btr_node *btrn = fn->btrn;
1234         size_t len;
1235         char *in;
1236
1237 next_buffer:
1238         converted = 0;
1239         t->error = 0;
1240         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1241         if (ret < 0)
1242                 goto err;
1243         if (ret == 0)
1244                 return;
1245         btr_merge(btrn, fn->min_iqs);
1246         len = btr_next_buffer(btrn, (char **)&in);
1247         ret = -E_WMADEC_EOF;
1248         if (len < fn->min_iqs)
1249                 goto err;
1250         if (!pwd) {
1251                 ret = wma_decode_init(in, len, &pwd);
1252                 if (ret < 0)
1253                         goto err;
1254                 if (ret == 0) {
1255                         fn->min_iqs += 4096;
1256                         goto next_buffer;
1257                 }
1258                 fn->min_iqs = 2 * (WMA_FRAME_SKIP + pwd->ahi.block_align);
1259                 fn->private_data = pwd;
1260                 converted = pwd->ahi.header_len;
1261                 goto success;
1262         }
1263         fn->min_iqs = WMA_FRAME_SKIP + pwd->ahi.block_align;
1264         for (;;) {
1265                 char *out;
1266                 int out_size = WMA_OUTPUT_BUFFER_SIZE;
1267                 if (converted + fn->min_iqs > len)
1268                         break;
1269                 out = para_malloc(WMA_OUTPUT_BUFFER_SIZE);
1270                 ret = wma_decode_superframe(pwd, out,
1271                         &out_size, (uint8_t *)in + converted + WMA_FRAME_SKIP,
1272                         len - WMA_FRAME_SKIP);
1273                 if (ret < 0) {
1274                         free(out);
1275                         goto err;
1276                 }
1277                 btr_add_output(out, out_size, btrn);
1278                 converted += ret + WMA_FRAME_SKIP;
1279         }
1280 success:
1281         btr_consume(btrn, converted);
1282         return;
1283 err:
1284         assert(ret < 0);
1285         t->error = ret;
1286         btr_remove_node(btrn);
1287 }
1288
1289 static void wmadec_open(struct filter_node *fn)
1290 {
1291         fn->private_data = NULL;
1292         fn->min_iqs = 4096;
1293 }
1294
1295 /**
1296  * The init function of the wma decoder.
1297  *
1298  * \param f Its fields are filled in by the function.
1299  */
1300 void wmadec_filter_init(struct filter *f)
1301 {
1302         f->open = wmadec_open;
1303         f->close = wmadec_close;
1304         f->execute = wmadec_execute;
1305         f->pre_select = generic_filter_pre_select;
1306         f->post_select = wmadec_post_select;
1307 }