simplify fft_init() due to split_radix is always 1.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** * \file wmadec_filter.c paraslash's WMA decoder.  */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <math.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <math.h>
26 #include <string.h>
27 #include <regex.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "imdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         struct asf_header_info ahi;
63         struct getbit_context gb;
64         int use_bit_reservoir;
65         int use_variable_block_len;
66         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
67         int use_noise_coding;   ///< true if perceptual noise is added
68         int byte_offset_bits;
69         struct vlc exp_vlc;
70         int exponent_sizes[BLOCK_NB_SIZES];
71         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
72         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
73         int coefs_start;        ///< first coded coef
74         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
75         int exponent_high_sizes[BLOCK_NB_SIZES];
76         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
77         struct vlc hgain_vlc;
78
79         /* coded values in high bands */
80         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
82
83         /* there are two possible tables for spectral coefficients */
84         struct vlc coef_vlc[2];
85         uint16_t *run_table[2];
86         uint16_t *level_table[2];
87         uint16_t *int_table[2];
88         const struct coef_vlc_table *coef_vlcs[2];
89         /* frame info */
90         int frame_len;          ///< frame length in samples
91         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
92         int nb_block_sizes;     ///< number of block sizes
93         /* block info */
94         int reset_block_lengths;
95         int block_len_bits;     ///< log2 of current block length
96         int next_block_len_bits;        ///< log2 of next block length
97         int prev_block_len_bits;        ///< log2 of prev block length
98         int block_len;          ///< block length in samples
99         int block_num;          ///< block number in current frame
100         int block_pos;          ///< current position in frame
101         uint8_t ms_stereo;      ///< true if mid/side stereo mode
102         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
103         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
104         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float max_exponent[MAX_CHANNELS];
106         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
107         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
108         float output[BLOCK_MAX_SIZE * 2];
109         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
110         float *windows[BLOCK_NB_SIZES];
111         /* output buffer for one frame and the last for IMDCT windowing */
112         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
113         /* last frame info */
114         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
115         int last_bitoffset;
116         int last_superframe_len;
117         float noise_table[NOISE_TAB_SIZE];
118         int noise_index;
119         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
120         /* lsp_to_curve tables */
121         float lsp_cos_table[BLOCK_MAX_SIZE];
122         float lsp_pow_e_table[256];
123         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
124         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
125 };
126
127 #define EXPVLCBITS 8
128 #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
129
130 #define HGAINVLCBITS 9
131 #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
132
133 #define VLCBITS 9
134 #define VLCMAX ((22+VLCBITS-1)/VLCBITS)
135
136 static int wmadec_cleanup(struct private_wmadec_data *s)
137 {
138         int i;
139
140         for (i = 0; i < s->nb_block_sizes; i++)
141                 imdct_end(s->mdct_ctx[i]);
142
143         if (s->use_exp_vlc)
144                 free_vlc(&s->exp_vlc);
145         if (s->use_noise_coding)
146                 free_vlc(&s->hgain_vlc);
147         for (i = 0; i < 2; i++) {
148                 free_vlc(&s->coef_vlc[i]);
149                 free(s->run_table[i]);
150                 free(s->level_table[i]);
151                 free(s->int_table[i]);
152         }
153         return 0;
154 }
155
156 /* XXX: use same run/length optimization as mpeg decoders */
157 //FIXME maybe split decode / encode or pass flag
158 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
159                 uint16_t **plevel_table, uint16_t **pint_table,
160                 const struct coef_vlc_table *vlc_table)
161 {
162         int n = vlc_table->n;
163         const uint8_t *table_bits = vlc_table->huffbits;
164         const uint32_t *table_codes = vlc_table->huffcodes;
165         const uint16_t *levels_table = vlc_table->levels;
166         uint16_t *run_table, *level_table, *int_table;
167         int i, l, j, k, level;
168
169         init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4);
170
171         run_table = para_malloc(n * sizeof (uint16_t));
172         level_table = para_malloc(n * sizeof (uint16_t));
173         int_table = para_malloc(n * sizeof (uint16_t));
174         i = 2;
175         level = 1;
176         k = 0;
177         while (i < n) {
178                 int_table[k] = i;
179                 l = levels_table[k++];
180                 for (j = 0; j < l; j++) {
181                         run_table[i] = j;
182                         level_table[i] = level;
183                         i++;
184                 }
185                 level++;
186         }
187         *prun_table = run_table;
188         *plevel_table = level_table;
189         *pint_table = int_table;
190 }
191
192 /* compute the scale factor band sizes for each MDCT block size */
193 static void compute_scale_factor_band_sizes(struct private_wmadec_data *s,
194         float high_freq)
195 {
196         struct asf_header_info *ahi = &s->ahi;
197         int a, b, pos, lpos, k, block_len, i, j, n;
198         const uint8_t *table;
199
200         s->coefs_start = 0;
201         for (k = 0; k < s->nb_block_sizes; k++) {
202                 block_len = s->frame_len >> k;
203
204                 table = NULL;
205                 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
206                 if (a < 3) {
207                         if (ahi->sample_rate >= 44100)
208                                 table = exponent_band_44100[a];
209                         else if (ahi->sample_rate >= 32000)
210                                 table = exponent_band_32000[a];
211                         else if (ahi->sample_rate >= 22050)
212                                 table = exponent_band_22050[a];
213                 }
214                 if (table) {
215                         n = *table++;
216                         for (i = 0; i < n; i++)
217                                 s->exponent_bands[k][i] = table[i];
218                         s->exponent_sizes[k] = n;
219                 } else {
220                         j = 0;
221                         lpos = 0;
222                         for (i = 0; i < 25; i++) {
223                                 a = wma_critical_freqs[i];
224                                 b = ahi->sample_rate;
225                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
226                                 pos <<= 2;
227                                 if (pos > block_len)
228                                         pos = block_len;
229                                 if (pos > lpos)
230                                         s->exponent_bands[k][j++] = pos - lpos;
231                                 if (pos >= block_len)
232                                         break;
233                                 lpos = pos;
234                         }
235                         s->exponent_sizes[k] = j;
236                 }
237
238                 /* max number of coefs */
239                 s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
240                 /* high freq computation */
241                 s->high_band_start[k] = (int) ((block_len * 2 * high_freq)
242                         / ahi->sample_rate + 0.5);
243                 n = s->exponent_sizes[k];
244                 j = 0;
245                 pos = 0;
246                 for (i = 0; i < n; i++) {
247                         int start, end;
248                         start = pos;
249                         pos += s->exponent_bands[k][i];
250                         end = pos;
251                         if (start < s->high_band_start[k])
252                                 start = s->high_band_start[k];
253                         if (end > s->coefs_end[k])
254                                 end = s->coefs_end[k];
255                         if (end > start)
256                                 s->exponent_high_bands[k][j++] = end - start;
257                 }
258                 s->exponent_high_sizes[k] = j;
259         }
260 }
261
262 static int wma_init(struct private_wmadec_data *s, int flags2, struct asf_header_info *ahi)
263 {
264         int i;
265         float bps1, high_freq;
266         volatile float bps;
267         int sample_rate1;
268         int coef_vlc_table;
269
270         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
271                 || ahi->channels <= 0 || ahi->channels > 8
272                 || ahi->bit_rate <= 0)
273                 return -E_WMA_BAD_PARAMS;
274
275         /* compute MDCT block size */
276         if (ahi->sample_rate <= 16000) {
277                 s->frame_len_bits = 9;
278         } else if (ahi->sample_rate <= 22050) {
279                 s->frame_len_bits = 10;
280         } else {
281                 s->frame_len_bits = 11;
282         }
283         s->frame_len = 1 << s->frame_len_bits;
284         if (s->use_variable_block_len) {
285                 int nb_max, nb;
286                 nb = ((flags2 >> 3) & 3) + 1;
287                 if ((ahi->bit_rate / ahi->channels) >= 32000)
288                         nb += 2;
289                 nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
290                 if (nb > nb_max)
291                         nb = nb_max;
292                 s->nb_block_sizes = nb + 1;
293         } else {
294                 s->nb_block_sizes = 1;
295         }
296
297         /* init rate dependent parameters */
298         s->use_noise_coding = 1;
299         high_freq = ahi->sample_rate * 0.5;
300
301         /* wma2 rates are normalized */
302         sample_rate1 = ahi->sample_rate;
303         if (sample_rate1 >= 44100)
304                 sample_rate1 = 44100;
305         else if (sample_rate1 >= 22050)
306                 sample_rate1 = 22050;
307         else if (sample_rate1 >= 16000)
308                 sample_rate1 = 16000;
309         else if (sample_rate1 >= 11025)
310                 sample_rate1 = 11025;
311         else if (sample_rate1 >= 8000)
312                 sample_rate1 = 8000;
313
314         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
315         s->byte_offset_bits = wma_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
316         /*
317          * Compute high frequency value and choose if noise coding should be
318          * activated.
319          */
320         bps1 = bps;
321         if (ahi->channels == 2)
322                 bps1 = bps * 1.6;
323         if (sample_rate1 == 44100) {
324                 if (bps1 >= 0.61)
325                         s->use_noise_coding = 0;
326                 else
327                         high_freq = high_freq * 0.4;
328         } else if (sample_rate1 == 22050) {
329                 if (bps1 >= 1.16)
330                         s->use_noise_coding = 0;
331                 else if (bps1 >= 0.72)
332                         high_freq = high_freq * 0.7;
333                 else
334                         high_freq = high_freq * 0.6;
335         } else if (sample_rate1 == 16000) {
336                 if (bps > 0.5)
337                         high_freq = high_freq * 0.5;
338                 else
339                         high_freq = high_freq * 0.3;
340         } else if (sample_rate1 == 11025) {
341                 high_freq = high_freq * 0.7;
342         } else if (sample_rate1 == 8000) {
343                 if (bps <= 0.625) {
344                         high_freq = high_freq * 0.5;
345                 } else if (bps > 0.75) {
346                         s->use_noise_coding = 0;
347                 } else {
348                         high_freq = high_freq * 0.65;
349                 }
350         } else {
351                 if (bps >= 0.8) {
352                         high_freq = high_freq * 0.75;
353                 } else if (bps >= 0.6) {
354                         high_freq = high_freq * 0.6;
355                 } else {
356                         high_freq = high_freq * 0.5;
357                 }
358         }
359         PARA_INFO_LOG("channels=%d sample_rate=%d "
360                 "bitrate=%d block_align=%d\n",
361                 ahi->channels, ahi->sample_rate,
362                 ahi->bit_rate, ahi->block_align);
363         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
364                 "high_freq=%f bitoffset=%d\n",
365                 s->frame_len, bps, bps1,
366                 high_freq, s->byte_offset_bits);
367         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
368                 s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
369
370         compute_scale_factor_band_sizes(s, high_freq);
371         /* init MDCT windows : simple sinus window */
372         for (i = 0; i < s->nb_block_sizes; i++) {
373                 int n;
374                 n = 1 << (s->frame_len_bits - i);
375                 sine_window_init(ff_sine_windows[s->frame_len_bits - i - 7], n);
376                 s->windows[i] = ff_sine_windows[s->frame_len_bits - i - 7];
377         }
378
379         s->reset_block_lengths = 1;
380
381         if (s->use_noise_coding) {
382                 /* init the noise generator */
383                 if (s->use_exp_vlc)
384                         s->noise_mult = 0.02;
385                 else
386                         s->noise_mult = 0.04;
387
388                 {
389                         unsigned int seed;
390                         float norm;
391                         seed = 1;
392                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
393                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
394                                 seed = seed * 314159 + 1;
395                                 s->noise_table[i] = (float) ((int) seed) * norm;
396                         }
397                 }
398         }
399
400         /* choose the VLC tables for the coefficients */
401         coef_vlc_table = 2;
402         if (ahi->sample_rate >= 32000) {
403                 if (bps1 < 0.72)
404                         coef_vlc_table = 0;
405                 else if (bps1 < 1.16)
406                         coef_vlc_table = 1;
407         }
408         s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
409         s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
410         init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
411                 &s->int_table[0], s->coef_vlcs[0]);
412         init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
413                 &s->int_table[1], s->coef_vlcs[1]);
414         return 0;
415 }
416
417 static void wma_lsp_to_curve_init(struct private_wmadec_data *s, int frame_len)
418 {
419         float wdel, a, b;
420         int i, e, m;
421
422         wdel = M_PI / frame_len;
423         for (i = 0; i < frame_len; i++)
424                 s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
425
426         /* tables for x^-0.25 computation */
427         for (i = 0; i < 256; i++) {
428                 e = i - 126;
429                 s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
430         }
431
432         /* These two tables are needed to avoid two operations in pow_m1_4. */
433         b = 1.0;
434         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
435                 m = (1 << LSP_POW_BITS) + i;
436                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
437                 a = pow(a, -0.25);
438                 s->lsp_pow_m_table1[i] = 2 * a - b;
439                 s->lsp_pow_m_table2[i] = b - a;
440                 b = a;
441         }
442 }
443
444 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
445 {
446         struct private_wmadec_data *s;
447         int ret, i;
448
449         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
450         s = para_calloc(sizeof(*s));
451         ret = read_asf_header(initial_buf, len, &s->ahi);
452         if (ret <= 0) {
453                 free(s);
454                 return ret;
455         }
456
457         s->use_exp_vlc = s->ahi.flags2 & 0x0001;
458         s->use_bit_reservoir = s->ahi.flags2 & 0x0002;
459         s->use_variable_block_len = s->ahi.flags2 & 0x0004;
460
461         ret = wma_init(s, s->ahi.flags2, &s->ahi);
462         if (ret < 0)
463                 return ret;
464         /* init MDCT */
465         for (i = 0; i < s->nb_block_sizes; i++) {
466                 ret = imdct_init(s->frame_len_bits - i + 1, 1, &s->mdct_ctx[i]);
467                 if (ret < 0)
468                         return ret;
469         }
470         if (s->use_noise_coding) {
471                 PARA_INFO_LOG("using noise coding\n");
472                 init_vlc(&s->hgain_vlc, HGAINVLCBITS,
473                         sizeof (ff_wma_hgain_huffbits), ff_wma_hgain_huffbits,
474                         1, 1, ff_wma_hgain_huffcodes, 2, 2);
475         }
476
477         if (s->use_exp_vlc) {
478                 PARA_INFO_LOG("using exp_vlc\n");
479                 init_vlc(&s->exp_vlc, EXPVLCBITS,
480                 sizeof (ff_wma_scale_huffbits), ff_wma_scale_huffbits,
481                 1, 1, ff_wma_scale_huffcodes, 4, 4);
482         } else {
483                 PARA_INFO_LOG("using curve\n");
484                 wma_lsp_to_curve_init(s, s->frame_len);
485         }
486         *result = s;
487         return s->ahi.header_len;
488 }
489
490 /**
491  * compute x^-0.25 with an exponent and mantissa table. We use linear
492  * interpolation to reduce the mantissa table size at a small speed
493  * expense (linear interpolation approximately doubles the number of
494  * bits of precision).
495  */
496 static inline float pow_m1_4(struct private_wmadec_data *s, float x)
497 {
498         union {
499                 float f;
500                 unsigned int v;
501         } u, t;
502         unsigned int e, m;
503         float a, b;
504
505         u.f = x;
506         e = u.v >> 23;
507         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
508         /* build interpolation scale: 1 <= t < 2. */
509         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
510         a = s->lsp_pow_m_table1[m];
511         b = s->lsp_pow_m_table2[m];
512         return s->lsp_pow_e_table[e] * (a + b * t.f);
513 }
514
515 static void wma_lsp_to_curve(struct private_wmadec_data *s,
516                 float *out, float *val_max_ptr, int n, float *lsp)
517 {
518         int i, j;
519         float p, q, w, v, val_max;
520
521         val_max = 0;
522         for (i = 0; i < n; i++) {
523                 p = 0.5f;
524                 q = 0.5f;
525                 w = s->lsp_cos_table[i];
526                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
527                         q *= w - lsp[j - 1];
528                         p *= w - lsp[j];
529                 }
530                 p *= p * (2.0f - w);
531                 q *= q * (2.0f + w);
532                 v = p + q;
533                 v = pow_m1_4(s, v);
534                 if (v > val_max)
535                         val_max = v;
536                 out[i] = v;
537         }
538         *val_max_ptr = val_max;
539 }
540
541 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
542 static void decode_exp_lsp(struct private_wmadec_data *s, int ch)
543 {
544         float lsp_coefs[NB_LSP_COEFS];
545         int val, i;
546
547         for (i = 0; i < NB_LSP_COEFS; i++) {
548                 if (i == 0 || i >= 8)
549                         val = get_bits(&s->gb, 3);
550                 else
551                         val = get_bits(&s->gb, 4);
552                 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
553         }
554
555         wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
556                          s->block_len, lsp_coefs);
557 }
558
559 /*
560  * Parse a vlc code, faster then get_vlc().
561  *
562  * \param bits The number of bits which will be read at once, must be
563  * identical to nb_bits in init_vlc()
564  *
565  * \param max_depth The number of times bits bits must be read to completely
566  * read the longest vlc code = (max_vlc_length + bits - 1) / bits.
567  */
568 static int get_vlc2(struct getbit_context *s, VLC_TYPE(*table)[2],
569                 int bits, int max_depth)
570 {
571         int code;
572
573         OPEN_READER(re, s)
574         UPDATE_CACHE(re, s)
575         GET_VLC(code, re, s, table, bits, max_depth)
576         CLOSE_READER(re, s)
577         return code;
578 }
579
580 /* Decode exponents coded with VLC codes. */
581 static int decode_exp_vlc(struct private_wmadec_data *s, int ch)
582 {
583         int last_exp, n, code;
584         const uint16_t *ptr, *band_ptr;
585         float v, *q, max_scale, *q_end;
586
587         band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
588         ptr = band_ptr;
589         q = s->exponents[ch];
590         q_end = q + s->block_len;
591         max_scale = 0;
592         last_exp = 36;
593
594         while (q < q_end) {
595                 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
596                 if (code < 0)
597                         return -1;
598                 /* NOTE: this offset is the same as MPEG4 AAC ! */
599                 last_exp += code - 60;
600                 /* XXX: use a table */
601                 v = pow(10, last_exp * (1.0 / 16.0));
602                 if (v > max_scale)
603                         max_scale = v;
604                 n = *ptr++;
605                 do {
606                         *q++ = v;
607                 } while (--n);
608         }
609         s->max_exponent[ch] = max_scale;
610         return 0;
611 }
612
613 static void vector_fmul_add(float *dst, const float *src0, const float *src1,
614                 const float *src2, int src3, int len, int step)
615 {
616         int i;
617         for (i = 0; i < len; i++)
618                 dst[i * step] = src0[i] * src1[i] + src2[i] + src3;
619 }
620
621 static void vector_fmul_reverse_c(float *dst, const float *src0,
622                 const float *src1, int len)
623 {
624         int i;
625         src1 += len - 1;
626         for (i = 0; i < len; i++)
627                 dst[i] = src0[i] * src1[-i];
628 }
629
630 /**
631  * Apply MDCT window and add into output.
632  *
633  * We ensure that when the windows overlap their squared sum
634  * is always 1 (MDCT reconstruction rule).
635  */
636 static void wma_window(struct private_wmadec_data *s, float *out)
637 {
638         float *in = s->output;
639         int block_len, bsize, n;
640
641         /* left part */
642         if (s->block_len_bits <= s->prev_block_len_bits) {
643                 block_len = s->block_len;
644                 bsize = s->frame_len_bits - s->block_len_bits;
645
646                 vector_fmul_add(out, in, s->windows[bsize],
647                                          out, 0, block_len, 1);
648
649         } else {
650                 block_len = 1 << s->prev_block_len_bits;
651                 n = (s->block_len - block_len) / 2;
652                 bsize = s->frame_len_bits - s->prev_block_len_bits;
653
654                 vector_fmul_add(out + n, in + n, s->windows[bsize],
655                                          out + n, 0, block_len, 1);
656
657                 memcpy(out + n + block_len, in + n + block_len,
658                        n * sizeof (float));
659         }
660
661         out += s->block_len;
662         in += s->block_len;
663
664         /* right part */
665         if (s->block_len_bits <= s->next_block_len_bits) {
666                 block_len = s->block_len;
667                 bsize = s->frame_len_bits - s->block_len_bits;
668
669                 vector_fmul_reverse_c(out, in, s->windows[bsize], block_len);
670
671         } else {
672                 block_len = 1 << s->next_block_len_bits;
673                 n = (s->block_len - block_len) / 2;
674                 bsize = s->frame_len_bits - s->next_block_len_bits;
675
676                 memcpy(out, in, n * sizeof (float));
677
678                 vector_fmul_reverse_c(out + n, in + n, s->windows[bsize],
679                                       block_len);
680
681                 memset(out + n + block_len, 0, n * sizeof (float));
682         }
683 }
684
685 static int wma_total_gain_to_bits(int total_gain)
686 {
687         if (total_gain < 15)
688                 return 13;
689         else if (total_gain < 32)
690                 return 12;
691         else if (total_gain < 40)
692                 return 11;
693         else if (total_gain < 45)
694                 return 10;
695         else
696                 return 9;
697 }
698
699 /**
700  * @return 0 if OK. 1 if last block of frame. return -1 if
701  * unrecorrable error.
702  */
703 static int wma_decode_block(struct private_wmadec_data *s)
704 {
705         int n, v, ch, code, bsize;
706         int coef_nb_bits, total_gain;
707         int nb_coefs[MAX_CHANNELS];
708         float mdct_norm;
709
710         /* compute current block length */
711         if (s->use_variable_block_len) {
712                 n = wma_log2(s->nb_block_sizes - 1) + 1;
713
714                 if (s->reset_block_lengths) {
715                         s->reset_block_lengths = 0;
716                         v = get_bits(&s->gb, n);
717                         if (v >= s->nb_block_sizes)
718                                 return -1;
719                         s->prev_block_len_bits = s->frame_len_bits - v;
720                         v = get_bits(&s->gb, n);
721                         if (v >= s->nb_block_sizes)
722                                 return -1;
723                         s->block_len_bits = s->frame_len_bits - v;
724                 } else {
725                         /* update block lengths */
726                         s->prev_block_len_bits = s->block_len_bits;
727                         s->block_len_bits = s->next_block_len_bits;
728                 }
729                 v = get_bits(&s->gb, n);
730                 if (v >= s->nb_block_sizes)
731                         return -1;
732                 s->next_block_len_bits = s->frame_len_bits - v;
733         } else {
734                 /* fixed block len */
735                 s->next_block_len_bits = s->frame_len_bits;
736                 s->prev_block_len_bits = s->frame_len_bits;
737                 s->block_len_bits = s->frame_len_bits;
738         }
739
740         /* now check if the block length is coherent with the frame length */
741         s->block_len = 1 << s->block_len_bits;
742         if ((s->block_pos + s->block_len) > s->frame_len)
743                 return -E_INCOHERENT_BLOCK_LEN;
744
745         if (s->ahi.channels == 2) {
746                 s->ms_stereo = get_bits1(&s->gb);
747         }
748         v = 0;
749         for (ch = 0; ch < s->ahi.channels; ch++) {
750                 int a = get_bits1(&s->gb);
751                 s->channel_coded[ch] = a;
752                 v |= a;
753         }
754
755         bsize = s->frame_len_bits - s->block_len_bits;
756
757         /* if no channel coded, no need to go further */
758         /* XXX: fix potential framing problems */
759         if (!v)
760                 goto next;
761
762         /* read total gain and extract corresponding number of bits for
763            coef escape coding */
764         total_gain = 1;
765         for (;;) {
766                 int a = get_bits(&s->gb, 7);
767                 total_gain += a;
768                 if (a != 127)
769                         break;
770         }
771
772         coef_nb_bits = wma_total_gain_to_bits(total_gain);
773
774         /* compute number of coefficients */
775         n = s->coefs_end[bsize] - s->coefs_start;
776         for (ch = 0; ch < s->ahi.channels; ch++)
777                 nb_coefs[ch] = n;
778
779         /* complex coding */
780         if (s->use_noise_coding) {
781
782                 for (ch = 0; ch < s->ahi.channels; ch++) {
783                         if (s->channel_coded[ch]) {
784                                 int i, m, a;
785                                 m = s->exponent_high_sizes[bsize];
786                                 for (i = 0; i < m; i++) {
787                                         a = get_bits1(&s->gb);
788                                         s->high_band_coded[ch][i] = a;
789                                         /* if noise coding, the coefficients are not transmitted */
790                                         if (a)
791                                                 nb_coefs[ch] -=
792                                                     s->
793                                                     exponent_high_bands[bsize]
794                                                     [i];
795                                 }
796                         }
797                 }
798                 for (ch = 0; ch < s->ahi.channels; ch++) {
799                         if (s->channel_coded[ch]) {
800                                 int i, val;
801
802                                 n = s->exponent_high_sizes[bsize];
803                                 val = (int) 0x80000000;
804                                 for (i = 0; i < n; i++) {
805                                         if (s->high_band_coded[ch][i]) {
806                                                 if (val == (int) 0x80000000) {
807                                                         val =
808                                                             get_bits(&s->gb,
809                                                                      7) - 19;
810                                                 } else {
811                                                         code =
812                                                             get_vlc2(&s->gb,
813                                                                      s->
814                                                                      hgain_vlc.
815                                                                      table,
816                                                                      HGAINVLCBITS,
817                                                                      HGAINMAX);
818                                                         if (code < 0)
819                                                                 return -1;
820                                                         val += code - 18;
821                                                 }
822                                                 s->high_band_values[ch][i] =
823                                                     val;
824                                         }
825                                 }
826                         }
827                 }
828         }
829
830         /* exponents can be reused in short blocks. */
831         if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb)) {
832                 for (ch = 0; ch < s->ahi.channels; ch++) {
833                         if (s->channel_coded[ch]) {
834                                 if (s->use_exp_vlc) {
835                                         if (decode_exp_vlc(s, ch) < 0)
836                                                 return -1;
837                                 } else {
838                                         decode_exp_lsp(s, ch);
839                                 }
840                                 s->exponents_bsize[ch] = bsize;
841                         }
842                 }
843         }
844
845         /* parse spectral coefficients : just RLE encoding */
846         for (ch = 0; ch < s->ahi.channels; ch++) {
847                 if (s->channel_coded[ch]) {
848                         struct vlc *coef_vlc;
849                         int level, run, sign, tindex;
850                         int16_t *ptr, *eptr;
851                         const uint16_t *level_table, *run_table;
852
853                         /* special VLC tables are used for ms stereo because
854                            there is potentially less energy there */
855                         tindex = (ch == 1 && s->ms_stereo);
856                         coef_vlc = &s->coef_vlc[tindex];
857                         run_table = s->run_table[tindex];
858                         level_table = s->level_table[tindex];
859                         /* XXX: optimize */
860                         ptr = &s->coefs1[ch][0];
861                         eptr = ptr + nb_coefs[ch];
862                         memset(ptr, 0, s->block_len * sizeof(int16_t));
863                         for (;;) {
864                                 code =
865                                     get_vlc2(&s->gb, coef_vlc->table, VLCBITS,
866                                              VLCMAX);
867                                 if (code < 0)
868                                         return -1;
869                                 if (code == 1) {
870                                         /* EOB */
871                                         break;
872                                 } else if (code == 0) {
873                                         /* escape */
874                                         level = get_bits(&s->gb, coef_nb_bits);
875                                         /* NOTE: this is rather suboptimal. reading
876                                            block_len_bits would be better */
877                                         run =
878                                             get_bits(&s->gb, s->frame_len_bits);
879                                 } else {
880                                         /* normal code */
881                                         run = run_table[code];
882                                         level = level_table[code];
883                                 }
884                                 sign = get_bits1(&s->gb);
885                                 if (!sign)
886                                         level = -level;
887                                 ptr += run;
888                                 if (ptr >= eptr) {
889                                         PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
890                                         break;
891                                 }
892                                 *ptr++ = level;
893                                 /* NOTE: EOB can be omitted */
894                                 if (ptr >= eptr)
895                                         break;
896                         }
897                 }
898         }
899
900         /* normalize */
901         {
902                 int n4 = s->block_len / 2;
903                 mdct_norm = 1.0 / (float) n4;
904         }
905
906         /* finally compute the MDCT coefficients */
907         for (ch = 0; ch < s->ahi.channels; ch++) {
908                 if (s->channel_coded[ch]) {
909                         int16_t *coefs1;
910                         float *coefs, *exponents, mult, mult1, noise;
911                         int i, j, n1, last_high_band, esize;
912                         float exp_power[HIGH_BAND_MAX_SIZE];
913
914                         coefs1 = s->coefs1[ch];
915                         exponents = s->exponents[ch];
916                         esize = s->exponents_bsize[ch];
917                         mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
918                         mult *= mdct_norm;
919                         coefs = s->coefs[ch];
920                         if (s->use_noise_coding) {
921                                 mult1 = mult;
922                                 /* very low freqs : noise */
923                                 for (i = 0; i < s->coefs_start; i++) {
924                                         *coefs++ =
925                                             s->noise_table[s->noise_index] *
926                                             exponents[i << bsize >> esize] *
927                                             mult1;
928                                         s->noise_index =
929                                             (s->noise_index +
930                                              1) & (NOISE_TAB_SIZE - 1);
931                                 }
932
933                                 n1 = s->exponent_high_sizes[bsize];
934
935                                 /* compute power of high bands */
936                                 exponents = s->exponents[ch] +
937                                     (s->high_band_start[bsize] << bsize);
938                                 last_high_band = 0;     /* avoid warning */
939                                 for (j = 0; j < n1; j++) {
940                                         n = s->exponent_high_bands[s->
941                                                                    frame_len_bits
942                                                                    -
943                                                                    s->
944                                                                    block_len_bits]
945                                             [j];
946                                         if (s->high_band_coded[ch][j]) {
947                                                 float e2, val;
948                                                 e2 = 0;
949                                                 for (i = 0; i < n; i++) {
950                                                         val = exponents[i << bsize
951                                                                       >> esize];
952                                                         e2 += val * val;
953                                                 }
954                                                 exp_power[j] = e2 / n;
955                                                 last_high_band = j;
956                                         }
957                                         exponents += n << bsize;
958                                 }
959
960                                 /* main freqs and high freqs */
961                                 exponents =
962                                     s->exponents[ch] +
963                                     (s->coefs_start << bsize);
964                                 for (j = -1; j < n1; j++) {
965                                         if (j < 0) {
966                                                 n = s->high_band_start[bsize] -
967                                                     s->coefs_start;
968                                         } else {
969                                                 n = s->exponent_high_bands[s->
970                                                                            frame_len_bits
971                                                                            -
972                                                                            s->
973                                                                            block_len_bits]
974                                                     [j];
975                                         }
976                                         if (j >= 0 && s->high_band_coded[ch][j]) {
977                                                 /* use noise with specified power */
978                                                 mult1 =
979                                                     sqrt(exp_power[j] /
980                                                          exp_power
981                                                          [last_high_band]);
982                                                 /* XXX: use a table */
983                                                 mult1 =
984                                                     mult1 * pow(10,
985                                                                 s->
986                                                                 high_band_values
987                                                                 [ch][j] * 0.05);
988                                                 mult1 =
989                                                     mult1 /
990                                                     (s->max_exponent[ch] *
991                                                      s->noise_mult);
992                                                 mult1 *= mdct_norm;
993                                                 for (i = 0; i < n; i++) {
994                                                         noise =
995                                                             s->noise_table[s->
996                                                                            noise_index];
997                                                         s->noise_index =
998                                                             (s->noise_index +
999                                                              1) &
1000                                                             (NOISE_TAB_SIZE -
1001                                                              1);
1002                                                         *coefs++ =
1003                                                             noise *
1004                                                             exponents[i << bsize
1005                                                                       >> esize]
1006                                                             * mult1;
1007                                                 }
1008                                                 exponents += n << bsize;
1009                                         } else {
1010                                                 /* coded values + small noise */
1011                                                 for (i = 0; i < n; i++) {
1012                                                         noise =
1013                                                             s->noise_table[s->
1014                                                                            noise_index];
1015                                                         s->noise_index =
1016                                                             (s->noise_index +
1017                                                              1) &
1018                                                             (NOISE_TAB_SIZE -
1019                                                              1);
1020                                                         *coefs++ =
1021                                                             ((*coefs1++) +
1022                                                              noise) *
1023                                                             exponents[i << bsize
1024                                                                       >> esize]
1025                                                             * mult;
1026                                                 }
1027                                                 exponents += n << bsize;
1028                                         }
1029                                 }
1030
1031                                 /* very high freqs : noise */
1032                                 n = s->block_len - s->coefs_end[bsize];
1033                                 mult1 =
1034                                     mult * exponents[((-1 << bsize)) >> esize];
1035                                 for (i = 0; i < n; i++) {
1036                                         *coefs++ =
1037                                             s->noise_table[s->noise_index] *
1038                                             mult1;
1039                                         s->noise_index =
1040                                             (s->noise_index +
1041                                              1) & (NOISE_TAB_SIZE - 1);
1042                                 }
1043                         } else {
1044                                 /* XXX: optimize more */
1045                                 for (i = 0; i < s->coefs_start; i++)
1046                                         *coefs++ = 0.0;
1047                                 n = nb_coefs[ch];
1048                                 for (i = 0; i < n; i++) {
1049                                         *coefs++ =
1050                                             coefs1[i] *
1051                                             exponents[i << bsize >> esize] *
1052                                             mult;
1053                                 }
1054                                 n = s->block_len - s->coefs_end[bsize];
1055                                 for (i = 0; i < n; i++)
1056                                         *coefs++ = 0.0;
1057                         }
1058                 }
1059         }
1060
1061         if (s->ms_stereo && s->channel_coded[1]) {
1062                 float a, b;
1063                 int i;
1064
1065                 /*
1066                  * Nominal case for ms stereo: we do it before mdct.
1067                  *
1068                  * No need to optimize this case because it should almost never
1069                  * happen.
1070                  */
1071                 if (!s->channel_coded[0]) {
1072                         PARA_NOTICE_LOG("rare ms-stereo\n");
1073                         memset(s->coefs[0], 0, sizeof(float) * s->block_len);
1074                         s->channel_coded[0] = 1;
1075                 }
1076                 for (i = 0; i < s->block_len; i++) {
1077                         a = s->coefs[0][i];
1078                         b = s->coefs[1][i];
1079                         s->coefs[0][i] = a + b;
1080                         s->coefs[1][i] = a - b;
1081                 }
1082         }
1083
1084 next:
1085         for (ch = 0; ch < s->ahi.channels; ch++) {
1086                 int n4, index;
1087
1088                 n = s->block_len;
1089                 n4 = s->block_len / 2;
1090                 if (s->channel_coded[ch])
1091                         imdct(s->mdct_ctx[bsize], s->output, s->coefs[ch]);
1092                 else if (!(s->ms_stereo && ch == 1))
1093                         memset(s->output, 0, sizeof (s->output));
1094
1095                 /* multiply by the window and add in the frame */
1096                 index = (s->frame_len / 2) + s->block_pos - n4;
1097                 wma_window(s, &s->frame_out[ch][index]);
1098         }
1099
1100         /* update block number */
1101         s->block_num++;
1102         s->block_pos += s->block_len;
1103         if (s->block_pos >= s->frame_len)
1104                 return 1;
1105         else
1106                 return 0;
1107 }
1108
1109 /*
1110  * Clip a signed integer value into the -32768,32767 range.
1111  *
1112  * \param a The value to clip.
1113  *
1114  * \return The clipped value.
1115  */
1116 static inline int16_t av_clip_int16(int a)
1117 {
1118         if ((a + 32768) & ~65535)
1119                 return (a >> 31) ^ 32767;
1120         else
1121                 return a;
1122 }
1123
1124 /* Decode a frame of frame_len samples. */
1125 static int wma_decode_frame(struct private_wmadec_data *s, int16_t * samples)
1126 {
1127         int ret, i, n, ch, incr;
1128         int16_t *ptr;
1129         float *iptr;
1130
1131         /* read each block */
1132         s->block_num = 0;
1133         s->block_pos = 0;
1134         for (;;) {
1135                 ret = wma_decode_block(s);
1136                 if (ret < 0)
1137                         return -1;
1138                 if (ret)
1139                         break;
1140         }
1141
1142         /* convert frame to integer */
1143         n = s->frame_len;
1144         incr = s->ahi.channels;
1145         for (ch = 0; ch < s->ahi.channels; ch++) {
1146                 ptr = samples + ch;
1147                 iptr = s->frame_out[ch];
1148
1149                 for (i = 0; i < n; i++) {
1150                         *ptr = av_clip_int16(lrintf(*iptr++));
1151                         ptr += incr;
1152                 }
1153                 /* prepare for next block */
1154                 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
1155                         s->frame_len * sizeof (float));
1156         }
1157         return 0;
1158 }
1159
1160 static int wma_decode_superframe(struct private_wmadec_data *s, void *data,
1161                 int *data_size, const uint8_t *buf, int buf_size)
1162 {
1163         int ret, nb_frames, bit_offset, i, pos, len;
1164         uint8_t *q;
1165         int16_t *samples;
1166         static int frame_count;
1167
1168         if (buf_size == 0) {
1169                 s->last_superframe_len = 0;
1170                 return 0;
1171         }
1172         if (buf_size < s->ahi.block_align)
1173                 return 0;
1174         buf_size = s->ahi.block_align;
1175         samples = data;
1176         init_get_bits(&s->gb, buf, buf_size * 8);
1177         if (s->use_bit_reservoir) {
1178                 /* read super frame header */
1179                 skip_bits(&s->gb, 4);   /* super frame index */
1180                 nb_frames = get_bits(&s->gb, 4) - 1;
1181                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1182                 ret = -E_WMA_OUTPUT_SPACE;
1183                 if ((nb_frames + 1) * s->ahi.channels * s->frame_len
1184                                 * sizeof(int16_t) > *data_size)
1185                         goto fail;
1186
1187                 bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
1188
1189                 if (s->last_superframe_len > 0) {
1190                         /* add bit_offset bits to last frame */
1191                         ret = -E_WMA_BAD_SUPERFRAME;
1192                         if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
1193                                         MAX_CODED_SUPERFRAME_SIZE)
1194                                 goto fail;
1195                         q = s->last_superframe + s->last_superframe_len;
1196                         len = bit_offset;
1197                         while (len > 7) {
1198                                 *q++ = get_bits(&s->gb, 8);
1199                                 len -= 8;
1200                         }
1201                         if (len > 0) {
1202                                 *q++ = get_bits(&s->gb, len) << (8 - len);
1203                         }
1204
1205                         /* XXX: bit_offset bits into last frame */
1206                         init_get_bits(&s->gb, s->last_superframe,
1207                                 MAX_CODED_SUPERFRAME_SIZE * 8);
1208                         /* skip unused bits */
1209                         if (s->last_bitoffset > 0)
1210                                 skip_bits(&s->gb, s->last_bitoffset);
1211                         /*
1212                          * This frame is stored in the last superframe and in
1213                          * the current one.
1214                          */
1215                         ret = -E_WMA_DECODE;
1216                         if (wma_decode_frame(s, samples) < 0)
1217                                 goto fail;
1218                         frame_count++;
1219                         samples += s->ahi.channels * s->frame_len;
1220                 }
1221
1222                 /* read each frame starting from bit_offset */
1223                 pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
1224                 init_get_bits(&s->gb, buf + (pos >> 3),
1225                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)) * 8);
1226                 len = pos & 7;
1227                 if (len > 0)
1228                         skip_bits(&s->gb, len);
1229
1230                 s->reset_block_lengths = 1;
1231                 for (i = 0; i < nb_frames; i++) {
1232                         ret = -E_WMA_DECODE;
1233                         if (wma_decode_frame(s, samples) < 0)
1234                                 goto fail;
1235                         frame_count++;
1236                         samples += s->ahi.channels * s->frame_len;
1237                 }
1238
1239                 /* we copy the end of the frame in the last frame buffer */
1240                 pos = get_bits_count(&s->gb) +
1241                         ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
1242                 s->last_bitoffset = pos & 7;
1243                 pos >>= 3;
1244                 len = buf_size - pos;
1245                 ret = -E_WMA_BAD_SUPERFRAME;
1246                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
1247                         goto fail;
1248                 }
1249                 s->last_superframe_len = len;
1250                 memcpy(s->last_superframe, buf + pos, len);
1251         } else {
1252                 PARA_DEBUG_LOG("not using bit reservoir\n");
1253                 ret = -E_WMA_OUTPUT_SPACE;
1254                 if (s->ahi.channels * s->frame_len * sizeof(int16_t) > *data_size)
1255                         goto fail;
1256                 /* single frame decode */
1257                 ret = -E_WMA_DECODE;
1258                 if (wma_decode_frame(s, samples) < 0)
1259                         goto fail;
1260                 frame_count++;
1261                 samples += s->ahi.channels * s->frame_len;
1262         }
1263         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1264                 "outbytes: %d, eaten: %d\n",
1265                 frame_count, s->frame_len, s->block_len,
1266                 (int8_t *) samples - (int8_t *) data, s->ahi.block_align);
1267         *data_size = (int8_t *)samples - (int8_t *)data;
1268         return s->ahi.block_align;
1269 fail:
1270         /* reset the bit reservoir on errors */
1271         s->last_superframe_len = 0;
1272         return ret;
1273 }
1274
1275 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1276                 struct filter_node *fn)
1277 {
1278         int ret, out_size = fn->bufsize - fn->loaded;
1279         struct private_wmadec_data *pwd = fn->private_data;
1280
1281         if (out_size < 128 * 1024)
1282                 return 0;
1283         if (!pwd) {
1284                 ret = wma_decode_init(inbuffer, len, &pwd);
1285                 if (ret <= 0)
1286                         return ret;
1287                 fn->private_data = pwd;
1288                 fn->fc->channels = pwd->ahi.channels;
1289                 fn->fc->samplerate = pwd->ahi.sample_rate;
1290                 return pwd->ahi.header_len;
1291         }
1292         /* skip 31 bytes */
1293         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1294                 return 0;
1295         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1296                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1297                 len - WMA_FRAME_SKIP);
1298         if (ret < 0)
1299                 return ret;
1300         fn->loaded += out_size;
1301         return ret + WMA_FRAME_SKIP;
1302 }
1303
1304 static void wmadec_close(struct filter_node *fn)
1305 {
1306         struct private_wmadec_data *pwd = fn->private_data;
1307         if (!pwd)
1308                 return;
1309         wmadec_cleanup(pwd);
1310         free(fn->buf);
1311         fn->buf = NULL;
1312         free(fn->private_data);
1313         fn->private_data = NULL;
1314 }
1315
1316 static void wmadec_open(struct filter_node *fn)
1317 {
1318         fn->bufsize = 1024 * 1024;
1319         fn->buf = para_malloc(fn->bufsize);
1320         fn->private_data = NULL;
1321         fn->loaded = 0;
1322 }
1323
1324 /**
1325  * The init function of the wma decoder.
1326  *
1327  * \param f Its fields are filled in by the function.
1328  */
1329 void wmadec_filter_init(struct filter *f)
1330 {
1331         f->open = wmadec_open;
1332         f->close = wmadec_close;
1333         f->convert = wmadec_convert;
1334 }