manual: Correct format of para_client help output.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <math.h>
21 #include <regex.h>
22 #include <sys/select.h>
23
24 #include "para.h"
25 #include "error.h"
26 #include "list.h"
27 #include "string.h"
28 #include "sched.h"
29 #include "buffer_tree.h"
30 #include "filter.h"
31 #include "portable_io.h"
32 #include "bitstream.h"
33 #include "imdct.h"
34 #include "wma.h"
35 #include "wmadata.h"
36
37
38 /* size of blocks */
39 #define BLOCK_MIN_BITS 7
40 #define BLOCK_MAX_BITS 11
41 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
42
43 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
44
45 /* XXX: find exact max size */
46 #define HIGH_BAND_MAX_SIZE 16
47
48 /* XXX: is it a suitable value ? */
49 #define MAX_CODED_SUPERFRAME_SIZE 16384
50
51 #define MAX_CHANNELS 2
52
53 #define NOISE_TAB_SIZE 8192
54
55 #define LSP_POW_BITS 7
56
57 struct private_wmadec_data {
58         /** Information contained in the audio file header. */
59         struct asf_header_info ahi;
60         struct getbit_context gb;
61         /** Whether perceptual noise is added. */
62         int use_noise_coding;
63         /** Depends on number of the bits per second and the frame length. */
64         int byte_offset_bits;
65         /** Only used if ahi->use_exp_vlc is true. */
66         struct vlc exp_vlc;
67         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
68         /** The index of the first coef in high band. */
69         int high_band_start[BLOCK_NB_SIZES];
70         /** Maximal number of coded coefficients. */
71         int coefs_end[BLOCK_NB_SIZES];
72         int exponent_high_sizes[BLOCK_NB_SIZES];
73         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
74         struct vlc hgain_vlc;
75
76         /* coded values in high bands */
77         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
78         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
79
80         /* there are two possible tables for spectral coefficients */
81         struct vlc coef_vlc[2];
82         uint16_t *run_table[2];
83         uint16_t *level_table[2];
84         const struct coef_vlc_table *coef_vlcs[2];
85         /** Frame length in samples. */
86         int frame_len;
87         /** log2 of frame_len. */
88         int frame_len_bits;
89         /** Number of block sizes, one if !ahi->use_variable_block_len. */
90         int nb_block_sizes;
91         /* Whether to update block lengths from getbit context. */
92         bool reset_block_lengths;
93         /** log2 of current block length. */
94         int block_len_bits;
95         /** log2 of next block length. */
96         int next_block_len_bits;
97         /** log2 of previous block length. */
98         int prev_block_len_bits;
99         /** Block length in samples. */
100         int block_len;
101         /** Current position in frame. */
102         int block_pos;
103         /** True if mid/side stereo mode. */
104         uint8_t ms_stereo;
105         /** True if channel is coded. */
106         uint8_t channel_coded[MAX_CHANNELS];
107         /** log2 ratio frame/exp. length. */
108         int exponents_bsize[MAX_CHANNELS];
109
110         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
111         float max_exponent[MAX_CHANNELS];
112         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
113         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
114         float output[BLOCK_MAX_SIZE * 2];
115         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
116         float *windows[BLOCK_NB_SIZES];
117         /** Output buffer for one frame and the last for IMDCT windowing. */
118         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
119         /** Last frame info. */
120         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
121         int last_bitoffset;
122         int last_superframe_len;
123         float noise_table[NOISE_TAB_SIZE];
124         int noise_index;
125         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
126         /* lsp_to_curve tables */
127         float lsp_cos_table[BLOCK_MAX_SIZE];
128         float lsp_pow_e_table[256];
129         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
130         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
131 };
132
133 #define EXPVLCBITS 8
134 #define HGAINVLCBITS 9
135 #define VLCBITS 9
136
137 /** \cond sine_winows */
138
139 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
140
141 SINE_WINDOW(128);
142 SINE_WINDOW(256);
143 SINE_WINDOW(512);
144 SINE_WINDOW(1024);
145 SINE_WINDOW(2048);
146 SINE_WINDOW(4096);
147
148 static float *sine_windows[6] = {
149         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
150 };
151 /** \endcond sine_windows */
152
153 /* Generate a sine window. */
154 static void sine_window_init(float *window, int n)
155 {
156         int i;
157
158         for (i = 0; i < n; i++)
159                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
160 }
161
162 static void wmadec_cleanup(struct private_wmadec_data *pwd)
163 {
164         int i;
165
166         for (i = 0; i < pwd->nb_block_sizes; i++)
167                 imdct_end(pwd->mdct_ctx[i]);
168         if (pwd->ahi.use_exp_vlc)
169                 free_vlc(&pwd->exp_vlc);
170         if (pwd->use_noise_coding)
171                 free_vlc(&pwd->hgain_vlc);
172         for (i = 0; i < 2; i++) {
173                 free_vlc(&pwd->coef_vlc[i]);
174                 free(pwd->run_table[i]);
175                 free(pwd->level_table[i]);
176         }
177 }
178
179 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
180                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
181 {
182         int n = vlc_table->n;
183         const uint8_t *table_bits = vlc_table->huffbits;
184         const uint32_t *table_codes = vlc_table->huffcodes;
185         const uint16_t *levels_table = vlc_table->levels;
186         uint16_t *run_table, *level_table;
187         int i, l, j, k, level;
188
189         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
190
191         run_table = para_malloc(n * sizeof(uint16_t));
192         level_table = para_malloc(n * sizeof(uint16_t));
193         i = 2;
194         level = 1;
195         k = 0;
196         while (i < n) {
197                 l = levels_table[k++];
198                 for (j = 0; j < l; j++) {
199                         run_table[i] = j;
200                         level_table[i] = level;
201                         i++;
202                 }
203                 level++;
204         }
205         *prun_table = run_table;
206         *plevel_table = level_table;
207 }
208
209 /* compute the scale factor band sizes for each MDCT block size */
210 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
211         float high_freq)
212 {
213         struct asf_header_info *ahi = &pwd->ahi;
214         int a, b, pos, lpos, k, block_len, i, j, n;
215         const uint8_t *table;
216
217         for (k = 0; k < pwd->nb_block_sizes; k++) {
218                 int exponent_size;
219
220                 block_len = pwd->frame_len >> k;
221                 table = NULL;
222                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
223                 if (a < 3) {
224                         if (ahi->sample_rate >= 44100)
225                                 table = exponent_band_44100[a];
226                         else if (ahi->sample_rate >= 32000)
227                                 table = exponent_band_32000[a];
228                         else if (ahi->sample_rate >= 22050)
229                                 table = exponent_band_22050[a];
230                 }
231                 if (table) {
232                         n = *table++;
233                         for (i = 0; i < n; i++)
234                                 pwd->exponent_bands[k][i] = table[i];
235                         exponent_size = n;
236                 } else {
237                         j = 0;
238                         lpos = 0;
239                         for (i = 0; i < 25; i++) {
240                                 a = wma_critical_freqs[i];
241                                 b = ahi->sample_rate;
242                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
243                                 pos <<= 2;
244                                 if (pos > block_len)
245                                         pos = block_len;
246                                 if (pos > lpos)
247                                         pwd->exponent_bands[k][j++] = pos - lpos;
248                                 if (pos >= block_len)
249                                         break;
250                                 lpos = pos;
251                         }
252                         exponent_size = j;
253                 }
254
255                 /* max number of coefs */
256                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
257                 /* high freq computation */
258                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
259                         / ahi->sample_rate + 0.5);
260                 n = exponent_size;
261                 j = 0;
262                 pos = 0;
263                 for (i = 0; i < n; i++) {
264                         int start, end;
265                         start = pos;
266                         pos += pwd->exponent_bands[k][i];
267                         end = pos;
268                         if (start < pwd->high_band_start[k])
269                                 start = pwd->high_band_start[k];
270                         if (end > pwd->coefs_end[k])
271                                 end = pwd->coefs_end[k];
272                         if (end > start)
273                                 pwd->exponent_high_bands[k][j++] = end - start;
274                 }
275                 pwd->exponent_high_sizes[k] = j;
276         }
277 }
278
279 static int wma_init(struct private_wmadec_data *pwd)
280 {
281         int i;
282         float bps1, high_freq;
283         volatile float bps;
284         int sample_rate1;
285         int coef_vlc_table;
286         struct asf_header_info *ahi = &pwd->ahi;
287         int flags2 = ahi->flags2;
288
289         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
290                 || ahi->channels <= 0 || ahi->channels > 8
291                 || ahi->bit_rate <= 0)
292                 return -E_WMA_BAD_PARAMS;
293
294         /* compute MDCT block size */
295         if (ahi->sample_rate <= 16000)
296                 pwd->frame_len_bits = 9;
297         else if (ahi->sample_rate <= 22050)
298                 pwd->frame_len_bits = 10;
299         else
300                 pwd->frame_len_bits = 11;
301         pwd->frame_len = 1 << pwd->frame_len_bits;
302         if (pwd->ahi.use_variable_block_len) {
303                 int nb_max, nb;
304                 nb = ((flags2 >> 3) & 3) + 1;
305                 if ((ahi->bit_rate / ahi->channels) >= 32000)
306                         nb += 2;
307                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
308                 if (nb > nb_max)
309                         nb = nb_max;
310                 pwd->nb_block_sizes = nb + 1;
311         } else
312                 pwd->nb_block_sizes = 1;
313
314         /* init rate dependent parameters */
315         pwd->use_noise_coding = 1;
316         high_freq = ahi->sample_rate * 0.5;
317
318         /* wma2 rates are normalized */
319         sample_rate1 = ahi->sample_rate;
320         if (sample_rate1 >= 44100)
321                 sample_rate1 = 44100;
322         else if (sample_rate1 >= 22050)
323                 sample_rate1 = 22050;
324         else if (sample_rate1 >= 16000)
325                 sample_rate1 = 16000;
326         else if (sample_rate1 >= 11025)
327                 sample_rate1 = 11025;
328         else if (sample_rate1 >= 8000)
329                 sample_rate1 = 8000;
330
331         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
332         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
333         /*
334          * Compute high frequency value and choose if noise coding should be
335          * activated.
336          */
337         bps1 = bps;
338         if (ahi->channels == 2)
339                 bps1 = bps * 1.6;
340         if (sample_rate1 == 44100) {
341                 if (bps1 >= 0.61)
342                         pwd->use_noise_coding = 0;
343                 else
344                         high_freq = high_freq * 0.4;
345         } else if (sample_rate1 == 22050) {
346                 if (bps1 >= 1.16)
347                         pwd->use_noise_coding = 0;
348                 else if (bps1 >= 0.72)
349                         high_freq = high_freq * 0.7;
350                 else
351                         high_freq = high_freq * 0.6;
352         } else if (sample_rate1 == 16000) {
353                 if (bps > 0.5)
354                         high_freq = high_freq * 0.5;
355                 else
356                         high_freq = high_freq * 0.3;
357         } else if (sample_rate1 == 11025)
358                 high_freq = high_freq * 0.7;
359         else if (sample_rate1 == 8000) {
360                 if (bps <= 0.625)
361                         high_freq = high_freq * 0.5;
362                 else if (bps > 0.75)
363                         pwd->use_noise_coding = 0;
364                 else
365                         high_freq = high_freq * 0.65;
366         } else {
367                 if (bps >= 0.8)
368                         high_freq = high_freq * 0.75;
369                 else if (bps >= 0.6)
370                         high_freq = high_freq * 0.6;
371                 else
372                         high_freq = high_freq * 0.5;
373         }
374         PARA_INFO_LOG("channels=%u sample_rate=%u "
375                 "bitrate=%u block_align=%d\n",
376                 ahi->channels, ahi->sample_rate,
377                 ahi->bit_rate, ahi->block_align);
378         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
379                 "high_freq=%f bitoffset=%d\n",
380                 pwd->frame_len, bps, bps1,
381                 high_freq, pwd->byte_offset_bits);
382         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
383                 pwd->use_noise_coding, pwd->ahi.use_exp_vlc, pwd->nb_block_sizes);
384
385         compute_scale_factor_band_sizes(pwd, high_freq);
386         /* init MDCT windows : simple sinus window */
387         for (i = 0; i < pwd->nb_block_sizes; i++) {
388                 int n;
389                 n = 1 << (pwd->frame_len_bits - i);
390                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
391                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
392         }
393
394         pwd->reset_block_lengths = true;
395
396         if (pwd->use_noise_coding) {
397                 /* init the noise generator */
398                 if (pwd->ahi.use_exp_vlc)
399                         pwd->noise_mult = 0.02;
400                 else
401                         pwd->noise_mult = 0.04;
402
403                 {
404                         unsigned int seed;
405                         float norm;
406                         seed = 1;
407                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
408                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
409                                 seed = seed * 314159 + 1;
410                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
411                         }
412                 }
413         }
414
415         /* choose the VLC tables for the coefficients */
416         coef_vlc_table = 2;
417         if (ahi->sample_rate >= 32000) {
418                 if (bps1 < 0.72)
419                         coef_vlc_table = 0;
420                 else if (bps1 < 1.16)
421                         coef_vlc_table = 1;
422         }
423         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
424         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
425         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
426                 pwd->coef_vlcs[0]);
427         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
428                 pwd->coef_vlcs[1]);
429         return 0;
430 }
431
432 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd)
433 {
434         float wdel, a, b;
435         int i, e, m;
436
437         wdel = M_PI / pwd->frame_len;
438         for (i = 0; i < pwd->frame_len; i++)
439                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
440
441         /* tables for x^-0.25 computation */
442         for (i = 0; i < 256; i++) {
443                 e = i - 126;
444                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
445         }
446
447         /* These two tables are needed to avoid two operations in pow_m1_4. */
448         b = 1.0;
449         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
450                 m = (1 << LSP_POW_BITS) + i;
451                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
452                 a = pow(a, -0.25);
453                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
454                 pwd->lsp_pow_m_table2[i] = b - a;
455                 b = a;
456         }
457 }
458
459 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
460 {
461         struct private_wmadec_data *pwd;
462         int ret, i;
463
464         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
465         pwd = para_calloc(sizeof(*pwd));
466         ret = read_asf_header(initial_buf, len, &pwd->ahi);
467         if (ret <= 0) {
468                 free(pwd);
469                 return ret;
470         }
471
472         ret = wma_init(pwd);
473         if (ret < 0)
474                 return ret;
475         /* init MDCT */
476         for (i = 0; i < pwd->nb_block_sizes; i++) {
477                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
478                 if (ret < 0)
479                         return ret;
480         }
481         if (pwd->use_noise_coding) {
482                 PARA_INFO_LOG("using noise coding\n");
483                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
484                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
485                         wma_hgain_huffcodes, 2);
486         }
487
488         if (pwd->ahi.use_exp_vlc) {
489                 PARA_INFO_LOG("using exp_vlc\n");
490                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
491                         wma_scale_huffbits, wma_scale_huffcodes, 4);
492         } else {
493                 PARA_INFO_LOG("using curve\n");
494                 wma_lsp_to_curve_init(pwd);
495         }
496         *result = pwd;
497         return pwd->ahi.header_len;
498 }
499
500 /**
501  * compute x^-0.25 with an exponent and mantissa table. We use linear
502  * interpolation to reduce the mantissa table size at a small speed
503  * expense (linear interpolation approximately doubles the number of
504  * bits of precision).
505  */
506 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
507 {
508         union {
509                 float f;
510                 unsigned int v;
511         } u, t;
512         unsigned int e, m;
513         float a, b;
514
515         u.f = x;
516         e = u.v >> 23;
517         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
518         /* build interpolation scale: 1 <= t < 2. */
519         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
520         a = pwd->lsp_pow_m_table1[m];
521         b = pwd->lsp_pow_m_table2[m];
522         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
523 }
524
525 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
526                 float *out, float *val_max_ptr, int n, float *lsp)
527 {
528         int i, j;
529         float p, q, w, v, val_max;
530
531         val_max = 0;
532         for (i = 0; i < n; i++) {
533                 p = 0.5f;
534                 q = 0.5f;
535                 w = pwd->lsp_cos_table[i];
536                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
537                         q *= w - lsp[j - 1];
538                         p *= w - lsp[j];
539                 }
540                 p *= p * (2.0f - w);
541                 q *= q * (2.0f + w);
542                 v = p + q;
543                 v = pow_m1_4(pwd, v);
544                 if (v > val_max)
545                         val_max = v;
546                 out[i] = v;
547         }
548         *val_max_ptr = val_max;
549 }
550
551 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
552 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
553 {
554         float lsp_coefs[NB_LSP_COEFS];
555         int val, i;
556
557         for (i = 0; i < NB_LSP_COEFS; i++) {
558                 if (i == 0 || i >= 8)
559                         val = get_bits(&pwd->gb, 3);
560                 else
561                         val = get_bits(&pwd->gb, 4);
562                 lsp_coefs[i] = wma_lsp_codebook[i][val];
563         }
564
565         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
566                 pwd->block_len, lsp_coefs);
567 }
568
569 /* Decode exponents coded with VLC codes. */
570 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
571 {
572         int last_exp, n, code;
573         const uint16_t *ptr, *band_ptr;
574         float v, *q, max_scale, *q_end;
575
576         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
577         ptr = band_ptr;
578         q = pwd->exponents[ch];
579         q_end = q + pwd->block_len;
580         max_scale = 0;
581         last_exp = 36;
582
583         while (q < q_end) {
584                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS);
585                 if (code < 0)
586                         return code;
587                 /* NOTE: this offset is the same as MPEG4 AAC ! */
588                 last_exp += code - 60;
589                 /* XXX: use a table */
590                 v = pow(10, last_exp * (1.0 / 16.0));
591                 if (v > max_scale)
592                         max_scale = v;
593                 n = *ptr++;
594                 do {
595                         *q++ = v;
596                 } while (--n);
597         }
598         pwd->max_exponent[ch] = max_scale;
599         return 0;
600 }
601
602 /* compute src0 * src1 + src2 */
603 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
604                 const float *src2, int len)
605 {
606         int i;
607
608         for (i = 0; i < len; i++)
609                 dst[i] = src0[i] * src1[i] + src2[i];
610 }
611
612 static inline void vector_mult_reverse(float *dst, const float *src0,
613                 const float *src1, int len)
614 {
615         int i;
616
617         src1 += len - 1;
618         for (i = 0; i < len; i++)
619                 dst[i] = src0[i] * src1[-i];
620 }
621
622 /**
623  * Apply MDCT window and add into output.
624  *
625  * We ensure that when the windows overlap their squared sum
626  * is always 1 (MDCT reconstruction rule).
627  */
628 static void wma_window(struct private_wmadec_data *pwd, float *out)
629 {
630         float *in = pwd->output;
631         int block_len, bsize, n;
632
633         /* left part */
634         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
635                 block_len = pwd->block_len;
636                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
637                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
638         } else {
639                 block_len = 1 << pwd->prev_block_len_bits;
640                 n = (pwd->block_len - block_len) / 2;
641                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
642                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
643                         block_len);
644                 memcpy(out + n + block_len, in + n + block_len,
645                         n * sizeof(float));
646         }
647         out += pwd->block_len;
648         in += pwd->block_len;
649         /* right part */
650         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
651                 block_len = pwd->block_len;
652                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
653                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
654         } else {
655                 block_len = 1 << pwd->next_block_len_bits;
656                 n = (pwd->block_len - block_len) / 2;
657                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
658                 memcpy(out, in, n * sizeof(float));
659                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
660                         block_len);
661                 memset(out + n + block_len, 0, n * sizeof(float));
662         }
663 }
664
665 static int wma_total_gain_to_bits(int total_gain)
666 {
667         if (total_gain < 15)
668                 return 13;
669         else if (total_gain < 32)
670                 return 12;
671         else if (total_gain < 40)
672                 return 11;
673         else if (total_gain < 45)
674                 return 10;
675         else
676                 return 9;
677 }
678
679 static int compute_high_band_values(struct private_wmadec_data *pwd,
680                 int bsize, int nb_coefs[MAX_CHANNELS])
681 {
682         int ch;
683
684         if (!pwd->use_noise_coding)
685                 return 0;
686         for (ch = 0; ch < pwd->ahi.channels; ch++) {
687                 int i, m, a;
688                 if (!pwd->channel_coded[ch])
689                         continue;
690                 m = pwd->exponent_high_sizes[bsize];
691                 for (i = 0; i < m; i++) {
692                         a = get_bit(&pwd->gb);
693                         pwd->high_band_coded[ch][i] = a;
694                         if (!a)
695                                 continue;
696                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
697                 }
698         }
699         for (ch = 0; ch < pwd->ahi.channels; ch++) {
700                 int i, n, val;
701                 if (!pwd->channel_coded[ch])
702                         continue;
703                 n = pwd->exponent_high_sizes[bsize];
704                 val = (int)0x80000000;
705                 for (i = 0; i < n; i++) {
706                         if (!pwd->high_band_coded[ch][i])
707                                 continue;
708                         if (val == (int)0x80000000)
709                                 val = get_bits(&pwd->gb, 7) - 19;
710                         else {
711                                 int code = get_vlc(&pwd->gb,
712                                         pwd->hgain_vlc.table, HGAINVLCBITS);
713                                 if (code < 0)
714                                         return code;
715                                 val += code - 18;
716                         }
717                         pwd->high_band_values[ch][i] = val;
718                 }
719         }
720         return 1;
721 }
722
723 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
724                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
725 {
726         int ch;
727         float mdct_norm = 1.0 / (pwd->block_len / 2);
728
729         for (ch = 0; ch < pwd->ahi.channels; ch++) {
730                 int16_t *coefs1;
731                 float *coefs, *exponents, mult, mult1, noise;
732                 int i, j, n, n1, last_high_band, esize;
733                 float exp_power[HIGH_BAND_MAX_SIZE];
734
735                 if (!pwd->channel_coded[ch])
736                         continue;
737                 coefs1 = pwd->coefs1[ch];
738                 exponents = pwd->exponents[ch];
739                 esize = pwd->exponents_bsize[ch];
740                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
741                 mult *= mdct_norm;
742                 coefs = pwd->coefs[ch];
743                 if (!pwd->use_noise_coding) {
744                         /* XXX: optimize more */
745                         n = nb_coefs[ch];
746                         for (i = 0; i < n; i++)
747                                 *coefs++ = coefs1[i] *
748                                         exponents[i << bsize >> esize] * mult;
749                         n = pwd->block_len - pwd->coefs_end[bsize];
750                         for (i = 0; i < n; i++)
751                                 *coefs++ = 0.0;
752                         continue;
753                 }
754                 n1 = pwd->exponent_high_sizes[bsize];
755                 /* compute power of high bands */
756                 exponents = pwd->exponents[ch] +
757                         (pwd->high_band_start[bsize] << bsize);
758                 last_high_band = 0; /* avoid warning */
759                 for (j = 0; j < n1; j++) {
760                         n = pwd->exponent_high_bands[
761                                 pwd->frame_len_bits - pwd->block_len_bits][j];
762                         if (pwd->high_band_coded[ch][j]) {
763                                 float e2, val;
764                                 e2 = 0;
765                                 for (i = 0; i < n; i++) {
766                                         val = exponents[i << bsize >> esize];
767                                         e2 += val * val;
768                                 }
769                                 exp_power[j] = e2 / n;
770                                 last_high_band = j;
771                         }
772                         exponents += n << bsize;
773                 }
774                 /* main freqs and high freqs */
775                 exponents = pwd->exponents[ch];
776                 for (j = -1; j < n1; j++) {
777                         if (j < 0)
778                                 n = pwd->high_band_start[bsize];
779                         else
780                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
781                                         - pwd->block_len_bits][j];
782                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
783                                 /* use noise with specified power */
784                                 mult1 = sqrt(exp_power[j]
785                                         / exp_power[last_high_band]);
786                                 /* XXX: use a table */
787                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
788                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
789                                 mult1 *= mdct_norm;
790                                 for (i = 0; i < n; i++) {
791                                         noise = pwd->noise_table[pwd->noise_index];
792                                         pwd->noise_index = (pwd->noise_index + 1)
793                                                 & (NOISE_TAB_SIZE - 1);
794                                         *coefs++ = noise * exponents[
795                                                 i << bsize >> esize] * mult1;
796                                 }
797                                 exponents += n << bsize;
798                         } else {
799                                 /* coded values + small noise */
800                                 for (i = 0; i < n; i++) {
801                                         noise = pwd->noise_table[pwd->noise_index];
802                                         pwd->noise_index = (pwd->noise_index + 1)
803                                                 & (NOISE_TAB_SIZE - 1);
804                                         *coefs++ = ((*coefs1++) + noise) *
805                                                 exponents[i << bsize >> esize]
806                                                 * mult;
807                                 }
808                                 exponents += n << bsize;
809                         }
810                 }
811                 /* very high freqs: noise */
812                 n = pwd->block_len - pwd->coefs_end[bsize];
813                 mult1 = mult * exponents[(-(1 << bsize)) >> esize];
814                 for (i = 0; i < n; i++) {
815                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
816                         pwd->noise_index = (pwd->noise_index + 1)
817                                 & (NOISE_TAB_SIZE - 1);
818                 }
819         }
820 }
821
822 /**
823  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
824  * errors.
825  */
826 static int wma_decode_block(struct private_wmadec_data *pwd)
827 {
828         int ret, n, v, ch, code, bsize;
829         int coef_nb_bits, total_gain;
830         int nb_coefs[MAX_CHANNELS];
831
832         /* compute current block length */
833         if (pwd->ahi.use_variable_block_len) {
834                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
835
836                 if (pwd->reset_block_lengths) {
837                         pwd->reset_block_lengths = false;
838                         v = get_bits(&pwd->gb, n);
839                         if (v >= pwd->nb_block_sizes)
840                                 return -E_WMA_BLOCK_SIZE;
841                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
842                         v = get_bits(&pwd->gb, n);
843                         if (v >= pwd->nb_block_sizes)
844                                 return -E_WMA_BLOCK_SIZE;
845                         pwd->block_len_bits = pwd->frame_len_bits - v;
846                 } else {
847                         /* update block lengths */
848                         pwd->prev_block_len_bits = pwd->block_len_bits;
849                         pwd->block_len_bits = pwd->next_block_len_bits;
850                 }
851                 v = get_bits(&pwd->gb, n);
852                 if (v >= pwd->nb_block_sizes)
853                         return -E_WMA_BLOCK_SIZE;
854                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
855         } else {
856                 /* fixed block len */
857                 pwd->next_block_len_bits = pwd->frame_len_bits;
858                 pwd->prev_block_len_bits = pwd->frame_len_bits;
859                 pwd->block_len_bits = pwd->frame_len_bits;
860         }
861
862         /* now check if the block length is coherent with the frame length */
863         pwd->block_len = 1 << pwd->block_len_bits;
864         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
865                 return -E_INCOHERENT_BLOCK_LEN;
866
867         if (pwd->ahi.channels == 2)
868                 pwd->ms_stereo = get_bit(&pwd->gb);
869         v = 0;
870         for (ch = 0; ch < pwd->ahi.channels; ch++) {
871                 int a = get_bit(&pwd->gb);
872                 pwd->channel_coded[ch] = a;
873                 v |= a;
874         }
875
876         bsize = pwd->frame_len_bits - pwd->block_len_bits;
877
878         /* if no channel coded, no need to go further */
879         /* XXX: fix potential framing problems */
880         if (!v)
881                 goto next;
882
883         /*
884          * Read total gain and extract corresponding number of bits for coef
885          * escape coding.
886          */
887         total_gain = 1;
888         for (;;) {
889                 int a = get_bits(&pwd->gb, 7);
890                 total_gain += a;
891                 if (a != 127)
892                         break;
893         }
894
895         coef_nb_bits = wma_total_gain_to_bits(total_gain);
896
897         /* compute number of coefficients */
898         n = pwd->coefs_end[bsize];
899         for (ch = 0; ch < pwd->ahi.channels; ch++)
900                 nb_coefs[ch] = n;
901
902         ret = compute_high_band_values(pwd, bsize, nb_coefs);
903         if (ret < 0)
904                 return ret;
905
906         /* exponents can be reused in short blocks. */
907         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
908                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
909                         if (pwd->channel_coded[ch]) {
910                                 if (pwd->ahi.use_exp_vlc) {
911                                         ret = decode_exp_vlc(pwd, ch);
912                                         if (ret < 0)
913                                                 return ret;
914                                 } else
915                                         decode_exp_lsp(pwd, ch);
916                                 pwd->exponents_bsize[ch] = bsize;
917                         }
918                 }
919         }
920
921         /* parse spectral coefficients : just RLE encoding */
922         for (ch = 0; ch < pwd->ahi.channels; ch++) {
923                 struct vlc *coef_vlc;
924                 int level, run, tindex;
925                 int16_t *ptr, *eptr;
926                 const uint16_t *level_table, *run_table;
927
928                 if (!pwd->channel_coded[ch])
929                         continue;
930                 /*
931                  * special VLC tables are used for ms stereo because there is
932                  * potentially less energy there
933                  */
934                 tindex = (ch == 1 && pwd->ms_stereo);
935                 coef_vlc = &pwd->coef_vlc[tindex];
936                 run_table = pwd->run_table[tindex];
937                 level_table = pwd->level_table[tindex];
938                 /* XXX: optimize */
939                 ptr = &pwd->coefs1[ch][0];
940                 eptr = ptr + nb_coefs[ch];
941                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
942                 for (;;) {
943                         code = get_vlc(&pwd->gb, coef_vlc->table, VLCBITS);
944                         if (code < 0)
945                                 return code;
946                         if (code == 1) /* EOB */
947                                 break;
948                         if (code == 0) { /* escape */
949                                 level = get_bits(&pwd->gb, coef_nb_bits);
950                                 /* reading block_len_bits would be better */
951                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
952                         } else { /* normal code */
953                                 run = run_table[code];
954                                 level = level_table[code];
955                         }
956                         if (!get_bit(&pwd->gb))
957                                 level = -level;
958                         ptr += run;
959                         if (ptr >= eptr) {
960                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
961                                 break;
962                         }
963                         *ptr++ = level;
964                         if (ptr >= eptr) /* EOB can be omitted */
965                                 break;
966                 }
967         }
968         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
969         if (pwd->ms_stereo && pwd->channel_coded[1]) {
970                 float a, b;
971                 int i;
972                 /*
973                  * Nominal case for ms stereo: we do it before mdct.
974                  *
975                  * No need to optimize this case because it should almost never
976                  * happen.
977                  */
978                 if (!pwd->channel_coded[0]) {
979                         PARA_NOTICE_LOG("rare ms-stereo\n");
980                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
981                         pwd->channel_coded[0] = 1;
982                 }
983                 for (i = 0; i < pwd->block_len; i++) {
984                         a = pwd->coefs[0][i];
985                         b = pwd->coefs[1][i];
986                         pwd->coefs[0][i] = a + b;
987                         pwd->coefs[1][i] = a - b;
988                 }
989         }
990 next:
991         for (ch = 0; ch < pwd->ahi.channels; ch++) {
992                 int n4, idx;
993
994                 n4 = pwd->block_len / 2;
995                 if (pwd->channel_coded[ch])
996                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
997                 else if (!(pwd->ms_stereo && ch == 1))
998                         memset(pwd->output, 0, sizeof(pwd->output));
999
1000                 /* multiply by the window and add in the frame */
1001                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
1002                 wma_window(pwd, &pwd->frame_out[ch][idx]);
1003         }
1004
1005         /* update block number */
1006         pwd->block_pos += pwd->block_len;
1007         if (pwd->block_pos >= pwd->frame_len)
1008                 return 1;
1009         else
1010                 return 0;
1011 }
1012
1013 /*
1014  * Clip a signed integer value into the -32768,32767 range.
1015  *
1016  * \param a The value to clip.
1017  *
1018  * \return The clipped value.
1019  */
1020 static inline int16_t av_clip_int16(int a)
1021 {
1022         if ((a + 32768) & ~65535)
1023                 return (a >> 31) ^ 32767;
1024         else
1025                 return a;
1026 }
1027
1028 /* Decode a frame of frame_len samples. */
1029 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1030 {
1031         int ret, i, ch;
1032         int16_t *ptr;
1033         float *iptr;
1034
1035         /* read each block */
1036         pwd->block_pos = 0;
1037         for (;;) {
1038                 ret = wma_decode_block(pwd);
1039                 if (ret < 0)
1040                         return ret;
1041                 if (ret)
1042                         break;
1043         }
1044
1045         /* convert frame to integer */
1046         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1047                 ptr = samples + ch;
1048                 iptr = pwd->frame_out[ch];
1049
1050                 for (i = 0; i < pwd->frame_len; i++) {
1051                         *ptr = av_clip_int16(lrintf(*iptr++));
1052                         ptr += pwd->ahi.channels;
1053                 }
1054                 /* prepare for next block */
1055                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1056                         pwd->frame_len * sizeof(float));
1057         }
1058         return 0;
1059 }
1060
1061 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1062                 int *data_size, const uint8_t *buf, int buf_size)
1063 {
1064         int ret;
1065         int16_t *samples;
1066
1067         if (buf_size == 0) {
1068                 pwd->last_superframe_len = 0;
1069                 *data_size = 0;
1070                 return 0;
1071         }
1072         if (buf_size < pwd->ahi.block_align) {
1073                 *data_size = 0;
1074                 return 0;
1075         }
1076         buf_size = pwd->ahi.block_align;
1077         samples = data;
1078         init_get_bits(&pwd->gb, buf, buf_size);
1079         if (pwd->ahi.use_bit_reservoir) {
1080                 int i, nb_frames, bit_offset, pos, len;
1081                 uint8_t *q;
1082
1083                 /* read super frame header */
1084                 skip_bits(&pwd->gb, 4); /* super frame index */
1085                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1086                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1087                 ret = -E_WMA_OUTPUT_SPACE;
1088                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1089                                 * sizeof(int16_t) > *data_size)
1090                         goto fail;
1091
1092                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1093
1094                 if (pwd->last_superframe_len > 0) {
1095                         /* add bit_offset bits to last frame */
1096                         ret = -E_WMA_BAD_SUPERFRAME;
1097                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1098                                         MAX_CODED_SUPERFRAME_SIZE)
1099                                 goto fail;
1100                         q = pwd->last_superframe + pwd->last_superframe_len;
1101                         len = bit_offset;
1102                         while (len > 7) {
1103                                 *q++ = get_bits(&pwd->gb, 8);
1104                                 len -= 8;
1105                         }
1106                         if (len > 0)
1107                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1108
1109                         /* XXX: bit_offset bits into last frame */
1110                         init_get_bits(&pwd->gb, pwd->last_superframe,
1111                                 MAX_CODED_SUPERFRAME_SIZE);
1112                         /* skip unused bits */
1113                         if (pwd->last_bitoffset > 0)
1114                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1115                         /*
1116                          * This frame is stored in the last superframe and in
1117                          * the current one.
1118                          */
1119                         ret = wma_decode_frame(pwd, samples);
1120                         if (ret < 0)
1121                                 goto fail;
1122                         samples += pwd->ahi.channels * pwd->frame_len;
1123                 }
1124
1125                 /* read each frame starting from bit_offset */
1126                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1127                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1128                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1129                 len = pos & 7;
1130                 if (len > 0)
1131                         skip_bits(&pwd->gb, len);
1132
1133                 pwd->reset_block_lengths = true;
1134                 for (i = 0; i < nb_frames; i++) {
1135                         ret = wma_decode_frame(pwd, samples);
1136                         if (ret < 0)
1137                                 goto fail;
1138                         samples += pwd->ahi.channels * pwd->frame_len;
1139                 }
1140
1141                 /* we copy the end of the frame in the last frame buffer */
1142                 pos = get_bits_count(&pwd->gb) +
1143                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1144                 pwd->last_bitoffset = pos & 7;
1145                 pos >>= 3;
1146                 len = buf_size - pos;
1147                 ret = -E_WMA_BAD_SUPERFRAME;
1148                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1149                         goto fail;
1150                 pwd->last_superframe_len = len;
1151                 memcpy(pwd->last_superframe, buf + pos, len);
1152         } else {
1153                 PARA_DEBUG_LOG("not using bit reservoir\n");
1154                 ret = -E_WMA_OUTPUT_SPACE;
1155                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1156                         goto fail;
1157                 /* single frame decode */
1158                 ret = wma_decode_frame(pwd, samples);
1159                 if (ret < 0)
1160                         goto fail;
1161                 samples += pwd->ahi.channels * pwd->frame_len;
1162         }
1163         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1164                 pwd->frame_len, pwd->block_len,
1165                 (int)((int8_t *)samples - (int8_t *)data), pwd->ahi.block_align);
1166         *data_size = (int8_t *)samples - (int8_t *)data;
1167         return pwd->ahi.block_align;
1168 fail:
1169         /* reset the bit reservoir on errors */
1170         pwd->last_superframe_len = 0;
1171         return ret;
1172 }
1173
1174 static void wmadec_close(struct filter_node *fn)
1175 {
1176         struct private_wmadec_data *pwd = fn->private_data;
1177
1178         if (!pwd)
1179                 return;
1180         wmadec_cleanup(pwd);
1181         free(fn->private_data);
1182         fn->private_data = NULL;
1183 }
1184
1185 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1186 {
1187         struct filter_node *fn = btr_context(btrn);
1188         struct private_wmadec_data *pwd = fn->private_data;
1189
1190         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1191                 result);
1192 }
1193
1194 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1195
1196 static int wmadec_post_select(__a_unused struct sched *s, void *context)
1197 {
1198         struct filter_node *fn = context;
1199         int ret, converted, out_size;
1200         struct private_wmadec_data *pwd = fn->private_data;
1201         struct btr_node *btrn = fn->btrn;
1202         size_t len;
1203         char *in, *out;
1204
1205 next_buffer:
1206         converted = 0;
1207         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1208         if (ret < 0)
1209                 goto err;
1210         if (ret == 0)
1211                 return 0;
1212         btr_merge(btrn, fn->min_iqs);
1213         len = btr_next_buffer(btrn, &in);
1214         ret = -E_WMADEC_EOF;
1215         if (len < fn->min_iqs)
1216                 goto err;
1217         if (!pwd) {
1218                 ret = wma_decode_init(in, len, &pwd);
1219                 if (ret < 0)
1220                         goto err;
1221                 if (ret == 0) {
1222                         fn->min_iqs += 4096;
1223                         goto next_buffer;
1224                 }
1225                 fn->min_iqs = 2 * pwd->ahi.packet_size;
1226                 fn->private_data = pwd;
1227                 converted = pwd->ahi.header_len;
1228                 goto success;
1229         }
1230         fn->min_iqs = pwd->ahi.packet_size;
1231         if (fn->min_iqs > len)
1232                 goto success;
1233         out_size = WMA_OUTPUT_BUFFER_SIZE;
1234         out = para_malloc(out_size);
1235         ret = wma_decode_superframe(pwd, out, &out_size,
1236                 (uint8_t *)in + WMA_FRAME_SKIP, len - WMA_FRAME_SKIP);
1237         if (ret < 0) {
1238                 free(out);
1239                 goto err;
1240         }
1241         if (out_size > 0) {
1242                 out = para_realloc(out, out_size);
1243                 btr_add_output(out, out_size, btrn);
1244         } else
1245                 free(out);
1246         converted += pwd->ahi.packet_size;
1247 success:
1248         btr_consume(btrn, converted);
1249         return 0;
1250 err:
1251         assert(ret < 0);
1252         btr_remove_node(&fn->btrn);
1253         return ret;
1254 }
1255
1256 static void wmadec_open(struct filter_node *fn)
1257 {
1258         fn->private_data = NULL;
1259         fn->min_iqs = 4096;
1260 }
1261
1262 const struct filter lsg_filter_cmd_com_wmadec_user_data = {
1263         .open = wmadec_open,
1264         .close = wmadec_close,
1265         .execute = wmadec_execute,
1266         .pre_select = generic_filter_pre_select,
1267         .post_select = wmadec_post_select,
1268 };