6a5df98e9b832ad1b2b43c76716817e73944f2e8
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <math.h>
21 #include <regex.h>
22 #include <sys/select.h>
23
24 #include "para.h"
25 #include "error.h"
26 #include "list.h"
27 #include "string.h"
28 #include "sched.h"
29 #include "buffer_tree.h"
30 #include "filter.h"
31 #include "portable_io.h"
32 #include "bitstream.h"
33 #include "imdct.h"
34 #include "wma.h"
35 #include "wmadata.h"
36
37
38 /* size of blocks */
39 #define BLOCK_MIN_BITS 7
40 #define BLOCK_MAX_BITS 11
41 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
42
43 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
44
45 /* XXX: find exact max size */
46 #define HIGH_BAND_MAX_SIZE 16
47
48 /* XXX: is it a suitable value ? */
49 #define MAX_CODED_SUPERFRAME_SIZE 16384
50
51 #define MAX_CHANNELS 2
52
53 #define NOISE_TAB_SIZE 8192
54
55 #define LSP_POW_BITS 7
56
57 struct private_wmadec_data {
58         /** Information contained in the audio file header. */
59         struct asf_header_info ahi;
60         struct getbit_context gb;
61         /** Whether perceptual noise is added. */
62         int use_noise_coding;
63         /** Depends on number of the bits per second and the frame length. */
64         int byte_offset_bits;
65         /** Only used if ahi->use_exp_vlc is true. */
66         struct vlc exp_vlc;
67         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
68         /** The index of the first coef in high band. */
69         int high_band_start[BLOCK_NB_SIZES];
70         /** Maximal number of coded coefficients. */
71         int coefs_end[BLOCK_NB_SIZES];
72         int exponent_high_sizes[BLOCK_NB_SIZES];
73         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
74         struct vlc hgain_vlc;
75
76         /* coded values in high bands */
77         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
78         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
79
80         /* there are two possible tables for spectral coefficients */
81         struct vlc coef_vlc[2];
82         uint16_t *run_table[2];
83         uint16_t *level_table[2];
84         const struct coef_vlc_table *coef_vlcs[2];
85         /** Frame length in samples. */
86         int frame_len;
87         /** log2 of frame_len. */
88         int frame_len_bits;
89         /** Number of block sizes, one if !ahi->use_variable_block_len. */
90         int nb_block_sizes;
91         /* Whether to update block lengths from getbit context. */
92         bool reset_block_lengths;
93         /** log2 of current block length. */
94         int block_len_bits;
95         /** log2 of next block length. */
96         int next_block_len_bits;
97         /** log2 of previous block length. */
98         int prev_block_len_bits;
99         /** Block length in samples. */
100         int block_len;
101         /** Current position in frame. */
102         int block_pos;
103         /** True if mid/side stereo mode. */
104         uint8_t ms_stereo;
105         /** True if channel is coded. */
106         uint8_t channel_coded[MAX_CHANNELS];
107         /** log2 ratio frame/exp. length. */
108         int exponents_bsize[MAX_CHANNELS];
109
110         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
111         float max_exponent[MAX_CHANNELS];
112         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
113         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
114         float output[BLOCK_MAX_SIZE * 2];
115         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
116         float *windows[BLOCK_NB_SIZES];
117         /** Output buffer for one frame and the last for IMDCT windowing. */
118         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
119         /** Last frame info. */
120         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
121         int last_bitoffset;
122         int last_superframe_len;
123         float noise_table[NOISE_TAB_SIZE];
124         int noise_index;
125         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
126         /* lsp_to_curve tables */
127         float lsp_cos_table[BLOCK_MAX_SIZE];
128         float lsp_pow_e_table[256];
129         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
130         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
131 };
132
133 #define EXPVLCBITS 8
134 #define HGAINVLCBITS 9
135 #define VLCBITS 9
136
137 /** \cond sine_winows */
138
139 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
140
141 SINE_WINDOW(128);
142 SINE_WINDOW(256);
143 SINE_WINDOW(512);
144 SINE_WINDOW(1024);
145 SINE_WINDOW(2048);
146 SINE_WINDOW(4096);
147
148 static float *sine_windows[6] = {
149         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
150 };
151 /** \endcond sine_windows */
152
153 /* Generate a sine window. */
154 static void sine_window_init(float *window, int n)
155 {
156         int i;
157
158         for (i = 0; i < n; i++)
159                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
160 }
161
162 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
163                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
164 {
165         int n = vlc_table->n;
166         const uint8_t *table_bits = vlc_table->huffbits;
167         const uint32_t *table_codes = vlc_table->huffcodes;
168         const uint16_t *levels_table = vlc_table->levels;
169         uint16_t *run_table, *level_table;
170         int i, l, j, k, level;
171
172         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
173
174         run_table = para_malloc(n * sizeof(uint16_t));
175         level_table = para_malloc(n * sizeof(uint16_t));
176         i = 2;
177         level = 1;
178         k = 0;
179         while (i < n) {
180                 l = levels_table[k++];
181                 for (j = 0; j < l; j++) {
182                         run_table[i] = j;
183                         level_table[i] = level;
184                         i++;
185                 }
186                 level++;
187         }
188         *prun_table = run_table;
189         *plevel_table = level_table;
190 }
191
192 /* compute the scale factor band sizes for each MDCT block size */
193 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
194         float high_freq)
195 {
196         struct asf_header_info *ahi = &pwd->ahi;
197         int a, b, pos, lpos, k, block_len, i, j, n;
198         const uint8_t *table;
199
200         for (k = 0; k < pwd->nb_block_sizes; k++) {
201                 int exponent_size;
202
203                 block_len = pwd->frame_len >> k;
204                 table = NULL;
205                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
206                 if (a < 3) {
207                         if (ahi->sample_rate >= 44100)
208                                 table = exponent_band_44100[a];
209                         else if (ahi->sample_rate >= 32000)
210                                 table = exponent_band_32000[a];
211                         else if (ahi->sample_rate >= 22050)
212                                 table = exponent_band_22050[a];
213                 }
214                 if (table) {
215                         n = *table++;
216                         for (i = 0; i < n; i++)
217                                 pwd->exponent_bands[k][i] = table[i];
218                         exponent_size = n;
219                 } else {
220                         j = 0;
221                         lpos = 0;
222                         for (i = 0; i < 25; i++) {
223                                 a = wma_critical_freqs[i];
224                                 b = ahi->sample_rate;
225                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
226                                 pos <<= 2;
227                                 if (pos > block_len)
228                                         pos = block_len;
229                                 if (pos > lpos)
230                                         pwd->exponent_bands[k][j++] = pos - lpos;
231                                 if (pos >= block_len)
232                                         break;
233                                 lpos = pos;
234                         }
235                         exponent_size = j;
236                 }
237
238                 /* max number of coefs */
239                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
240                 /* high freq computation */
241                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
242                         / ahi->sample_rate + 0.5);
243                 n = exponent_size;
244                 j = 0;
245                 pos = 0;
246                 for (i = 0; i < n; i++) {
247                         int start, end;
248                         start = pos;
249                         pos += pwd->exponent_bands[k][i];
250                         end = pos;
251                         if (start < pwd->high_band_start[k])
252                                 start = pwd->high_band_start[k];
253                         if (end > pwd->coefs_end[k])
254                                 end = pwd->coefs_end[k];
255                         if (end > start)
256                                 pwd->exponent_high_bands[k][j++] = end - start;
257                 }
258                 pwd->exponent_high_sizes[k] = j;
259         }
260 }
261
262 static int wma_init(struct private_wmadec_data *pwd)
263 {
264         int i;
265         float bps1, high_freq;
266         volatile float bps;
267         int sample_rate1;
268         int coef_vlc_table;
269         struct asf_header_info *ahi = &pwd->ahi;
270         int flags2 = ahi->flags2;
271
272         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
273                 || ahi->channels <= 0 || ahi->channels > 8
274                 || ahi->bit_rate <= 0)
275                 return -E_WMA_BAD_PARAMS;
276
277         /* compute MDCT block size */
278         if (ahi->sample_rate <= 16000)
279                 pwd->frame_len_bits = 9;
280         else if (ahi->sample_rate <= 22050)
281                 pwd->frame_len_bits = 10;
282         else
283                 pwd->frame_len_bits = 11;
284         pwd->frame_len = 1 << pwd->frame_len_bits;
285         if (pwd->ahi.use_variable_block_len) {
286                 int nb_max, nb;
287                 nb = ((flags2 >> 3) & 3) + 1;
288                 if ((ahi->bit_rate / ahi->channels) >= 32000)
289                         nb += 2;
290                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
291                 if (nb > nb_max)
292                         nb = nb_max;
293                 pwd->nb_block_sizes = nb + 1;
294         } else
295                 pwd->nb_block_sizes = 1;
296
297         /* init rate dependent parameters */
298         pwd->use_noise_coding = 1;
299         high_freq = ahi->sample_rate * 0.5;
300
301         /* wma2 rates are normalized */
302         sample_rate1 = ahi->sample_rate;
303         if (sample_rate1 >= 44100)
304                 sample_rate1 = 44100;
305         else if (sample_rate1 >= 22050)
306                 sample_rate1 = 22050;
307         else if (sample_rate1 >= 16000)
308                 sample_rate1 = 16000;
309         else if (sample_rate1 >= 11025)
310                 sample_rate1 = 11025;
311         else if (sample_rate1 >= 8000)
312                 sample_rate1 = 8000;
313
314         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
315         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
316         /*
317          * Compute high frequency value and choose if noise coding should be
318          * activated.
319          */
320         bps1 = bps;
321         if (ahi->channels == 2)
322                 bps1 = bps * 1.6;
323         if (sample_rate1 == 44100) {
324                 if (bps1 >= 0.61)
325                         pwd->use_noise_coding = 0;
326                 else
327                         high_freq = high_freq * 0.4;
328         } else if (sample_rate1 == 22050) {
329                 if (bps1 >= 1.16)
330                         pwd->use_noise_coding = 0;
331                 else if (bps1 >= 0.72)
332                         high_freq = high_freq * 0.7;
333                 else
334                         high_freq = high_freq * 0.6;
335         } else if (sample_rate1 == 16000) {
336                 if (bps > 0.5)
337                         high_freq = high_freq * 0.5;
338                 else
339                         high_freq = high_freq * 0.3;
340         } else if (sample_rate1 == 11025)
341                 high_freq = high_freq * 0.7;
342         else if (sample_rate1 == 8000) {
343                 if (bps <= 0.625)
344                         high_freq = high_freq * 0.5;
345                 else if (bps > 0.75)
346                         pwd->use_noise_coding = 0;
347                 else
348                         high_freq = high_freq * 0.65;
349         } else {
350                 if (bps >= 0.8)
351                         high_freq = high_freq * 0.75;
352                 else if (bps >= 0.6)
353                         high_freq = high_freq * 0.6;
354                 else
355                         high_freq = high_freq * 0.5;
356         }
357         PARA_INFO_LOG("channels=%u sample_rate=%u "
358                 "bitrate=%u block_align=%d\n",
359                 ahi->channels, ahi->sample_rate,
360                 ahi->bit_rate, ahi->block_align);
361         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
362                 "high_freq=%f bitoffset=%d\n",
363                 pwd->frame_len, bps, bps1,
364                 high_freq, pwd->byte_offset_bits);
365         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
366                 pwd->use_noise_coding, pwd->ahi.use_exp_vlc, pwd->nb_block_sizes);
367
368         compute_scale_factor_band_sizes(pwd, high_freq);
369         /* init MDCT windows : simple sinus window */
370         for (i = 0; i < pwd->nb_block_sizes; i++) {
371                 int n;
372                 n = 1 << (pwd->frame_len_bits - i);
373                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
374                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
375         }
376
377         pwd->reset_block_lengths = true;
378
379         if (pwd->use_noise_coding) {
380                 /* init the noise generator */
381                 if (pwd->ahi.use_exp_vlc)
382                         pwd->noise_mult = 0.02;
383                 else
384                         pwd->noise_mult = 0.04;
385
386                 {
387                         unsigned int seed;
388                         float norm;
389                         seed = 1;
390                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
391                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
392                                 seed = seed * 314159 + 1;
393                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
394                         }
395                 }
396         }
397
398         /* choose the VLC tables for the coefficients */
399         coef_vlc_table = 2;
400         if (ahi->sample_rate >= 32000) {
401                 if (bps1 < 0.72)
402                         coef_vlc_table = 0;
403                 else if (bps1 < 1.16)
404                         coef_vlc_table = 1;
405         }
406         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
407         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
408         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
409                 pwd->coef_vlcs[0]);
410         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
411                 pwd->coef_vlcs[1]);
412         return 0;
413 }
414
415 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd)
416 {
417         float wdel, a, b;
418         int i, e, m;
419
420         wdel = M_PI / pwd->frame_len;
421         for (i = 0; i < pwd->frame_len; i++)
422                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
423
424         /* tables for x^-0.25 computation */
425         for (i = 0; i < 256; i++) {
426                 e = i - 126;
427                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
428         }
429
430         /* These two tables are needed to avoid two operations in pow_m1_4. */
431         b = 1.0;
432         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
433                 m = (1 << LSP_POW_BITS) + i;
434                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
435                 a = pow(a, -0.25);
436                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
437                 pwd->lsp_pow_m_table2[i] = b - a;
438                 b = a;
439         }
440 }
441
442 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
443 {
444         struct private_wmadec_data *pwd;
445         int ret, i;
446
447         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
448         pwd = para_calloc(sizeof(*pwd));
449         ret = read_asf_header(initial_buf, len, &pwd->ahi);
450         if (ret <= 0) {
451                 free(pwd);
452                 return ret;
453         }
454
455         ret = wma_init(pwd);
456         if (ret < 0)
457                 return ret;
458         /* init MDCT */
459         for (i = 0; i < pwd->nb_block_sizes; i++) {
460                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
461                 if (ret < 0)
462                         return ret;
463         }
464         if (pwd->use_noise_coding) {
465                 PARA_INFO_LOG("using noise coding\n");
466                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
467                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
468                         wma_hgain_huffcodes, 2);
469         }
470
471         if (pwd->ahi.use_exp_vlc) {
472                 PARA_INFO_LOG("using exp_vlc\n");
473                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
474                         wma_scale_huffbits, wma_scale_huffcodes, 4);
475         } else {
476                 PARA_INFO_LOG("using curve\n");
477                 wma_lsp_to_curve_init(pwd);
478         }
479         *result = pwd;
480         return pwd->ahi.header_len;
481 }
482
483 /**
484  * compute x^-0.25 with an exponent and mantissa table. We use linear
485  * interpolation to reduce the mantissa table size at a small speed
486  * expense (linear interpolation approximately doubles the number of
487  * bits of precision).
488  */
489 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
490 {
491         union {
492                 float f;
493                 unsigned int v;
494         } u, t;
495         unsigned int e, m;
496         float a, b;
497
498         u.f = x;
499         e = u.v >> 23;
500         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
501         /* build interpolation scale: 1 <= t < 2. */
502         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
503         a = pwd->lsp_pow_m_table1[m];
504         b = pwd->lsp_pow_m_table2[m];
505         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
506 }
507
508 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
509                 float *out, float *val_max_ptr, int n, float *lsp)
510 {
511         int i, j;
512         float p, q, w, v, val_max;
513
514         val_max = 0;
515         for (i = 0; i < n; i++) {
516                 p = 0.5f;
517                 q = 0.5f;
518                 w = pwd->lsp_cos_table[i];
519                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
520                         q *= w - lsp[j - 1];
521                         p *= w - lsp[j];
522                 }
523                 p *= p * (2.0f - w);
524                 q *= q * (2.0f + w);
525                 v = p + q;
526                 v = pow_m1_4(pwd, v);
527                 if (v > val_max)
528                         val_max = v;
529                 out[i] = v;
530         }
531         *val_max_ptr = val_max;
532 }
533
534 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
535 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
536 {
537         float lsp_coefs[NB_LSP_COEFS];
538         int val, i;
539
540         for (i = 0; i < NB_LSP_COEFS; i++) {
541                 if (i == 0 || i >= 8)
542                         val = get_bits(&pwd->gb, 3);
543                 else
544                         val = get_bits(&pwd->gb, 4);
545                 lsp_coefs[i] = wma_lsp_codebook[i][val];
546         }
547
548         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
549                 pwd->block_len, lsp_coefs);
550 }
551
552 /* Decode exponents coded with VLC codes. */
553 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
554 {
555         int last_exp, n, code;
556         const uint16_t *ptr, *band_ptr;
557         float v, *q, max_scale, *q_end;
558
559         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
560         ptr = band_ptr;
561         q = pwd->exponents[ch];
562         q_end = q + pwd->block_len;
563         max_scale = 0;
564         last_exp = 36;
565
566         while (q < q_end) {
567                 code = get_vlc(&pwd->gb, &pwd->exp_vlc);
568                 if (code < 0)
569                         return code;
570                 /* NOTE: this offset is the same as MPEG4 AAC ! */
571                 last_exp += code - 60;
572                 /* XXX: use a table */
573                 v = pow(10, last_exp * (1.0 / 16.0));
574                 if (v > max_scale)
575                         max_scale = v;
576                 n = *ptr++;
577                 do {
578                         *q++ = v;
579                 } while (--n);
580         }
581         pwd->max_exponent[ch] = max_scale;
582         return 0;
583 }
584
585 /* compute src0 * src1 + src2 */
586 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
587                 const float *src2, int len)
588 {
589         int i;
590
591         for (i = 0; i < len; i++)
592                 dst[i] = src0[i] * src1[i] + src2[i];
593 }
594
595 static inline void vector_mult_reverse(float *dst, const float *src0,
596                 const float *src1, int len)
597 {
598         int i;
599
600         src1 += len - 1;
601         for (i = 0; i < len; i++)
602                 dst[i] = src0[i] * src1[-i];
603 }
604
605 /**
606  * Apply MDCT window and add into output.
607  *
608  * We ensure that when the windows overlap their squared sum
609  * is always 1 (MDCT reconstruction rule).
610  */
611 static void wma_window(struct private_wmadec_data *pwd, float *out)
612 {
613         float *in = pwd->output;
614         int block_len, bsize, n;
615
616         /* left part */
617         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
618                 block_len = pwd->block_len;
619                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
620                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
621         } else {
622                 block_len = 1 << pwd->prev_block_len_bits;
623                 n = (pwd->block_len - block_len) / 2;
624                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
625                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
626                         block_len);
627                 memcpy(out + n + block_len, in + n + block_len,
628                         n * sizeof(float));
629         }
630         out += pwd->block_len;
631         in += pwd->block_len;
632         /* right part */
633         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
634                 block_len = pwd->block_len;
635                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
636                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
637         } else {
638                 block_len = 1 << pwd->next_block_len_bits;
639                 n = (pwd->block_len - block_len) / 2;
640                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
641                 memcpy(out, in, n * sizeof(float));
642                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
643                         block_len);
644                 memset(out + n + block_len, 0, n * sizeof(float));
645         }
646 }
647
648 static int wma_total_gain_to_bits(int total_gain)
649 {
650         if (total_gain < 15)
651                 return 13;
652         else if (total_gain < 32)
653                 return 12;
654         else if (total_gain < 40)
655                 return 11;
656         else if (total_gain < 45)
657                 return 10;
658         else
659                 return 9;
660 }
661
662 static int compute_high_band_values(struct private_wmadec_data *pwd,
663                 int bsize, int nb_coefs[MAX_CHANNELS])
664 {
665         int ch;
666
667         if (!pwd->use_noise_coding)
668                 return 0;
669         for (ch = 0; ch < pwd->ahi.channels; ch++) {
670                 int i, m, a;
671                 if (!pwd->channel_coded[ch])
672                         continue;
673                 m = pwd->exponent_high_sizes[bsize];
674                 for (i = 0; i < m; i++) {
675                         a = get_bit(&pwd->gb);
676                         pwd->high_band_coded[ch][i] = a;
677                         if (!a)
678                                 continue;
679                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
680                 }
681         }
682         for (ch = 0; ch < pwd->ahi.channels; ch++) {
683                 int i, n, val;
684                 if (!pwd->channel_coded[ch])
685                         continue;
686                 n = pwd->exponent_high_sizes[bsize];
687                 val = (int)0x80000000;
688                 for (i = 0; i < n; i++) {
689                         if (!pwd->high_band_coded[ch][i])
690                                 continue;
691                         if (val == (int)0x80000000)
692                                 val = get_bits(&pwd->gb, 7) - 19;
693                         else {
694                                 int code = get_vlc(&pwd->gb, &pwd->hgain_vlc);
695                                 if (code < 0)
696                                         return code;
697                                 val += code - 18;
698                         }
699                         pwd->high_band_values[ch][i] = val;
700                 }
701         }
702         return 1;
703 }
704
705 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
706                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
707 {
708         int ch;
709         float mdct_norm = 1.0 / (pwd->block_len / 2);
710
711         for (ch = 0; ch < pwd->ahi.channels; ch++) {
712                 int16_t *coefs1;
713                 float *coefs, *exponents, mult, mult1, noise;
714                 int i, j, n, n1, last_high_band, esize;
715                 float exp_power[HIGH_BAND_MAX_SIZE];
716
717                 if (!pwd->channel_coded[ch])
718                         continue;
719                 coefs1 = pwd->coefs1[ch];
720                 exponents = pwd->exponents[ch];
721                 esize = pwd->exponents_bsize[ch];
722                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
723                 mult *= mdct_norm;
724                 coefs = pwd->coefs[ch];
725                 if (!pwd->use_noise_coding) {
726                         /* XXX: optimize more */
727                         n = nb_coefs[ch];
728                         for (i = 0; i < n; i++)
729                                 *coefs++ = coefs1[i] *
730                                         exponents[i << bsize >> esize] * mult;
731                         n = pwd->block_len - pwd->coefs_end[bsize];
732                         for (i = 0; i < n; i++)
733                                 *coefs++ = 0.0;
734                         continue;
735                 }
736                 n1 = pwd->exponent_high_sizes[bsize];
737                 /* compute power of high bands */
738                 exponents = pwd->exponents[ch] +
739                         (pwd->high_band_start[bsize] << bsize);
740                 last_high_band = 0; /* avoid warning */
741                 for (j = 0; j < n1; j++) {
742                         n = pwd->exponent_high_bands[
743                                 pwd->frame_len_bits - pwd->block_len_bits][j];
744                         if (pwd->high_band_coded[ch][j]) {
745                                 float e2, val;
746                                 e2 = 0;
747                                 for (i = 0; i < n; i++) {
748                                         val = exponents[i << bsize >> esize];
749                                         e2 += val * val;
750                                 }
751                                 exp_power[j] = e2 / n;
752                                 last_high_band = j;
753                         }
754                         exponents += n << bsize;
755                 }
756                 /* main freqs and high freqs */
757                 exponents = pwd->exponents[ch];
758                 for (j = -1; j < n1; j++) {
759                         if (j < 0)
760                                 n = pwd->high_band_start[bsize];
761                         else
762                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
763                                         - pwd->block_len_bits][j];
764                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
765                                 /* use noise with specified power */
766                                 mult1 = sqrt(exp_power[j]
767                                         / exp_power[last_high_band]);
768                                 /* XXX: use a table */
769                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
770                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
771                                 mult1 *= mdct_norm;
772                                 for (i = 0; i < n; i++) {
773                                         noise = pwd->noise_table[pwd->noise_index];
774                                         pwd->noise_index = (pwd->noise_index + 1)
775                                                 & (NOISE_TAB_SIZE - 1);
776                                         *coefs++ = noise * exponents[
777                                                 i << bsize >> esize] * mult1;
778                                 }
779                                 exponents += n << bsize;
780                         } else {
781                                 /* coded values + small noise */
782                                 for (i = 0; i < n; i++) {
783                                         noise = pwd->noise_table[pwd->noise_index];
784                                         pwd->noise_index = (pwd->noise_index + 1)
785                                                 & (NOISE_TAB_SIZE - 1);
786                                         *coefs++ = ((*coefs1++) + noise) *
787                                                 exponents[i << bsize >> esize]
788                                                 * mult;
789                                 }
790                                 exponents += n << bsize;
791                         }
792                 }
793                 /* very high freqs: noise */
794                 n = pwd->block_len - pwd->coefs_end[bsize];
795                 mult1 = mult * exponents[(-(1 << bsize)) >> esize];
796                 for (i = 0; i < n; i++) {
797                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
798                         pwd->noise_index = (pwd->noise_index + 1)
799                                 & (NOISE_TAB_SIZE - 1);
800                 }
801         }
802 }
803
804 /**
805  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
806  * errors.
807  */
808 static int wma_decode_block(struct private_wmadec_data *pwd)
809 {
810         int ret, n, v, ch, code, bsize;
811         int coef_nb_bits, total_gain;
812         int nb_coefs[MAX_CHANNELS];
813
814         /* compute current block length */
815         if (pwd->ahi.use_variable_block_len) {
816                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
817
818                 if (pwd->reset_block_lengths) {
819                         pwd->reset_block_lengths = false;
820                         v = get_bits(&pwd->gb, n);
821                         if (v >= pwd->nb_block_sizes)
822                                 return -E_WMA_BLOCK_SIZE;
823                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
824                         v = get_bits(&pwd->gb, n);
825                         if (v >= pwd->nb_block_sizes)
826                                 return -E_WMA_BLOCK_SIZE;
827                         pwd->block_len_bits = pwd->frame_len_bits - v;
828                 } else {
829                         /* update block lengths */
830                         pwd->prev_block_len_bits = pwd->block_len_bits;
831                         pwd->block_len_bits = pwd->next_block_len_bits;
832                 }
833                 v = get_bits(&pwd->gb, n);
834                 if (v >= pwd->nb_block_sizes)
835                         return -E_WMA_BLOCK_SIZE;
836                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
837         } else {
838                 /* fixed block len */
839                 pwd->next_block_len_bits = pwd->frame_len_bits;
840                 pwd->prev_block_len_bits = pwd->frame_len_bits;
841                 pwd->block_len_bits = pwd->frame_len_bits;
842         }
843
844         /* now check if the block length is coherent with the frame length */
845         pwd->block_len = 1 << pwd->block_len_bits;
846         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
847                 return -E_INCOHERENT_BLOCK_LEN;
848
849         if (pwd->ahi.channels == 2)
850                 pwd->ms_stereo = get_bit(&pwd->gb);
851         v = 0;
852         for (ch = 0; ch < pwd->ahi.channels; ch++) {
853                 int a = get_bit(&pwd->gb);
854                 pwd->channel_coded[ch] = a;
855                 v |= a;
856         }
857
858         bsize = pwd->frame_len_bits - pwd->block_len_bits;
859
860         /* if no channel coded, no need to go further */
861         /* XXX: fix potential framing problems */
862         if (!v)
863                 goto next;
864
865         /*
866          * Read total gain and extract corresponding number of bits for coef
867          * escape coding.
868          */
869         total_gain = 1;
870         for (;;) {
871                 int a = get_bits(&pwd->gb, 7);
872                 total_gain += a;
873                 if (a != 127)
874                         break;
875         }
876
877         coef_nb_bits = wma_total_gain_to_bits(total_gain);
878
879         /* compute number of coefficients */
880         n = pwd->coefs_end[bsize];
881         for (ch = 0; ch < pwd->ahi.channels; ch++)
882                 nb_coefs[ch] = n;
883
884         ret = compute_high_band_values(pwd, bsize, nb_coefs);
885         if (ret < 0)
886                 return ret;
887
888         /* exponents can be reused in short blocks. */
889         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
890                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
891                         if (pwd->channel_coded[ch]) {
892                                 if (pwd->ahi.use_exp_vlc) {
893                                         ret = decode_exp_vlc(pwd, ch);
894                                         if (ret < 0)
895                                                 return ret;
896                                 } else
897                                         decode_exp_lsp(pwd, ch);
898                                 pwd->exponents_bsize[ch] = bsize;
899                         }
900                 }
901         }
902
903         /* parse spectral coefficients : just RLE encoding */
904         for (ch = 0; ch < pwd->ahi.channels; ch++) {
905                 struct vlc *coef_vlc;
906                 int level, run, tindex;
907                 int16_t *ptr, *eptr;
908                 const uint16_t *level_table, *run_table;
909
910                 if (!pwd->channel_coded[ch])
911                         continue;
912                 /*
913                  * special VLC tables are used for ms stereo because there is
914                  * potentially less energy there
915                  */
916                 tindex = (ch == 1 && pwd->ms_stereo);
917                 coef_vlc = &pwd->coef_vlc[tindex];
918                 run_table = pwd->run_table[tindex];
919                 level_table = pwd->level_table[tindex];
920                 /* XXX: optimize */
921                 ptr = &pwd->coefs1[ch][0];
922                 eptr = ptr + nb_coefs[ch];
923                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
924                 for (;;) {
925                         code = get_vlc(&pwd->gb, coef_vlc);
926                         if (code < 0)
927                                 return code;
928                         if (code == 1) /* EOB */
929                                 break;
930                         if (code == 0) { /* escape */
931                                 level = get_bits(&pwd->gb, coef_nb_bits);
932                                 /* reading block_len_bits would be better */
933                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
934                         } else { /* normal code */
935                                 run = run_table[code];
936                                 level = level_table[code];
937                         }
938                         if (!get_bit(&pwd->gb))
939                                 level = -level;
940                         ptr += run;
941                         if (ptr >= eptr) {
942                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
943                                 break;
944                         }
945                         *ptr++ = level;
946                         if (ptr >= eptr) /* EOB can be omitted */
947                                 break;
948                 }
949         }
950         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
951         if (pwd->ms_stereo && pwd->channel_coded[1]) {
952                 float a, b;
953                 int i;
954                 /*
955                  * Nominal case for ms stereo: we do it before mdct.
956                  *
957                  * No need to optimize this case because it should almost never
958                  * happen.
959                  */
960                 if (!pwd->channel_coded[0]) {
961                         PARA_NOTICE_LOG("rare ms-stereo\n");
962                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
963                         pwd->channel_coded[0] = 1;
964                 }
965                 for (i = 0; i < pwd->block_len; i++) {
966                         a = pwd->coefs[0][i];
967                         b = pwd->coefs[1][i];
968                         pwd->coefs[0][i] = a + b;
969                         pwd->coefs[1][i] = a - b;
970                 }
971         }
972 next:
973         for (ch = 0; ch < pwd->ahi.channels; ch++) {
974                 int n4, idx;
975
976                 n4 = pwd->block_len / 2;
977                 if (pwd->channel_coded[ch])
978                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
979                 else if (!(pwd->ms_stereo && ch == 1))
980                         memset(pwd->output, 0, sizeof(pwd->output));
981
982                 /* multiply by the window and add in the frame */
983                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
984                 wma_window(pwd, &pwd->frame_out[ch][idx]);
985         }
986
987         /* update block number */
988         pwd->block_pos += pwd->block_len;
989         if (pwd->block_pos >= pwd->frame_len)
990                 return 1;
991         else
992                 return 0;
993 }
994
995 /*
996  * Clip a signed integer value into the -32768,32767 range.
997  *
998  * \param a The value to clip.
999  *
1000  * \return The clipped value.
1001  */
1002 static inline int16_t av_clip_int16(int a)
1003 {
1004         if ((a + 32768) & ~65535)
1005                 return (a >> 31) ^ 32767;
1006         else
1007                 return a;
1008 }
1009
1010 /* Decode a frame of frame_len samples. */
1011 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1012 {
1013         int ret, i, ch;
1014         int16_t *ptr;
1015         float *iptr;
1016
1017         /* read each block */
1018         pwd->block_pos = 0;
1019         for (;;) {
1020                 ret = wma_decode_block(pwd);
1021                 if (ret < 0)
1022                         return ret;
1023                 if (ret)
1024                         break;
1025         }
1026
1027         /* convert frame to integer */
1028         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1029                 ptr = samples + ch;
1030                 iptr = pwd->frame_out[ch];
1031
1032                 for (i = 0; i < pwd->frame_len; i++) {
1033                         *ptr = av_clip_int16(lrintf(*iptr++));
1034                         ptr += pwd->ahi.channels;
1035                 }
1036                 /* prepare for next block */
1037                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1038                         pwd->frame_len * sizeof(float));
1039         }
1040         return 0;
1041 }
1042
1043 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1044                 int *data_size, const uint8_t *buf, int buf_size)
1045 {
1046         int ret;
1047         int16_t *samples;
1048
1049         if (buf_size == 0) {
1050                 pwd->last_superframe_len = 0;
1051                 *data_size = 0;
1052                 return 0;
1053         }
1054         if (buf_size < pwd->ahi.block_align) {
1055                 *data_size = 0;
1056                 return 0;
1057         }
1058         buf_size = pwd->ahi.block_align;
1059         samples = data;
1060         init_get_bits(&pwd->gb, buf, buf_size);
1061         if (pwd->ahi.use_bit_reservoir) {
1062                 int i, nb_frames, bit_offset, pos, len;
1063                 uint8_t *q;
1064
1065                 /* read super frame header */
1066                 skip_bits(&pwd->gb, 4); /* super frame index */
1067                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1068                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1069                 ret = -E_WMA_OUTPUT_SPACE;
1070                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1071                                 * sizeof(int16_t) > *data_size)
1072                         goto fail;
1073
1074                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1075
1076                 if (pwd->last_superframe_len > 0) {
1077                         /* add bit_offset bits to last frame */
1078                         ret = -E_WMA_BAD_SUPERFRAME;
1079                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1080                                         MAX_CODED_SUPERFRAME_SIZE)
1081                                 goto fail;
1082                         q = pwd->last_superframe + pwd->last_superframe_len;
1083                         len = bit_offset;
1084                         while (len > 7) {
1085                                 *q++ = get_bits(&pwd->gb, 8);
1086                                 len -= 8;
1087                         }
1088                         if (len > 0)
1089                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1090
1091                         /* XXX: bit_offset bits into last frame */
1092                         init_get_bits(&pwd->gb, pwd->last_superframe,
1093                                 MAX_CODED_SUPERFRAME_SIZE);
1094                         /* skip unused bits */
1095                         if (pwd->last_bitoffset > 0)
1096                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1097                         /*
1098                          * This frame is stored in the last superframe and in
1099                          * the current one.
1100                          */
1101                         ret = wma_decode_frame(pwd, samples);
1102                         if (ret < 0)
1103                                 goto fail;
1104                         samples += pwd->ahi.channels * pwd->frame_len;
1105                 }
1106
1107                 /* read each frame starting from bit_offset */
1108                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1109                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1110                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1111                 len = pos & 7;
1112                 if (len > 0)
1113                         skip_bits(&pwd->gb, len);
1114
1115                 pwd->reset_block_lengths = true;
1116                 for (i = 0; i < nb_frames; i++) {
1117                         ret = wma_decode_frame(pwd, samples);
1118                         if (ret < 0)
1119                                 goto fail;
1120                         samples += pwd->ahi.channels * pwd->frame_len;
1121                 }
1122
1123                 /* we copy the end of the frame in the last frame buffer */
1124                 pos = get_bits_count(&pwd->gb) +
1125                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1126                 pwd->last_bitoffset = pos & 7;
1127                 pos >>= 3;
1128                 len = buf_size - pos;
1129                 ret = -E_WMA_BAD_SUPERFRAME;
1130                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1131                         goto fail;
1132                 pwd->last_superframe_len = len;
1133                 memcpy(pwd->last_superframe, buf + pos, len);
1134         } else {
1135                 PARA_DEBUG_LOG("not using bit reservoir\n");
1136                 ret = -E_WMA_OUTPUT_SPACE;
1137                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1138                         goto fail;
1139                 /* single frame decode */
1140                 ret = wma_decode_frame(pwd, samples);
1141                 if (ret < 0)
1142                         goto fail;
1143                 samples += pwd->ahi.channels * pwd->frame_len;
1144         }
1145         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1146                 pwd->frame_len, pwd->block_len,
1147                 (int)((int8_t *)samples - (int8_t *)data), pwd->ahi.block_align);
1148         *data_size = (int8_t *)samples - (int8_t *)data;
1149         return pwd->ahi.block_align;
1150 fail:
1151         /* reset the bit reservoir on errors */
1152         pwd->last_superframe_len = 0;
1153         return ret;
1154 }
1155
1156 static void wmadec_close(struct filter_node *fn)
1157 {
1158         struct private_wmadec_data *pwd = fn->private_data;
1159         int i;
1160
1161         if (!pwd)
1162                 return;
1163         for (i = 0; i < pwd->nb_block_sizes; i++)
1164                 imdct_end(pwd->mdct_ctx[i]);
1165         if (pwd->ahi.use_exp_vlc)
1166                 free_vlc(&pwd->exp_vlc);
1167         if (pwd->use_noise_coding)
1168                 free_vlc(&pwd->hgain_vlc);
1169         for (i = 0; i < 2; i++) {
1170                 free_vlc(&pwd->coef_vlc[i]);
1171                 free(pwd->run_table[i]);
1172                 free(pwd->level_table[i]);
1173         }
1174         free(fn->private_data);
1175         fn->private_data = NULL;
1176 }
1177
1178 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1179 {
1180         struct filter_node *fn = btr_context(btrn);
1181         struct private_wmadec_data *pwd = fn->private_data;
1182
1183         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1184                 result);
1185 }
1186
1187 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1188
1189 static int wmadec_post_select(__a_unused struct sched *s, void *context)
1190 {
1191         struct filter_node *fn = context;
1192         int ret, converted, out_size;
1193         struct private_wmadec_data *pwd = fn->private_data;
1194         struct btr_node *btrn = fn->btrn;
1195         size_t len;
1196         char *in, *out;
1197
1198 next_buffer:
1199         converted = 0;
1200         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1201         if (ret < 0)
1202                 goto err;
1203         if (ret == 0)
1204                 return 0;
1205         btr_merge(btrn, fn->min_iqs);
1206         len = btr_next_buffer(btrn, &in);
1207         ret = -E_WMADEC_EOF;
1208         if (len < fn->min_iqs)
1209                 goto err;
1210         if (!pwd) {
1211                 ret = wma_decode_init(in, len, &pwd);
1212                 if (ret < 0)
1213                         goto err;
1214                 if (ret == 0) {
1215                         fn->min_iqs += 4096;
1216                         goto next_buffer;
1217                 }
1218                 fn->min_iqs = 2 * pwd->ahi.packet_size;
1219                 fn->private_data = pwd;
1220                 converted = pwd->ahi.header_len;
1221                 goto success;
1222         }
1223         fn->min_iqs = pwd->ahi.packet_size;
1224         if (fn->min_iqs > len)
1225                 goto success;
1226         out_size = WMA_OUTPUT_BUFFER_SIZE;
1227         out = para_malloc(out_size);
1228         ret = wma_decode_superframe(pwd, out, &out_size,
1229                 (uint8_t *)in + WMA_FRAME_SKIP, len - WMA_FRAME_SKIP);
1230         if (ret < 0) {
1231                 free(out);
1232                 goto err;
1233         }
1234         if (out_size > 0) {
1235                 out = para_realloc(out, out_size);
1236                 btr_add_output(out, out_size, btrn);
1237         } else
1238                 free(out);
1239         converted += pwd->ahi.packet_size;
1240 success:
1241         btr_consume(btrn, converted);
1242         return 0;
1243 err:
1244         assert(ret < 0);
1245         btr_remove_node(&fn->btrn);
1246         return ret;
1247 }
1248
1249 static void wmadec_open(struct filter_node *fn)
1250 {
1251         fn->private_data = NULL;
1252         fn->min_iqs = 4096;
1253 }
1254
1255 const struct filter lsg_filter_cmd_com_wmadec_user_data = {
1256         .open = wmadec_open,
1257         .close = wmadec_close,
1258         .execute = wmadec_execute,
1259         .pre_select = generic_filter_pre_select,
1260         .post_select = wmadec_post_select,
1261 };