6b7251ee06338d1c1b50b4cd5eb674a6958ee0c0
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <math.h>
21 #include <regex.h>
22 #include <sys/select.h>
23
24 #include "para.h"
25 #include "error.h"
26 #include "list.h"
27 #include "ggo.h"
28 #include "string.h"
29 #include "sched.h"
30 #include "buffer_tree.h"
31 #include "filter.h"
32 #include "bitstream.h"
33 #include "imdct.h"
34 #include "wma.h"
35 #include "wmadata.h"
36
37
38 /* size of blocks */
39 #define BLOCK_MIN_BITS 7
40 #define BLOCK_MAX_BITS 11
41 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
42
43 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
44
45 /* XXX: find exact max size */
46 #define HIGH_BAND_MAX_SIZE 16
47
48 /* XXX: is it a suitable value ? */
49 #define MAX_CODED_SUPERFRAME_SIZE 16384
50
51 #define MAX_CHANNELS 2
52
53 #define NOISE_TAB_SIZE 8192
54
55 #define LSP_POW_BITS 7
56
57 struct private_wmadec_data {
58         /** Information contained in the audio file header. */
59         struct asf_header_info ahi;
60         struct getbit_context gb;
61         /** Whether perceptual noise is added. */
62         int use_noise_coding;
63         /** Depends on number of the bits per second and the frame length. */
64         int byte_offset_bits;
65         /** Only used if ahi->use_exp_vlc is true. */
66         struct vlc exp_vlc;
67         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
68         /** The index of the first coef in high band. */
69         int high_band_start[BLOCK_NB_SIZES];
70         /** Maximal number of coded coefficients. */
71         int coefs_end[BLOCK_NB_SIZES];
72         int exponent_high_sizes[BLOCK_NB_SIZES];
73         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
74         struct vlc hgain_vlc;
75
76         /* coded values in high bands */
77         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
78         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
79
80         /* there are two possible tables for spectral coefficients */
81         struct vlc coef_vlc[2];
82         uint16_t *run_table[2];
83         uint16_t *level_table[2];
84         const struct coef_vlc_table *coef_vlcs[2];
85         /** Frame length in samples. */
86         int frame_len;
87         /** log2 of frame_len. */
88         int frame_len_bits;
89         /** Number of block sizes, one if !ahi->use_variable_block_len. */
90         int nb_block_sizes;
91         /* block info */
92         int reset_block_lengths;
93         /** log2 of current block length. */
94         int block_len_bits;
95         /** log2 of next block length. */
96         int next_block_len_bits;
97         /** log2 of previous block length. */
98         int prev_block_len_bits;
99         /** Block length in samples. */
100         int block_len;
101         /** Current position in frame. */
102         int block_pos;
103         /** True if mid/side stereo mode. */
104         uint8_t ms_stereo;
105         /** True if channel is coded. */
106         uint8_t channel_coded[MAX_CHANNELS];
107         /** log2 ratio frame/exp. length. */
108         int exponents_bsize[MAX_CHANNELS];
109
110         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
111         float max_exponent[MAX_CHANNELS];
112         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
113         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
114         float output[BLOCK_MAX_SIZE * 2];
115         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
116         float *windows[BLOCK_NB_SIZES];
117         /** Output buffer for one frame and the last for IMDCT windowing. */
118         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
119         /** Last frame info. */
120         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
121         int last_bitoffset;
122         int last_superframe_len;
123         float noise_table[NOISE_TAB_SIZE];
124         int noise_index;
125         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
126         /* lsp_to_curve tables */
127         float lsp_cos_table[BLOCK_MAX_SIZE];
128         float lsp_pow_e_table[256];
129         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
130         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
131 };
132
133 #define EXPVLCBITS 8
134 #define EXPMAX DIV_ROUND_UP(19, EXPVLCBITS)
135
136 #define HGAINVLCBITS 9
137 #define HGAINMAX DIV_ROUND_UP(13, HGAINVLCBITS)
138
139 #define VLCBITS 9
140 #define VLCMAX DIV_ROUND_UP(22, VLCBITS)
141
142 /** \cond sine_winows */
143
144 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
145
146 SINE_WINDOW(128);
147 SINE_WINDOW(256);
148 SINE_WINDOW(512);
149 SINE_WINDOW(1024);
150 SINE_WINDOW(2048);
151 SINE_WINDOW(4096);
152
153 static float *sine_windows[6] = {
154         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
155 };
156 /** \endcond sine_windows */
157
158 /* Generate a sine window. */
159 static void sine_window_init(float *window, int n)
160 {
161         int i;
162
163         for (i = 0; i < n; i++)
164                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
165 }
166
167 static void wmadec_cleanup(struct private_wmadec_data *pwd)
168 {
169         int i;
170
171         for (i = 0; i < pwd->nb_block_sizes; i++)
172                 imdct_end(pwd->mdct_ctx[i]);
173         if (pwd->ahi.use_exp_vlc)
174                 free_vlc(&pwd->exp_vlc);
175         if (pwd->use_noise_coding)
176                 free_vlc(&pwd->hgain_vlc);
177         for (i = 0; i < 2; i++) {
178                 free_vlc(&pwd->coef_vlc[i]);
179                 free(pwd->run_table[i]);
180                 free(pwd->level_table[i]);
181         }
182 }
183
184 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
185                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
186 {
187         int n = vlc_table->n;
188         const uint8_t *table_bits = vlc_table->huffbits;
189         const uint32_t *table_codes = vlc_table->huffcodes;
190         const uint16_t *levels_table = vlc_table->levels;
191         uint16_t *run_table, *level_table;
192         int i, l, j, k, level;
193
194         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
195
196         run_table = para_malloc(n * sizeof(uint16_t));
197         level_table = para_malloc(n * sizeof(uint16_t));
198         i = 2;
199         level = 1;
200         k = 0;
201         while (i < n) {
202                 l = levels_table[k++];
203                 for (j = 0; j < l; j++) {
204                         run_table[i] = j;
205                         level_table[i] = level;
206                         i++;
207                 }
208                 level++;
209         }
210         *prun_table = run_table;
211         *plevel_table = level_table;
212 }
213
214 /* compute the scale factor band sizes for each MDCT block size */
215 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
216         float high_freq)
217 {
218         struct asf_header_info *ahi = &pwd->ahi;
219         int a, b, pos, lpos, k, block_len, i, j, n;
220         const uint8_t *table;
221
222         for (k = 0; k < pwd->nb_block_sizes; k++) {
223                 int exponent_size;
224
225                 block_len = pwd->frame_len >> k;
226                 table = NULL;
227                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
228                 if (a < 3) {
229                         if (ahi->sample_rate >= 44100)
230                                 table = exponent_band_44100[a];
231                         else if (ahi->sample_rate >= 32000)
232                                 table = exponent_band_32000[a];
233                         else if (ahi->sample_rate >= 22050)
234                                 table = exponent_band_22050[a];
235                 }
236                 if (table) {
237                         n = *table++;
238                         for (i = 0; i < n; i++)
239                                 pwd->exponent_bands[k][i] = table[i];
240                         exponent_size = n;
241                 } else {
242                         j = 0;
243                         lpos = 0;
244                         for (i = 0; i < 25; i++) {
245                                 a = wma_critical_freqs[i];
246                                 b = ahi->sample_rate;
247                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
248                                 pos <<= 2;
249                                 if (pos > block_len)
250                                         pos = block_len;
251                                 if (pos > lpos)
252                                         pwd->exponent_bands[k][j++] = pos - lpos;
253                                 if (pos >= block_len)
254                                         break;
255                                 lpos = pos;
256                         }
257                         exponent_size = j;
258                 }
259
260                 /* max number of coefs */
261                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
262                 /* high freq computation */
263                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
264                         / ahi->sample_rate + 0.5);
265                 n = exponent_size;
266                 j = 0;
267                 pos = 0;
268                 for (i = 0; i < n; i++) {
269                         int start, end;
270                         start = pos;
271                         pos += pwd->exponent_bands[k][i];
272                         end = pos;
273                         if (start < pwd->high_band_start[k])
274                                 start = pwd->high_band_start[k];
275                         if (end > pwd->coefs_end[k])
276                                 end = pwd->coefs_end[k];
277                         if (end > start)
278                                 pwd->exponent_high_bands[k][j++] = end - start;
279                 }
280                 pwd->exponent_high_sizes[k] = j;
281         }
282 }
283
284 static int wma_init(struct private_wmadec_data *pwd)
285 {
286         int i;
287         float bps1, high_freq;
288         volatile float bps;
289         int sample_rate1;
290         int coef_vlc_table;
291         struct asf_header_info *ahi = &pwd->ahi;
292         int flags2 = ahi->flags2;
293
294         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
295                 || ahi->channels <= 0 || ahi->channels > 8
296                 || ahi->bit_rate <= 0)
297                 return -E_WMA_BAD_PARAMS;
298
299         /* compute MDCT block size */
300         if (ahi->sample_rate <= 16000)
301                 pwd->frame_len_bits = 9;
302         else if (ahi->sample_rate <= 22050)
303                 pwd->frame_len_bits = 10;
304         else
305                 pwd->frame_len_bits = 11;
306         pwd->frame_len = 1 << pwd->frame_len_bits;
307         if (pwd->ahi.use_variable_block_len) {
308                 int nb_max, nb;
309                 nb = ((flags2 >> 3) & 3) + 1;
310                 if ((ahi->bit_rate / ahi->channels) >= 32000)
311                         nb += 2;
312                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
313                 if (nb > nb_max)
314                         nb = nb_max;
315                 pwd->nb_block_sizes = nb + 1;
316         } else
317                 pwd->nb_block_sizes = 1;
318
319         /* init rate dependent parameters */
320         pwd->use_noise_coding = 1;
321         high_freq = ahi->sample_rate * 0.5;
322
323         /* wma2 rates are normalized */
324         sample_rate1 = ahi->sample_rate;
325         if (sample_rate1 >= 44100)
326                 sample_rate1 = 44100;
327         else if (sample_rate1 >= 22050)
328                 sample_rate1 = 22050;
329         else if (sample_rate1 >= 16000)
330                 sample_rate1 = 16000;
331         else if (sample_rate1 >= 11025)
332                 sample_rate1 = 11025;
333         else if (sample_rate1 >= 8000)
334                 sample_rate1 = 8000;
335
336         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
337         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
338         /*
339          * Compute high frequency value and choose if noise coding should be
340          * activated.
341          */
342         bps1 = bps;
343         if (ahi->channels == 2)
344                 bps1 = bps * 1.6;
345         if (sample_rate1 == 44100) {
346                 if (bps1 >= 0.61)
347                         pwd->use_noise_coding = 0;
348                 else
349                         high_freq = high_freq * 0.4;
350         } else if (sample_rate1 == 22050) {
351                 if (bps1 >= 1.16)
352                         pwd->use_noise_coding = 0;
353                 else if (bps1 >= 0.72)
354                         high_freq = high_freq * 0.7;
355                 else
356                         high_freq = high_freq * 0.6;
357         } else if (sample_rate1 == 16000) {
358                 if (bps > 0.5)
359                         high_freq = high_freq * 0.5;
360                 else
361                         high_freq = high_freq * 0.3;
362         } else if (sample_rate1 == 11025)
363                 high_freq = high_freq * 0.7;
364         else if (sample_rate1 == 8000) {
365                 if (bps <= 0.625)
366                         high_freq = high_freq * 0.5;
367                 else if (bps > 0.75)
368                         pwd->use_noise_coding = 0;
369                 else
370                         high_freq = high_freq * 0.65;
371         } else {
372                 if (bps >= 0.8)
373                         high_freq = high_freq * 0.75;
374                 else if (bps >= 0.6)
375                         high_freq = high_freq * 0.6;
376                 else
377                         high_freq = high_freq * 0.5;
378         }
379         PARA_INFO_LOG("channels=%d sample_rate=%d "
380                 "bitrate=%d block_align=%d\n",
381                 ahi->channels, ahi->sample_rate,
382                 ahi->bit_rate, ahi->block_align);
383         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
384                 "high_freq=%f bitoffset=%d\n",
385                 pwd->frame_len, bps, bps1,
386                 high_freq, pwd->byte_offset_bits);
387         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
388                 pwd->use_noise_coding, pwd->ahi.use_exp_vlc, pwd->nb_block_sizes);
389
390         compute_scale_factor_band_sizes(pwd, high_freq);
391         /* init MDCT windows : simple sinus window */
392         for (i = 0; i < pwd->nb_block_sizes; i++) {
393                 int n;
394                 n = 1 << (pwd->frame_len_bits - i);
395                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
396                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
397         }
398
399         pwd->reset_block_lengths = 1;
400
401         if (pwd->use_noise_coding) {
402                 /* init the noise generator */
403                 if (pwd->ahi.use_exp_vlc)
404                         pwd->noise_mult = 0.02;
405                 else
406                         pwd->noise_mult = 0.04;
407
408                 {
409                         unsigned int seed;
410                         float norm;
411                         seed = 1;
412                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
413                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
414                                 seed = seed * 314159 + 1;
415                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
416                         }
417                 }
418         }
419
420         /* choose the VLC tables for the coefficients */
421         coef_vlc_table = 2;
422         if (ahi->sample_rate >= 32000) {
423                 if (bps1 < 0.72)
424                         coef_vlc_table = 0;
425                 else if (bps1 < 1.16)
426                         coef_vlc_table = 1;
427         }
428         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
429         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
430         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
431                 pwd->coef_vlcs[0]);
432         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
433                 pwd->coef_vlcs[1]);
434         return 0;
435 }
436
437 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
438 {
439         float wdel, a, b;
440         int i, e, m;
441
442         wdel = M_PI / frame_len;
443         for (i = 0; i < frame_len; i++)
444                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
445
446         /* tables for x^-0.25 computation */
447         for (i = 0; i < 256; i++) {
448                 e = i - 126;
449                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
450         }
451
452         /* These two tables are needed to avoid two operations in pow_m1_4. */
453         b = 1.0;
454         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
455                 m = (1 << LSP_POW_BITS) + i;
456                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
457                 a = pow(a, -0.25);
458                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
459                 pwd->lsp_pow_m_table2[i] = b - a;
460                 b = a;
461         }
462 }
463
464 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
465 {
466         struct private_wmadec_data *pwd;
467         int ret, i;
468
469         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
470         pwd = para_calloc(sizeof(*pwd));
471         ret = read_asf_header(initial_buf, len, &pwd->ahi);
472         if (ret <= 0) {
473                 free(pwd);
474                 return ret;
475         }
476
477         ret = wma_init(pwd);
478         if (ret < 0)
479                 return ret;
480         /* init MDCT */
481         for (i = 0; i < pwd->nb_block_sizes; i++) {
482                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
483                 if (ret < 0)
484                         return ret;
485         }
486         if (pwd->use_noise_coding) {
487                 PARA_INFO_LOG("using noise coding\n");
488                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
489                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
490                         wma_hgain_huffcodes, 2);
491         }
492
493         if (pwd->ahi.use_exp_vlc) {
494                 PARA_INFO_LOG("using exp_vlc\n");
495                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
496                         wma_scale_huffbits, wma_scale_huffcodes, 4);
497         } else {
498                 PARA_INFO_LOG("using curve\n");
499                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
500         }
501         *result = pwd;
502         return pwd->ahi.header_len;
503 }
504
505 /**
506  * compute x^-0.25 with an exponent and mantissa table. We use linear
507  * interpolation to reduce the mantissa table size at a small speed
508  * expense (linear interpolation approximately doubles the number of
509  * bits of precision).
510  */
511 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
512 {
513         union {
514                 float f;
515                 unsigned int v;
516         } u, t;
517         unsigned int e, m;
518         float a, b;
519
520         u.f = x;
521         e = u.v >> 23;
522         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
523         /* build interpolation scale: 1 <= t < 2. */
524         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
525         a = pwd->lsp_pow_m_table1[m];
526         b = pwd->lsp_pow_m_table2[m];
527         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
528 }
529
530 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
531                 float *out, float *val_max_ptr, int n, float *lsp)
532 {
533         int i, j;
534         float p, q, w, v, val_max;
535
536         val_max = 0;
537         for (i = 0; i < n; i++) {
538                 p = 0.5f;
539                 q = 0.5f;
540                 w = pwd->lsp_cos_table[i];
541                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
542                         q *= w - lsp[j - 1];
543                         p *= w - lsp[j];
544                 }
545                 p *= p * (2.0f - w);
546                 q *= q * (2.0f + w);
547                 v = p + q;
548                 v = pow_m1_4(pwd, v);
549                 if (v > val_max)
550                         val_max = v;
551                 out[i] = v;
552         }
553         *val_max_ptr = val_max;
554 }
555
556 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
557 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
558 {
559         float lsp_coefs[NB_LSP_COEFS];
560         int val, i;
561
562         for (i = 0; i < NB_LSP_COEFS; i++) {
563                 if (i == 0 || i >= 8)
564                         val = get_bits(&pwd->gb, 3);
565                 else
566                         val = get_bits(&pwd->gb, 4);
567                 lsp_coefs[i] = wma_lsp_codebook[i][val];
568         }
569
570         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
571                 pwd->block_len, lsp_coefs);
572 }
573
574 /* Decode exponents coded with VLC codes. */
575 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
576 {
577         int last_exp, n, code;
578         const uint16_t *ptr, *band_ptr;
579         float v, *q, max_scale, *q_end;
580
581         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
582         ptr = band_ptr;
583         q = pwd->exponents[ch];
584         q_end = q + pwd->block_len;
585         max_scale = 0;
586         last_exp = 36;
587
588         while (q < q_end) {
589                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
590                 if (code < 0)
591                         return code;
592                 /* NOTE: this offset is the same as MPEG4 AAC ! */
593                 last_exp += code - 60;
594                 /* XXX: use a table */
595                 v = pow(10, last_exp * (1.0 / 16.0));
596                 if (v > max_scale)
597                         max_scale = v;
598                 n = *ptr++;
599                 do {
600                         *q++ = v;
601                 } while (--n);
602         }
603         pwd->max_exponent[ch] = max_scale;
604         return 0;
605 }
606
607 /* compute src0 * src1 + src2 */
608 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
609                 const float *src2, int len)
610 {
611         int i;
612
613         for (i = 0; i < len; i++)
614                 dst[i] = src0[i] * src1[i] + src2[i];
615 }
616
617 static inline void vector_mult_reverse(float *dst, const float *src0,
618                 const float *src1, int len)
619 {
620         int i;
621
622         src1 += len - 1;
623         for (i = 0; i < len; i++)
624                 dst[i] = src0[i] * src1[-i];
625 }
626
627 /**
628  * Apply MDCT window and add into output.
629  *
630  * We ensure that when the windows overlap their squared sum
631  * is always 1 (MDCT reconstruction rule).
632  */
633 static void wma_window(struct private_wmadec_data *pwd, float *out)
634 {
635         float *in = pwd->output;
636         int block_len, bsize, n;
637
638         /* left part */
639         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
640                 block_len = pwd->block_len;
641                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
642                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
643         } else {
644                 block_len = 1 << pwd->prev_block_len_bits;
645                 n = (pwd->block_len - block_len) / 2;
646                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
647                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
648                         block_len);
649                 memcpy(out + n + block_len, in + n + block_len,
650                         n * sizeof(float));
651         }
652         out += pwd->block_len;
653         in += pwd->block_len;
654         /* right part */
655         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
656                 block_len = pwd->block_len;
657                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
658                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
659         } else {
660                 block_len = 1 << pwd->next_block_len_bits;
661                 n = (pwd->block_len - block_len) / 2;
662                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
663                 memcpy(out, in, n * sizeof(float));
664                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
665                         block_len);
666                 memset(out + n + block_len, 0, n * sizeof(float));
667         }
668 }
669
670 static int wma_total_gain_to_bits(int total_gain)
671 {
672         if (total_gain < 15)
673                 return 13;
674         else if (total_gain < 32)
675                 return 12;
676         else if (total_gain < 40)
677                 return 11;
678         else if (total_gain < 45)
679                 return 10;
680         else
681                 return 9;
682 }
683
684 static int compute_high_band_values(struct private_wmadec_data *pwd,
685                 int bsize, int nb_coefs[MAX_CHANNELS])
686 {
687         int ch;
688
689         if (!pwd->use_noise_coding)
690                 return 0;
691         for (ch = 0; ch < pwd->ahi.channels; ch++) {
692                 int i, m, a;
693                 if (!pwd->channel_coded[ch])
694                         continue;
695                 m = pwd->exponent_high_sizes[bsize];
696                 for (i = 0; i < m; i++) {
697                         a = get_bit(&pwd->gb);
698                         pwd->high_band_coded[ch][i] = a;
699                         if (!a)
700                                 continue;
701                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
702                 }
703         }
704         for (ch = 0; ch < pwd->ahi.channels; ch++) {
705                 int i, n, val;
706                 if (!pwd->channel_coded[ch])
707                         continue;
708                 n = pwd->exponent_high_sizes[bsize];
709                 val = (int)0x80000000;
710                 for (i = 0; i < n; i++) {
711                         if (!pwd->high_band_coded[ch][i])
712                                 continue;
713                         if (val == (int)0x80000000)
714                                 val = get_bits(&pwd->gb, 7) - 19;
715                         else {
716                                 int code = get_vlc(&pwd->gb,
717                                         pwd->hgain_vlc.table, HGAINVLCBITS,
718                                         HGAINMAX);
719                                 if (code < 0)
720                                         return code;
721                                 val += code - 18;
722                         }
723                         pwd->high_band_values[ch][i] = val;
724                 }
725         }
726         return 1;
727 }
728
729 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
730                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
731 {
732         int ch;
733         float mdct_norm = 1.0 / (pwd->block_len / 2);
734
735         for (ch = 0; ch < pwd->ahi.channels; ch++) {
736                 int16_t *coefs1;
737                 float *coefs, *exponents, mult, mult1, noise;
738                 int i, j, n, n1, last_high_band, esize;
739                 float exp_power[HIGH_BAND_MAX_SIZE];
740
741                 if (!pwd->channel_coded[ch])
742                         continue;
743                 coefs1 = pwd->coefs1[ch];
744                 exponents = pwd->exponents[ch];
745                 esize = pwd->exponents_bsize[ch];
746                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
747                 mult *= mdct_norm;
748                 coefs = pwd->coefs[ch];
749                 if (!pwd->use_noise_coding) {
750                         /* XXX: optimize more */
751                         n = nb_coefs[ch];
752                         for (i = 0; i < n; i++)
753                                 *coefs++ = coefs1[i] *
754                                         exponents[i << bsize >> esize] * mult;
755                         n = pwd->block_len - pwd->coefs_end[bsize];
756                         for (i = 0; i < n; i++)
757                                 *coefs++ = 0.0;
758                         continue;
759                 }
760                 n1 = pwd->exponent_high_sizes[bsize];
761                 /* compute power of high bands */
762                 exponents = pwd->exponents[ch] +
763                         (pwd->high_band_start[bsize] << bsize);
764                 last_high_band = 0; /* avoid warning */
765                 for (j = 0; j < n1; j++) {
766                         n = pwd->exponent_high_bands[
767                                 pwd->frame_len_bits - pwd->block_len_bits][j];
768                         if (pwd->high_band_coded[ch][j]) {
769                                 float e2, val;
770                                 e2 = 0;
771                                 for (i = 0; i < n; i++) {
772                                         val = exponents[i << bsize >> esize];
773                                         e2 += val * val;
774                                 }
775                                 exp_power[j] = e2 / n;
776                                 last_high_band = j;
777                         }
778                         exponents += n << bsize;
779                 }
780                 /* main freqs and high freqs */
781                 exponents = pwd->exponents[ch];
782                 for (j = -1; j < n1; j++) {
783                         if (j < 0)
784                                 n = pwd->high_band_start[bsize];
785                         else
786                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
787                                         - pwd->block_len_bits][j];
788                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
789                                 /* use noise with specified power */
790                                 mult1 = sqrt(exp_power[j]
791                                         / exp_power[last_high_band]);
792                                 /* XXX: use a table */
793                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
794                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
795                                 mult1 *= mdct_norm;
796                                 for (i = 0; i < n; i++) {
797                                         noise = pwd->noise_table[pwd->noise_index];
798                                         pwd->noise_index = (pwd->noise_index + 1)
799                                                 & (NOISE_TAB_SIZE - 1);
800                                         *coefs++ = noise * exponents[
801                                                 i << bsize >> esize] * mult1;
802                                 }
803                                 exponents += n << bsize;
804                         } else {
805                                 /* coded values + small noise */
806                                 for (i = 0; i < n; i++) {
807                                         noise = pwd->noise_table[pwd->noise_index];
808                                         pwd->noise_index = (pwd->noise_index + 1)
809                                                 & (NOISE_TAB_SIZE - 1);
810                                         *coefs++ = ((*coefs1++) + noise) *
811                                                 exponents[i << bsize >> esize]
812                                                 * mult;
813                                 }
814                                 exponents += n << bsize;
815                         }
816                 }
817                 /* very high freqs: noise */
818                 n = pwd->block_len - pwd->coefs_end[bsize];
819                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
820                 for (i = 0; i < n; i++) {
821                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
822                         pwd->noise_index = (pwd->noise_index + 1)
823                                 & (NOISE_TAB_SIZE - 1);
824                 }
825         }
826 }
827
828 /**
829  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
830  * errors.
831  */
832 static int wma_decode_block(struct private_wmadec_data *pwd)
833 {
834         int ret, n, v, ch, code, bsize;
835         int coef_nb_bits, total_gain;
836         int nb_coefs[MAX_CHANNELS];
837
838         /* compute current block length */
839         if (pwd->ahi.use_variable_block_len) {
840                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
841
842                 if (pwd->reset_block_lengths) {
843                         pwd->reset_block_lengths = 0;
844                         v = get_bits(&pwd->gb, n);
845                         if (v >= pwd->nb_block_sizes)
846                                 return -E_WMA_BLOCK_SIZE;
847                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
848                         v = get_bits(&pwd->gb, n);
849                         if (v >= pwd->nb_block_sizes)
850                                 return -E_WMA_BLOCK_SIZE;
851                         pwd->block_len_bits = pwd->frame_len_bits - v;
852                 } else {
853                         /* update block lengths */
854                         pwd->prev_block_len_bits = pwd->block_len_bits;
855                         pwd->block_len_bits = pwd->next_block_len_bits;
856                 }
857                 v = get_bits(&pwd->gb, n);
858                 if (v >= pwd->nb_block_sizes)
859                         return -E_WMA_BLOCK_SIZE;
860                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
861         } else {
862                 /* fixed block len */
863                 pwd->next_block_len_bits = pwd->frame_len_bits;
864                 pwd->prev_block_len_bits = pwd->frame_len_bits;
865                 pwd->block_len_bits = pwd->frame_len_bits;
866         }
867
868         /* now check if the block length is coherent with the frame length */
869         pwd->block_len = 1 << pwd->block_len_bits;
870         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
871                 return -E_INCOHERENT_BLOCK_LEN;
872
873         if (pwd->ahi.channels == 2)
874                 pwd->ms_stereo = get_bit(&pwd->gb);
875         v = 0;
876         for (ch = 0; ch < pwd->ahi.channels; ch++) {
877                 int a = get_bit(&pwd->gb);
878                 pwd->channel_coded[ch] = a;
879                 v |= a;
880         }
881
882         bsize = pwd->frame_len_bits - pwd->block_len_bits;
883
884         /* if no channel coded, no need to go further */
885         /* XXX: fix potential framing problems */
886         if (!v)
887                 goto next;
888
889         /*
890          * Read total gain and extract corresponding number of bits for coef
891          * escape coding.
892          */
893         total_gain = 1;
894         for (;;) {
895                 int a = get_bits(&pwd->gb, 7);
896                 total_gain += a;
897                 if (a != 127)
898                         break;
899         }
900
901         coef_nb_bits = wma_total_gain_to_bits(total_gain);
902
903         /* compute number of coefficients */
904         n = pwd->coefs_end[bsize];
905         for (ch = 0; ch < pwd->ahi.channels; ch++)
906                 nb_coefs[ch] = n;
907
908         ret = compute_high_band_values(pwd, bsize, nb_coefs);
909         if (ret < 0)
910                 return ret;
911
912         /* exponents can be reused in short blocks. */
913         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
914                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
915                         if (pwd->channel_coded[ch]) {
916                                 if (pwd->ahi.use_exp_vlc) {
917                                         ret = decode_exp_vlc(pwd, ch);
918                                         if (ret < 0)
919                                                 return ret;
920                                 } else
921                                         decode_exp_lsp(pwd, ch);
922                                 pwd->exponents_bsize[ch] = bsize;
923                         }
924                 }
925         }
926
927         /* parse spectral coefficients : just RLE encoding */
928         for (ch = 0; ch < pwd->ahi.channels; ch++) {
929                 struct vlc *coef_vlc;
930                 int level, run, tindex;
931                 int16_t *ptr, *eptr;
932                 const uint16_t *level_table, *run_table;
933
934                 if (!pwd->channel_coded[ch])
935                         continue;
936                 /*
937                  * special VLC tables are used for ms stereo because there is
938                  * potentially less energy there
939                  */
940                 tindex = (ch == 1 && pwd->ms_stereo);
941                 coef_vlc = &pwd->coef_vlc[tindex];
942                 run_table = pwd->run_table[tindex];
943                 level_table = pwd->level_table[tindex];
944                 /* XXX: optimize */
945                 ptr = &pwd->coefs1[ch][0];
946                 eptr = ptr + nb_coefs[ch];
947                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
948                 for (;;) {
949                         code = get_vlc(&pwd->gb, coef_vlc->table,
950                                 VLCBITS, VLCMAX);
951                         if (code < 0)
952                                 return code;
953                         if (code == 1) /* EOB */
954                                 break;
955                         if (code == 0) { /* escape */
956                                 level = get_bits(&pwd->gb, coef_nb_bits);
957                                 /* reading block_len_bits would be better */
958                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
959                         } else { /* normal code */
960                                 run = run_table[code];
961                                 level = level_table[code];
962                         }
963                         if (!get_bit(&pwd->gb))
964                                 level = -level;
965                         ptr += run;
966                         if (ptr >= eptr) {
967                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
968                                 break;
969                         }
970                         *ptr++ = level;
971                         if (ptr >= eptr) /* EOB can be omitted */
972                                 break;
973                 }
974         }
975         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
976         if (pwd->ms_stereo && pwd->channel_coded[1]) {
977                 float a, b;
978                 int i;
979                 /*
980                  * Nominal case for ms stereo: we do it before mdct.
981                  *
982                  * No need to optimize this case because it should almost never
983                  * happen.
984                  */
985                 if (!pwd->channel_coded[0]) {
986                         PARA_NOTICE_LOG("rare ms-stereo\n");
987                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
988                         pwd->channel_coded[0] = 1;
989                 }
990                 for (i = 0; i < pwd->block_len; i++) {
991                         a = pwd->coefs[0][i];
992                         b = pwd->coefs[1][i];
993                         pwd->coefs[0][i] = a + b;
994                         pwd->coefs[1][i] = a - b;
995                 }
996         }
997 next:
998         for (ch = 0; ch < pwd->ahi.channels; ch++) {
999                 int n4, idx;
1000
1001                 n4 = pwd->block_len / 2;
1002                 if (pwd->channel_coded[ch])
1003                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1004                 else if (!(pwd->ms_stereo && ch == 1))
1005                         memset(pwd->output, 0, sizeof(pwd->output));
1006
1007                 /* multiply by the window and add in the frame */
1008                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
1009                 wma_window(pwd, &pwd->frame_out[ch][idx]);
1010         }
1011
1012         /* update block number */
1013         pwd->block_pos += pwd->block_len;
1014         if (pwd->block_pos >= pwd->frame_len)
1015                 return 1;
1016         else
1017                 return 0;
1018 }
1019
1020 /*
1021  * Clip a signed integer value into the -32768,32767 range.
1022  *
1023  * \param a The value to clip.
1024  *
1025  * \return The clipped value.
1026  */
1027 static inline int16_t av_clip_int16(int a)
1028 {
1029         if ((a + 32768) & ~65535)
1030                 return (a >> 31) ^ 32767;
1031         else
1032                 return a;
1033 }
1034
1035 /* Decode a frame of frame_len samples. */
1036 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1037 {
1038         int ret, i, n, ch, incr;
1039         int16_t *ptr;
1040         float *iptr;
1041
1042         /* read each block */
1043         pwd->block_pos = 0;
1044         for (;;) {
1045                 ret = wma_decode_block(pwd);
1046                 if (ret < 0)
1047                         return ret;
1048                 if (ret)
1049                         break;
1050         }
1051
1052         /* convert frame to integer */
1053         n = pwd->frame_len;
1054         incr = pwd->ahi.channels;
1055         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1056                 ptr = samples + ch;
1057                 iptr = pwd->frame_out[ch];
1058
1059                 for (i = 0; i < n; i++) {
1060                         *ptr = av_clip_int16(lrintf(*iptr++));
1061                         ptr += incr;
1062                 }
1063                 /* prepare for next block */
1064                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1065                         pwd->frame_len * sizeof(float));
1066         }
1067         return 0;
1068 }
1069
1070 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1071                 int *data_size, const uint8_t *buf, int buf_size)
1072 {
1073         int ret;
1074         int16_t *samples;
1075
1076         if (buf_size == 0) {
1077                 pwd->last_superframe_len = 0;
1078                 return 0;
1079         }
1080         if (buf_size < pwd->ahi.block_align)
1081                 return 0;
1082         buf_size = pwd->ahi.block_align;
1083         samples = data;
1084         init_get_bits(&pwd->gb, buf, buf_size);
1085         if (pwd->ahi.use_bit_reservoir) {
1086                 int i, nb_frames, bit_offset, pos, len;
1087                 uint8_t *q;
1088
1089                 /* read super frame header */
1090                 skip_bits(&pwd->gb, 4); /* super frame index */
1091                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1092                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1093                 ret = -E_WMA_OUTPUT_SPACE;
1094                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1095                                 * sizeof(int16_t) > *data_size)
1096                         goto fail;
1097
1098                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1099
1100                 if (pwd->last_superframe_len > 0) {
1101                         /* add bit_offset bits to last frame */
1102                         ret = -E_WMA_BAD_SUPERFRAME;
1103                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1104                                         MAX_CODED_SUPERFRAME_SIZE)
1105                                 goto fail;
1106                         q = pwd->last_superframe + pwd->last_superframe_len;
1107                         len = bit_offset;
1108                         while (len > 7) {
1109                                 *q++ = get_bits(&pwd->gb, 8);
1110                                 len -= 8;
1111                         }
1112                         if (len > 0)
1113                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1114
1115                         /* XXX: bit_offset bits into last frame */
1116                         init_get_bits(&pwd->gb, pwd->last_superframe,
1117                                 MAX_CODED_SUPERFRAME_SIZE);
1118                         /* skip unused bits */
1119                         if (pwd->last_bitoffset > 0)
1120                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1121                         /*
1122                          * This frame is stored in the last superframe and in
1123                          * the current one.
1124                          */
1125                         ret = wma_decode_frame(pwd, samples);
1126                         if (ret < 0)
1127                                 goto fail;
1128                         samples += pwd->ahi.channels * pwd->frame_len;
1129                 }
1130
1131                 /* read each frame starting from bit_offset */
1132                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1133                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1134                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1135                 len = pos & 7;
1136                 if (len > 0)
1137                         skip_bits(&pwd->gb, len);
1138
1139                 pwd->reset_block_lengths = 1;
1140                 for (i = 0; i < nb_frames; i++) {
1141                         ret = wma_decode_frame(pwd, samples);
1142                         if (ret < 0)
1143                                 goto fail;
1144                         samples += pwd->ahi.channels * pwd->frame_len;
1145                 }
1146
1147                 /* we copy the end of the frame in the last frame buffer */
1148                 pos = get_bits_count(&pwd->gb) +
1149                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1150                 pwd->last_bitoffset = pos & 7;
1151                 pos >>= 3;
1152                 len = buf_size - pos;
1153                 ret = -E_WMA_BAD_SUPERFRAME;
1154                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1155                         goto fail;
1156                 pwd->last_superframe_len = len;
1157                 memcpy(pwd->last_superframe, buf + pos, len);
1158         } else {
1159                 PARA_DEBUG_LOG("not using bit reservoir\n");
1160                 ret = -E_WMA_OUTPUT_SPACE;
1161                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1162                         goto fail;
1163                 /* single frame decode */
1164                 ret = wma_decode_frame(pwd, samples);
1165                 if (ret < 0)
1166                         goto fail;
1167                 samples += pwd->ahi.channels * pwd->frame_len;
1168         }
1169         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1170                 pwd->frame_len, pwd->block_len,
1171                 (int)((int8_t *)samples - (int8_t *)data), pwd->ahi.block_align);
1172         *data_size = (int8_t *)samples - (int8_t *)data;
1173         return pwd->ahi.block_align;
1174 fail:
1175         /* reset the bit reservoir on errors */
1176         pwd->last_superframe_len = 0;
1177         return ret;
1178 }
1179
1180 static void wmadec_close(struct filter_node *fn)
1181 {
1182         struct private_wmadec_data *pwd = fn->private_data;
1183
1184         if (!pwd)
1185                 return;
1186         wmadec_cleanup(pwd);
1187         free(fn->private_data);
1188         fn->private_data = NULL;
1189 }
1190
1191 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1192 {
1193         struct filter_node *fn = btr_context(btrn);
1194         struct private_wmadec_data *pwd = fn->private_data;
1195
1196         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1197                 result);
1198 }
1199
1200 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1201
1202 static int wmadec_post_select(__a_unused struct sched *s, void *context)
1203 {
1204         struct filter_node *fn = context;
1205         int ret, converted, out_size;
1206         struct private_wmadec_data *pwd = fn->private_data;
1207         struct btr_node *btrn = fn->btrn;
1208         size_t len;
1209         char *in, *out;
1210
1211 next_buffer:
1212         converted = 0;
1213         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1214         if (ret < 0)
1215                 goto err;
1216         if (ret == 0)
1217                 return 0;
1218         btr_merge(btrn, fn->min_iqs);
1219         len = btr_next_buffer(btrn, (char **)&in);
1220         ret = -E_WMADEC_EOF;
1221         if (len < fn->min_iqs)
1222                 goto err;
1223         if (!pwd) {
1224                 ret = wma_decode_init(in, len, &pwd);
1225                 if (ret < 0)
1226                         goto err;
1227                 if (ret == 0) {
1228                         fn->min_iqs += 4096;
1229                         goto next_buffer;
1230                 }
1231                 fn->min_iqs = 2 * (WMA_FRAME_SKIP + pwd->ahi.block_align);
1232                 fn->private_data = pwd;
1233                 converted = pwd->ahi.header_len;
1234                 goto success;
1235         }
1236         fn->min_iqs = WMA_FRAME_SKIP + pwd->ahi.block_align;
1237         if (fn->min_iqs > len)
1238                 goto success;
1239         out_size = WMA_OUTPUT_BUFFER_SIZE;
1240         out = para_malloc(out_size);
1241         ret = wma_decode_superframe(pwd, out, &out_size,
1242                 (uint8_t *)in + WMA_FRAME_SKIP, len - WMA_FRAME_SKIP);
1243         if (ret < 0) {
1244                 free(out);
1245                 goto err;
1246         }
1247         out = para_realloc(out, out_size);
1248         if (out_size > 0)
1249                 btr_add_output(out, out_size, btrn);
1250         converted += ret + WMA_FRAME_SKIP;
1251 success:
1252         btr_consume(btrn, converted);
1253         return 0;
1254 err:
1255         assert(ret < 0);
1256         btr_remove_node(&fn->btrn);
1257         return ret;
1258 }
1259
1260 static void wmadec_open(struct filter_node *fn)
1261 {
1262         fn->private_data = NULL;
1263         fn->min_iqs = 4096;
1264 }
1265
1266 /**
1267  * The init function of the wma decoder.
1268  *
1269  * \param f Its fields are filled in by the function.
1270  */
1271 void wmadec_filter_init(struct filter *f)
1272 {
1273         f->open = wmadec_open;
1274         f->close = wmadec_close;
1275         f->execute = wmadec_execute;
1276         f->pre_select = generic_filter_pre_select;
1277         f->post_select = wmadec_post_select;
1278 }