2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
22 #include <sys/select.h>
30 #include "buffer_tree.h"
32 #include "bitstream.h"
39 #define BLOCK_MIN_BITS 7
40 #define BLOCK_MAX_BITS 11
41 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
43 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
45 /* XXX: find exact max size */
46 #define HIGH_BAND_MAX_SIZE 16
48 /* XXX: is it a suitable value ? */
49 #define MAX_CODED_SUPERFRAME_SIZE 16384
51 #define MAX_CHANNELS 2
53 #define NOISE_TAB_SIZE 8192
55 #define LSP_POW_BITS 7
57 struct private_wmadec_data
{
58 /** Information contained in the audio file header. */
59 struct asf_header_info ahi
;
60 struct getbit_context gb
;
61 /** Whether perceptual noise is added. */
63 /** Depends on number of the bits per second and the frame length. */
65 /** Only used if ahi->use_exp_vlc is true. */
67 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
68 /** The index of the first coef in high band. */
69 int high_band_start
[BLOCK_NB_SIZES
];
70 /** Maximal number of coded coefficients. */
71 int coefs_end
[BLOCK_NB_SIZES
];
72 int exponent_high_sizes
[BLOCK_NB_SIZES
];
73 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
76 /* coded values in high bands */
77 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
78 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
80 /* there are two possible tables for spectral coefficients */
81 struct vlc coef_vlc
[2];
82 uint16_t *run_table
[2];
83 uint16_t *level_table
[2];
84 const struct coef_vlc_table
*coef_vlcs
[2];
85 /** Frame length in samples. */
87 /** log2 of frame_len. */
89 /** Number of block sizes, one if !ahi->use_variable_block_len. */
92 int reset_block_lengths
;
93 /** log2 of current block length. */
95 /** log2 of next block length. */
96 int next_block_len_bits
;
97 /** log2 of previous block length. */
98 int prev_block_len_bits
;
99 /** Block length in samples. */
101 /** Current position in frame. */
103 /** True if mid/side stereo mode. */
105 /** True if channel is coded. */
106 uint8_t channel_coded
[MAX_CHANNELS
];
107 /** log2 ratio frame/exp. length. */
108 int exponents_bsize
[MAX_CHANNELS
];
110 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
111 float max_exponent
[MAX_CHANNELS
];
112 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
113 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
114 float output
[BLOCK_MAX_SIZE
* 2];
115 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
116 float *windows
[BLOCK_NB_SIZES
];
117 /** Output buffer for one frame and the last for IMDCT windowing. */
118 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
119 /** Last frame info. */
120 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
122 int last_superframe_len
;
123 float noise_table
[NOISE_TAB_SIZE
];
125 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
126 /* lsp_to_curve tables */
127 float lsp_cos_table
[BLOCK_MAX_SIZE
];
128 float lsp_pow_e_table
[256];
129 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
130 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
134 #define EXPMAX DIV_ROUND_UP(19, EXPVLCBITS)
136 #define HGAINVLCBITS 9
137 #define HGAINMAX DIV_ROUND_UP(13, HGAINVLCBITS)
140 #define VLCMAX DIV_ROUND_UP(22, VLCBITS)
142 /** \cond sine_winows */
144 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
153 static float *sine_windows
[6] = {
154 sine_128
, sine_256
, sine_512
, sine_1024
, sine_2048
, sine_4096
156 /** \endcond sine_windows */
158 /* Generate a sine window. */
159 static void sine_window_init(float *window
, int n
)
163 for (i
= 0; i
< n
; i
++)
164 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
167 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
171 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
172 imdct_end(pwd
->mdct_ctx
[i
]);
173 if (pwd
->ahi
.use_exp_vlc
)
174 free_vlc(&pwd
->exp_vlc
);
175 if (pwd
->use_noise_coding
)
176 free_vlc(&pwd
->hgain_vlc
);
177 for (i
= 0; i
< 2; i
++) {
178 free_vlc(&pwd
->coef_vlc
[i
]);
179 free(pwd
->run_table
[i
]);
180 free(pwd
->level_table
[i
]);
184 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
185 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
187 int n
= vlc_table
->n
;
188 const uint8_t *table_bits
= vlc_table
->huffbits
;
189 const uint32_t *table_codes
= vlc_table
->huffcodes
;
190 const uint16_t *levels_table
= vlc_table
->levels
;
191 uint16_t *run_table
, *level_table
;
192 int i
, l
, j
, k
, level
;
194 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
196 run_table
= para_malloc(n
* sizeof(uint16_t));
197 level_table
= para_malloc(n
* sizeof(uint16_t));
202 l
= levels_table
[k
++];
203 for (j
= 0; j
< l
; j
++) {
205 level_table
[i
] = level
;
210 *prun_table
= run_table
;
211 *plevel_table
= level_table
;
214 /* compute the scale factor band sizes for each MDCT block size */
215 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
218 struct asf_header_info
*ahi
= &pwd
->ahi
;
219 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
220 const uint8_t *table
;
222 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
225 block_len
= pwd
->frame_len
>> k
;
227 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
229 if (ahi
->sample_rate
>= 44100)
230 table
= exponent_band_44100
[a
];
231 else if (ahi
->sample_rate
>= 32000)
232 table
= exponent_band_32000
[a
];
233 else if (ahi
->sample_rate
>= 22050)
234 table
= exponent_band_22050
[a
];
238 for (i
= 0; i
< n
; i
++)
239 pwd
->exponent_bands
[k
][i
] = table
[i
];
244 for (i
= 0; i
< 25; i
++) {
245 a
= wma_critical_freqs
[i
];
246 b
= ahi
->sample_rate
;
247 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
252 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
253 if (pos
>= block_len
)
260 /* max number of coefs */
261 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
262 /* high freq computation */
263 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
264 / ahi
->sample_rate
+ 0.5);
268 for (i
= 0; i
< n
; i
++) {
271 pos
+= pwd
->exponent_bands
[k
][i
];
273 if (start
< pwd
->high_band_start
[k
])
274 start
= pwd
->high_band_start
[k
];
275 if (end
> pwd
->coefs_end
[k
])
276 end
= pwd
->coefs_end
[k
];
278 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
280 pwd
->exponent_high_sizes
[k
] = j
;
284 static int wma_init(struct private_wmadec_data
*pwd
)
287 float bps1
, high_freq
;
291 struct asf_header_info
*ahi
= &pwd
->ahi
;
292 int flags2
= ahi
->flags2
;
294 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
295 || ahi
->channels
<= 0 || ahi
->channels
> 8
296 || ahi
->bit_rate
<= 0)
297 return -E_WMA_BAD_PARAMS
;
299 /* compute MDCT block size */
300 if (ahi
->sample_rate
<= 16000)
301 pwd
->frame_len_bits
= 9;
302 else if (ahi
->sample_rate
<= 22050)
303 pwd
->frame_len_bits
= 10;
305 pwd
->frame_len_bits
= 11;
306 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
307 if (pwd
->ahi
.use_variable_block_len
) {
309 nb
= ((flags2
>> 3) & 3) + 1;
310 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
312 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
315 pwd
->nb_block_sizes
= nb
+ 1;
317 pwd
->nb_block_sizes
= 1;
319 /* init rate dependent parameters */
320 pwd
->use_noise_coding
= 1;
321 high_freq
= ahi
->sample_rate
* 0.5;
323 /* wma2 rates are normalized */
324 sample_rate1
= ahi
->sample_rate
;
325 if (sample_rate1
>= 44100)
326 sample_rate1
= 44100;
327 else if (sample_rate1
>= 22050)
328 sample_rate1
= 22050;
329 else if (sample_rate1
>= 16000)
330 sample_rate1
= 16000;
331 else if (sample_rate1
>= 11025)
332 sample_rate1
= 11025;
333 else if (sample_rate1
>= 8000)
336 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
337 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
339 * Compute high frequency value and choose if noise coding should be
343 if (ahi
->channels
== 2)
345 if (sample_rate1
== 44100) {
347 pwd
->use_noise_coding
= 0;
349 high_freq
= high_freq
* 0.4;
350 } else if (sample_rate1
== 22050) {
352 pwd
->use_noise_coding
= 0;
353 else if (bps1
>= 0.72)
354 high_freq
= high_freq
* 0.7;
356 high_freq
= high_freq
* 0.6;
357 } else if (sample_rate1
== 16000) {
359 high_freq
= high_freq
* 0.5;
361 high_freq
= high_freq
* 0.3;
362 } else if (sample_rate1
== 11025)
363 high_freq
= high_freq
* 0.7;
364 else if (sample_rate1
== 8000) {
366 high_freq
= high_freq
* 0.5;
368 pwd
->use_noise_coding
= 0;
370 high_freq
= high_freq
* 0.65;
373 high_freq
= high_freq
* 0.75;
375 high_freq
= high_freq
* 0.6;
377 high_freq
= high_freq
* 0.5;
379 PARA_INFO_LOG("channels=%d sample_rate=%d "
380 "bitrate=%d block_align=%d\n",
381 ahi
->channels
, ahi
->sample_rate
,
382 ahi
->bit_rate
, ahi
->block_align
);
383 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
384 "high_freq=%f bitoffset=%d\n",
385 pwd
->frame_len
, bps
, bps1
,
386 high_freq
, pwd
->byte_offset_bits
);
387 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
388 pwd
->use_noise_coding
, pwd
->ahi
.use_exp_vlc
, pwd
->nb_block_sizes
);
390 compute_scale_factor_band_sizes(pwd
, high_freq
);
391 /* init MDCT windows : simple sinus window */
392 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
394 n
= 1 << (pwd
->frame_len_bits
- i
);
395 sine_window_init(sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
396 pwd
->windows
[i
] = sine_windows
[pwd
->frame_len_bits
- i
- 7];
399 pwd
->reset_block_lengths
= 1;
401 if (pwd
->use_noise_coding
) {
402 /* init the noise generator */
403 if (pwd
->ahi
.use_exp_vlc
)
404 pwd
->noise_mult
= 0.02;
406 pwd
->noise_mult
= 0.04;
412 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
413 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
414 seed
= seed
* 314159 + 1;
415 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
420 /* choose the VLC tables for the coefficients */
422 if (ahi
->sample_rate
>= 32000) {
425 else if (bps1
< 1.16)
428 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
429 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
430 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
432 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
437 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
442 wdel
= M_PI
/ frame_len
;
443 for (i
= 0; i
< frame_len
; i
++)
444 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
446 /* tables for x^-0.25 computation */
447 for (i
= 0; i
< 256; i
++) {
449 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
452 /* These two tables are needed to avoid two operations in pow_m1_4. */
454 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
455 m
= (1 << LSP_POW_BITS
) + i
;
456 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
458 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
459 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
464 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
466 struct private_wmadec_data
*pwd
;
469 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
470 pwd
= para_calloc(sizeof(*pwd
));
471 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
481 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
482 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
486 if (pwd
->use_noise_coding
) {
487 PARA_INFO_LOG("using noise coding\n");
488 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
489 sizeof(wma_hgain_huffbits
), wma_hgain_huffbits
,
490 wma_hgain_huffcodes
, 2);
493 if (pwd
->ahi
.use_exp_vlc
) {
494 PARA_INFO_LOG("using exp_vlc\n");
495 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
, sizeof(wma_scale_huffbits
),
496 wma_scale_huffbits
, wma_scale_huffcodes
, 4);
498 PARA_INFO_LOG("using curve\n");
499 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
502 return pwd
->ahi
.header_len
;
506 * compute x^-0.25 with an exponent and mantissa table. We use linear
507 * interpolation to reduce the mantissa table size at a small speed
508 * expense (linear interpolation approximately doubles the number of
509 * bits of precision).
511 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
522 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
523 /* build interpolation scale: 1 <= t < 2. */
524 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
525 a
= pwd
->lsp_pow_m_table1
[m
];
526 b
= pwd
->lsp_pow_m_table2
[m
];
527 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
530 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
531 float *out
, float *val_max_ptr
, int n
, float *lsp
)
534 float p
, q
, w
, v
, val_max
;
537 for (i
= 0; i
< n
; i
++) {
540 w
= pwd
->lsp_cos_table
[i
];
541 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
548 v
= pow_m1_4(pwd
, v
);
553 *val_max_ptr
= val_max
;
556 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
557 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
559 float lsp_coefs
[NB_LSP_COEFS
];
562 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
563 if (i
== 0 || i
>= 8)
564 val
= get_bits(&pwd
->gb
, 3);
566 val
= get_bits(&pwd
->gb
, 4);
567 lsp_coefs
[i
] = wma_lsp_codebook
[i
][val
];
570 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
571 pwd
->block_len
, lsp_coefs
);
574 /* Decode exponents coded with VLC codes. */
575 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
577 int last_exp
, n
, code
;
578 const uint16_t *ptr
, *band_ptr
;
579 float v
, *q
, max_scale
, *q_end
;
581 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
583 q
= pwd
->exponents
[ch
];
584 q_end
= q
+ pwd
->block_len
;
589 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
592 /* NOTE: this offset is the same as MPEG4 AAC ! */
593 last_exp
+= code
- 60;
594 /* XXX: use a table */
595 v
= pow(10, last_exp
* (1.0 / 16.0));
603 pwd
->max_exponent
[ch
] = max_scale
;
607 /* compute src0 * src1 + src2 */
608 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
609 const float *src2
, int len
)
613 for (i
= 0; i
< len
; i
++)
614 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
617 static inline void vector_mult_reverse(float *dst
, const float *src0
,
618 const float *src1
, int len
)
623 for (i
= 0; i
< len
; i
++)
624 dst
[i
] = src0
[i
] * src1
[-i
];
628 * Apply MDCT window and add into output.
630 * We ensure that when the windows overlap their squared sum
631 * is always 1 (MDCT reconstruction rule).
633 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
635 float *in
= pwd
->output
;
636 int block_len
, bsize
, n
;
639 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
640 block_len
= pwd
->block_len
;
641 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
642 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
644 block_len
= 1 << pwd
->prev_block_len_bits
;
645 n
= (pwd
->block_len
- block_len
) / 2;
646 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
647 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
649 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
652 out
+= pwd
->block_len
;
653 in
+= pwd
->block_len
;
655 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
656 block_len
= pwd
->block_len
;
657 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
658 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
660 block_len
= 1 << pwd
->next_block_len_bits
;
661 n
= (pwd
->block_len
- block_len
) / 2;
662 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
663 memcpy(out
, in
, n
* sizeof(float));
664 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
666 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
670 static int wma_total_gain_to_bits(int total_gain
)
674 else if (total_gain
< 32)
676 else if (total_gain
< 40)
678 else if (total_gain
< 45)
684 static int compute_high_band_values(struct private_wmadec_data
*pwd
,
685 int bsize
, int nb_coefs
[MAX_CHANNELS
])
689 if (!pwd
->use_noise_coding
)
691 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
693 if (!pwd
->channel_coded
[ch
])
695 m
= pwd
->exponent_high_sizes
[bsize
];
696 for (i
= 0; i
< m
; i
++) {
697 a
= get_bit(&pwd
->gb
);
698 pwd
->high_band_coded
[ch
][i
] = a
;
701 nb_coefs
[ch
] -= pwd
->exponent_high_bands
[bsize
][i
];
704 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
706 if (!pwd
->channel_coded
[ch
])
708 n
= pwd
->exponent_high_sizes
[bsize
];
709 val
= (int)0x80000000;
710 for (i
= 0; i
< n
; i
++) {
711 if (!pwd
->high_band_coded
[ch
][i
])
713 if (val
== (int)0x80000000)
714 val
= get_bits(&pwd
->gb
, 7) - 19;
716 int code
= get_vlc(&pwd
->gb
,
717 pwd
->hgain_vlc
.table
, HGAINVLCBITS
,
723 pwd
->high_band_values
[ch
][i
] = val
;
729 static void compute_mdct_coefficients(struct private_wmadec_data
*pwd
,
730 int bsize
, int total_gain
, int nb_coefs
[MAX_CHANNELS
])
733 float mdct_norm
= 1.0 / (pwd
->block_len
/ 2);
735 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
737 float *coefs
, *exponents
, mult
, mult1
, noise
;
738 int i
, j
, n
, n1
, last_high_band
, esize
;
739 float exp_power
[HIGH_BAND_MAX_SIZE
];
741 if (!pwd
->channel_coded
[ch
])
743 coefs1
= pwd
->coefs1
[ch
];
744 exponents
= pwd
->exponents
[ch
];
745 esize
= pwd
->exponents_bsize
[ch
];
746 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
748 coefs
= pwd
->coefs
[ch
];
749 if (!pwd
->use_noise_coding
) {
750 /* XXX: optimize more */
752 for (i
= 0; i
< n
; i
++)
753 *coefs
++ = coefs1
[i
] *
754 exponents
[i
<< bsize
>> esize
] * mult
;
755 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
756 for (i
= 0; i
< n
; i
++)
760 n1
= pwd
->exponent_high_sizes
[bsize
];
761 /* compute power of high bands */
762 exponents
= pwd
->exponents
[ch
] +
763 (pwd
->high_band_start
[bsize
] << bsize
);
764 last_high_band
= 0; /* avoid warning */
765 for (j
= 0; j
< n1
; j
++) {
766 n
= pwd
->exponent_high_bands
[
767 pwd
->frame_len_bits
- pwd
->block_len_bits
][j
];
768 if (pwd
->high_band_coded
[ch
][j
]) {
771 for (i
= 0; i
< n
; i
++) {
772 val
= exponents
[i
<< bsize
>> esize
];
775 exp_power
[j
] = e2
/ n
;
778 exponents
+= n
<< bsize
;
780 /* main freqs and high freqs */
781 exponents
= pwd
->exponents
[ch
];
782 for (j
= -1; j
< n1
; j
++) {
784 n
= pwd
->high_band_start
[bsize
];
786 n
= pwd
->exponent_high_bands
[pwd
->frame_len_bits
787 - pwd
->block_len_bits
][j
];
788 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
789 /* use noise with specified power */
790 mult1
= sqrt(exp_power
[j
]
791 / exp_power
[last_high_band
]);
792 /* XXX: use a table */
793 mult1
*= pow(10, pwd
->high_band_values
[ch
][j
] * 0.05);
794 mult1
/= (pwd
->max_exponent
[ch
] * pwd
->noise_mult
);
796 for (i
= 0; i
< n
; i
++) {
797 noise
= pwd
->noise_table
[pwd
->noise_index
];
798 pwd
->noise_index
= (pwd
->noise_index
+ 1)
799 & (NOISE_TAB_SIZE
- 1);
800 *coefs
++ = noise
* exponents
[
801 i
<< bsize
>> esize
] * mult1
;
803 exponents
+= n
<< bsize
;
805 /* coded values + small noise */
806 for (i
= 0; i
< n
; i
++) {
807 noise
= pwd
->noise_table
[pwd
->noise_index
];
808 pwd
->noise_index
= (pwd
->noise_index
+ 1)
809 & (NOISE_TAB_SIZE
- 1);
810 *coefs
++ = ((*coefs1
++) + noise
) *
811 exponents
[i
<< bsize
>> esize
]
814 exponents
+= n
<< bsize
;
817 /* very high freqs: noise */
818 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
819 mult1
= mult
* exponents
[((-1 << bsize
)) >> esize
];
820 for (i
= 0; i
< n
; i
++) {
821 *coefs
++ = pwd
->noise_table
[pwd
->noise_index
] * mult1
;
822 pwd
->noise_index
= (pwd
->noise_index
+ 1)
823 & (NOISE_TAB_SIZE
- 1);
829 * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
832 static int wma_decode_block(struct private_wmadec_data
*pwd
)
834 int ret
, n
, v
, ch
, code
, bsize
;
835 int coef_nb_bits
, total_gain
;
836 int nb_coefs
[MAX_CHANNELS
];
838 /* compute current block length */
839 if (pwd
->ahi
.use_variable_block_len
) {
840 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
842 if (pwd
->reset_block_lengths
) {
843 pwd
->reset_block_lengths
= 0;
844 v
= get_bits(&pwd
->gb
, n
);
845 if (v
>= pwd
->nb_block_sizes
)
846 return -E_WMA_BLOCK_SIZE
;
847 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
848 v
= get_bits(&pwd
->gb
, n
);
849 if (v
>= pwd
->nb_block_sizes
)
850 return -E_WMA_BLOCK_SIZE
;
851 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
853 /* update block lengths */
854 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
855 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
857 v
= get_bits(&pwd
->gb
, n
);
858 if (v
>= pwd
->nb_block_sizes
)
859 return -E_WMA_BLOCK_SIZE
;
860 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
862 /* fixed block len */
863 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
864 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
865 pwd
->block_len_bits
= pwd
->frame_len_bits
;
868 /* now check if the block length is coherent with the frame length */
869 pwd
->block_len
= 1 << pwd
->block_len_bits
;
870 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
871 return -E_INCOHERENT_BLOCK_LEN
;
873 if (pwd
->ahi
.channels
== 2)
874 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
876 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
877 int a
= get_bit(&pwd
->gb
);
878 pwd
->channel_coded
[ch
] = a
;
882 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
884 /* if no channel coded, no need to go further */
885 /* XXX: fix potential framing problems */
890 * Read total gain and extract corresponding number of bits for coef
895 int a
= get_bits(&pwd
->gb
, 7);
901 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
903 /* compute number of coefficients */
904 n
= pwd
->coefs_end
[bsize
];
905 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
908 ret
= compute_high_band_values(pwd
, bsize
, nb_coefs
);
912 /* exponents can be reused in short blocks. */
913 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
914 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
915 if (pwd
->channel_coded
[ch
]) {
916 if (pwd
->ahi
.use_exp_vlc
) {
917 ret
= decode_exp_vlc(pwd
, ch
);
921 decode_exp_lsp(pwd
, ch
);
922 pwd
->exponents_bsize
[ch
] = bsize
;
927 /* parse spectral coefficients : just RLE encoding */
928 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
929 struct vlc
*coef_vlc
;
930 int level
, run
, tindex
;
932 const uint16_t *level_table
, *run_table
;
934 if (!pwd
->channel_coded
[ch
])
937 * special VLC tables are used for ms stereo because there is
938 * potentially less energy there
940 tindex
= (ch
== 1 && pwd
->ms_stereo
);
941 coef_vlc
= &pwd
->coef_vlc
[tindex
];
942 run_table
= pwd
->run_table
[tindex
];
943 level_table
= pwd
->level_table
[tindex
];
945 ptr
= &pwd
->coefs1
[ch
][0];
946 eptr
= ptr
+ nb_coefs
[ch
];
947 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
949 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
,
953 if (code
== 1) /* EOB */
955 if (code
== 0) { /* escape */
956 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
957 /* reading block_len_bits would be better */
958 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
959 } else { /* normal code */
960 run
= run_table
[code
];
961 level
= level_table
[code
];
963 if (!get_bit(&pwd
->gb
))
967 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
971 if (ptr
>= eptr
) /* EOB can be omitted */
975 compute_mdct_coefficients(pwd
, bsize
, total_gain
, nb_coefs
);
976 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
980 * Nominal case for ms stereo: we do it before mdct.
982 * No need to optimize this case because it should almost never
985 if (!pwd
->channel_coded
[0]) {
986 PARA_NOTICE_LOG("rare ms-stereo\n");
987 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
988 pwd
->channel_coded
[0] = 1;
990 for (i
= 0; i
< pwd
->block_len
; i
++) {
991 a
= pwd
->coefs
[0][i
];
992 b
= pwd
->coefs
[1][i
];
993 pwd
->coefs
[0][i
] = a
+ b
;
994 pwd
->coefs
[1][i
] = a
- b
;
998 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1001 n4
= pwd
->block_len
/ 2;
1002 if (pwd
->channel_coded
[ch
])
1003 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1004 else if (!(pwd
->ms_stereo
&& ch
== 1))
1005 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1007 /* multiply by the window and add in the frame */
1008 idx
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1009 wma_window(pwd
, &pwd
->frame_out
[ch
][idx
]);
1012 /* update block number */
1013 pwd
->block_pos
+= pwd
->block_len
;
1014 if (pwd
->block_pos
>= pwd
->frame_len
)
1021 * Clip a signed integer value into the -32768,32767 range.
1023 * \param a The value to clip.
1025 * \return The clipped value.
1027 static inline int16_t av_clip_int16(int a
)
1029 if ((a
+ 32768) & ~65535)
1030 return (a
>> 31) ^ 32767;
1035 /* Decode a frame of frame_len samples. */
1036 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1038 int ret
, i
, n
, ch
, incr
;
1042 /* read each block */
1045 ret
= wma_decode_block(pwd
);
1052 /* convert frame to integer */
1054 incr
= pwd
->ahi
.channels
;
1055 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1057 iptr
= pwd
->frame_out
[ch
];
1059 for (i
= 0; i
< n
; i
++) {
1060 *ptr
= av_clip_int16(lrintf(*iptr
++));
1063 /* prepare for next block */
1064 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1065 pwd
->frame_len
* sizeof(float));
1070 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1071 int *data_size
, const uint8_t *buf
, int buf_size
)
1076 if (buf_size
== 0) {
1077 pwd
->last_superframe_len
= 0;
1080 if (buf_size
< pwd
->ahi
.block_align
)
1082 buf_size
= pwd
->ahi
.block_align
;
1084 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1085 if (pwd
->ahi
.use_bit_reservoir
) {
1086 int i
, nb_frames
, bit_offset
, pos
, len
;
1089 /* read super frame header */
1090 skip_bits(&pwd
->gb
, 4); /* super frame index */
1091 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1092 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1093 ret
= -E_WMA_OUTPUT_SPACE
;
1094 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1095 * sizeof(int16_t) > *data_size
)
1098 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1100 if (pwd
->last_superframe_len
> 0) {
1101 /* add bit_offset bits to last frame */
1102 ret
= -E_WMA_BAD_SUPERFRAME
;
1103 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1104 MAX_CODED_SUPERFRAME_SIZE
)
1106 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1109 *q
++ = get_bits(&pwd
->gb
, 8);
1113 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1115 /* XXX: bit_offset bits into last frame */
1116 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1117 MAX_CODED_SUPERFRAME_SIZE
);
1118 /* skip unused bits */
1119 if (pwd
->last_bitoffset
> 0)
1120 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1122 * This frame is stored in the last superframe and in
1125 ret
= wma_decode_frame(pwd
, samples
);
1128 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1131 /* read each frame starting from bit_offset */
1132 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1133 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1134 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1137 skip_bits(&pwd
->gb
, len
);
1139 pwd
->reset_block_lengths
= 1;
1140 for (i
= 0; i
< nb_frames
; i
++) {
1141 ret
= wma_decode_frame(pwd
, samples
);
1144 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1147 /* we copy the end of the frame in the last frame buffer */
1148 pos
= get_bits_count(&pwd
->gb
) +
1149 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1150 pwd
->last_bitoffset
= pos
& 7;
1152 len
= buf_size
- pos
;
1153 ret
= -E_WMA_BAD_SUPERFRAME
;
1154 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1156 pwd
->last_superframe_len
= len
;
1157 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1159 PARA_DEBUG_LOG("not using bit reservoir\n");
1160 ret
= -E_WMA_OUTPUT_SPACE
;
1161 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1163 /* single frame decode */
1164 ret
= wma_decode_frame(pwd
, samples
);
1167 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1169 PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1170 pwd
->frame_len
, pwd
->block_len
,
1171 (int)((int8_t *)samples
- (int8_t *)data
), pwd
->ahi
.block_align
);
1172 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1173 return pwd
->ahi
.block_align
;
1175 /* reset the bit reservoir on errors */
1176 pwd
->last_superframe_len
= 0;
1180 static void wmadec_close(struct filter_node
*fn
)
1182 struct private_wmadec_data
*pwd
= fn
->private_data
;
1186 wmadec_cleanup(pwd
);
1187 free(fn
->private_data
);
1188 fn
->private_data
= NULL
;
1191 static int wmadec_execute(struct btr_node
*btrn
, const char *cmd
, char **result
)
1193 struct filter_node
*fn
= btr_context(btrn
);
1194 struct private_wmadec_data
*pwd
= fn
->private_data
;
1196 return decoder_execute(cmd
, pwd
->ahi
.sample_rate
, pwd
->ahi
.channels
,
1200 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1202 static int wmadec_post_select(__a_unused
struct sched
*s
, void *context
)
1204 struct filter_node
*fn
= context
;
1205 int ret
, converted
, out_size
;
1206 struct private_wmadec_data
*pwd
= fn
->private_data
;
1207 struct btr_node
*btrn
= fn
->btrn
;
1213 ret
= btr_node_status(btrn
, fn
->min_iqs
, BTR_NT_INTERNAL
);
1218 btr_merge(btrn
, fn
->min_iqs
);
1219 len
= btr_next_buffer(btrn
, (char **)&in
);
1220 ret
= -E_WMADEC_EOF
;
1221 if (len
< fn
->min_iqs
)
1224 ret
= wma_decode_init(in
, len
, &pwd
);
1228 fn
->min_iqs
+= 4096;
1231 fn
->min_iqs
= 2 * (WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
);
1232 fn
->private_data
= pwd
;
1233 converted
= pwd
->ahi
.header_len
;
1236 fn
->min_iqs
= WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
;
1237 if (fn
->min_iqs
> len
)
1239 out_size
= WMA_OUTPUT_BUFFER_SIZE
;
1240 out
= para_malloc(out_size
);
1241 ret
= wma_decode_superframe(pwd
, out
, &out_size
,
1242 (uint8_t *)in
+ WMA_FRAME_SKIP
, len
- WMA_FRAME_SKIP
);
1247 out
= para_realloc(out
, out_size
);
1249 btr_add_output(out
, out_size
, btrn
);
1250 converted
+= ret
+ WMA_FRAME_SKIP
;
1252 btr_consume(btrn
, converted
);
1256 btr_remove_node(&fn
->btrn
);
1260 static void wmadec_open(struct filter_node
*fn
)
1262 fn
->private_data
= NULL
;
1267 * The init function of the wma decoder.
1269 * \param f Its fields are filled in by the function.
1271 void wmadec_filter_init(struct filter
*f
)
1273 f
->open
= wmadec_open
;
1274 f
->close
= wmadec_close
;
1275 f
->execute
= wmadec_execute
;
1276 f
->pre_select
= generic_filter_pre_select
;
1277 f
->post_select
= wmadec_post_select
;