Merge branch 't/mmap_sanity'
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27 #include <sys/select.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "buffer_tree.h"
36 #include "filter.h"
37 #include "bitstream.h"
38 #include "imdct.h"
39 #include "wma.h"
40 #include "wmadata.h"
41
42
43 /* size of blocks */
44 #define BLOCK_MIN_BITS 7
45 #define BLOCK_MAX_BITS 11
46 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
47
48 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
49
50 /* XXX: find exact max size */
51 #define HIGH_BAND_MAX_SIZE 16
52
53 /* XXX: is it a suitable value ? */
54 #define MAX_CODED_SUPERFRAME_SIZE 16384
55
56 #define MAX_CHANNELS 2
57
58 #define NOISE_TAB_SIZE 8192
59
60 #define LSP_POW_BITS 7
61
62 struct private_wmadec_data {
63         /** Information contained in the audio file header. */
64         struct asf_header_info ahi;
65         struct getbit_context gb;
66         /** Whether to use the bit reservoir. */
67         int use_bit_reservoir;
68         /** Whether to use variable block length. */
69         int use_variable_block_len;
70         /** Whether to use exponent coding. */
71         int use_exp_vlc;
72         /** Whether perceptual noise is added. */
73         int use_noise_coding;
74         int byte_offset_bits;
75         struct vlc exp_vlc;
76         int exponent_sizes[BLOCK_NB_SIZES];
77         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
78         /** The index of the first coef in high band. */
79         int high_band_start[BLOCK_NB_SIZES];
80         /** Maximal number of coded coefficients. */
81         int coefs_end[BLOCK_NB_SIZES];
82         int exponent_high_sizes[BLOCK_NB_SIZES];
83         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
84         struct vlc hgain_vlc;
85
86         /* coded values in high bands */
87         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
88         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
89
90         /* there are two possible tables for spectral coefficients */
91         struct vlc coef_vlc[2];
92         uint16_t *run_table[2];
93         uint16_t *level_table[2];
94         const struct coef_vlc_table *coef_vlcs[2];
95         /** Frame length in samples. */
96         int frame_len;
97         /** log2 of frame_len. */
98         int frame_len_bits;
99         /** Number of block sizes. */
100         int nb_block_sizes;
101         /* block info */
102         int reset_block_lengths;
103         /** log2 of current block length. */
104         int block_len_bits;
105         /** log2 of next block length. */
106         int next_block_len_bits;
107         /** log2 of previous block length. */
108         int prev_block_len_bits;
109         /** Block length in samples. */
110         int block_len;
111         /** Current position in frame. */
112         int block_pos;
113         /** True if mid/side stereo mode. */
114         uint8_t ms_stereo;
115         /** True if channel is coded. */
116         uint8_t channel_coded[MAX_CHANNELS];
117         /** log2 ratio frame/exp. length. */
118         int exponents_bsize[MAX_CHANNELS];
119
120         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
121         float max_exponent[MAX_CHANNELS];
122         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
123         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
124         float output[BLOCK_MAX_SIZE * 2];
125         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
126         float *windows[BLOCK_NB_SIZES];
127         /** Output buffer for one frame and the last for IMDCT windowing. */
128         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
129         /** Last frame info. */
130         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
131         int last_bitoffset;
132         int last_superframe_len;
133         float noise_table[NOISE_TAB_SIZE];
134         int noise_index;
135         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
136         /* lsp_to_curve tables */
137         float lsp_cos_table[BLOCK_MAX_SIZE];
138         float lsp_pow_e_table[256];
139         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
140         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
141 };
142
143 #define EXPVLCBITS 8
144 #define EXPMAX DIV_ROUND_UP(19, EXPVLCBITS)
145
146 #define HGAINVLCBITS 9
147 #define HGAINMAX DIV_ROUND_UP(13, HGAINVLCBITS)
148
149 #define VLCBITS 9
150 #define VLCMAX DIV_ROUND_UP(22, VLCBITS)
151
152 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
153
154 SINE_WINDOW(128);
155 SINE_WINDOW(256);
156 SINE_WINDOW(512);
157 SINE_WINDOW(1024);
158 SINE_WINDOW(2048);
159 SINE_WINDOW(4096);
160
161 static float *sine_windows[6] = {
162         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
163 };
164
165 /* Generate a sine window. */
166 static void sine_window_init(float *window, int n)
167 {
168         int i;
169
170         for (i = 0; i < n; i++)
171                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
172 }
173
174 static void wmadec_cleanup(struct private_wmadec_data *pwd)
175 {
176         int i;
177
178         for (i = 0; i < pwd->nb_block_sizes; i++)
179                 imdct_end(pwd->mdct_ctx[i]);
180         if (pwd->use_exp_vlc)
181                 free_vlc(&pwd->exp_vlc);
182         if (pwd->use_noise_coding)
183                 free_vlc(&pwd->hgain_vlc);
184         for (i = 0; i < 2; i++) {
185                 free_vlc(&pwd->coef_vlc[i]);
186                 free(pwd->run_table[i]);
187                 free(pwd->level_table[i]);
188         }
189 }
190
191 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
192                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
193 {
194         int n = vlc_table->n;
195         const uint8_t *table_bits = vlc_table->huffbits;
196         const uint32_t *table_codes = vlc_table->huffcodes;
197         const uint16_t *levels_table = vlc_table->levels;
198         uint16_t *run_table, *level_table;
199         int i, l, j, k, level;
200
201         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
202
203         run_table = para_malloc(n * sizeof(uint16_t));
204         level_table = para_malloc(n * sizeof(uint16_t));
205         i = 2;
206         level = 1;
207         k = 0;
208         while (i < n) {
209                 l = levels_table[k++];
210                 for (j = 0; j < l; j++) {
211                         run_table[i] = j;
212                         level_table[i] = level;
213                         i++;
214                 }
215                 level++;
216         }
217         *prun_table = run_table;
218         *plevel_table = level_table;
219 }
220
221 /* compute the scale factor band sizes for each MDCT block size */
222 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
223         float high_freq)
224 {
225         struct asf_header_info *ahi = &pwd->ahi;
226         int a, b, pos, lpos, k, block_len, i, j, n;
227         const uint8_t *table;
228
229         for (k = 0; k < pwd->nb_block_sizes; k++) {
230                 block_len = pwd->frame_len >> k;
231
232                 table = NULL;
233                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
234                 if (a < 3) {
235                         if (ahi->sample_rate >= 44100)
236                                 table = exponent_band_44100[a];
237                         else if (ahi->sample_rate >= 32000)
238                                 table = exponent_band_32000[a];
239                         else if (ahi->sample_rate >= 22050)
240                                 table = exponent_band_22050[a];
241                 }
242                 if (table) {
243                         n = *table++;
244                         for (i = 0; i < n; i++)
245                                 pwd->exponent_bands[k][i] = table[i];
246                         pwd->exponent_sizes[k] = n;
247                 } else {
248                         j = 0;
249                         lpos = 0;
250                         for (i = 0; i < 25; i++) {
251                                 a = wma_critical_freqs[i];
252                                 b = ahi->sample_rate;
253                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
254                                 pos <<= 2;
255                                 if (pos > block_len)
256                                         pos = block_len;
257                                 if (pos > lpos)
258                                         pwd->exponent_bands[k][j++] = pos - lpos;
259                                 if (pos >= block_len)
260                                         break;
261                                 lpos = pos;
262                         }
263                         pwd->exponent_sizes[k] = j;
264                 }
265
266                 /* max number of coefs */
267                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
268                 /* high freq computation */
269                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
270                         / ahi->sample_rate + 0.5);
271                 n = pwd->exponent_sizes[k];
272                 j = 0;
273                 pos = 0;
274                 for (i = 0; i < n; i++) {
275                         int start, end;
276                         start = pos;
277                         pos += pwd->exponent_bands[k][i];
278                         end = pos;
279                         if (start < pwd->high_band_start[k])
280                                 start = pwd->high_band_start[k];
281                         if (end > pwd->coefs_end[k])
282                                 end = pwd->coefs_end[k];
283                         if (end > start)
284                                 pwd->exponent_high_bands[k][j++] = end - start;
285                 }
286                 pwd->exponent_high_sizes[k] = j;
287         }
288 }
289
290 static int wma_init(struct private_wmadec_data *pwd)
291 {
292         int i;
293         float bps1, high_freq;
294         volatile float bps;
295         int sample_rate1;
296         int coef_vlc_table;
297         struct asf_header_info *ahi = &pwd->ahi;
298         int flags2 = ahi->flags2;
299
300         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
301                 || ahi->channels <= 0 || ahi->channels > 8
302                 || ahi->bit_rate <= 0)
303                 return -E_WMA_BAD_PARAMS;
304
305         /* compute MDCT block size */
306         if (ahi->sample_rate <= 16000)
307                 pwd->frame_len_bits = 9;
308         else if (ahi->sample_rate <= 22050)
309                 pwd->frame_len_bits = 10;
310         else
311                 pwd->frame_len_bits = 11;
312         pwd->frame_len = 1 << pwd->frame_len_bits;
313         if (pwd->use_variable_block_len) {
314                 int nb_max, nb;
315                 nb = ((flags2 >> 3) & 3) + 1;
316                 if ((ahi->bit_rate / ahi->channels) >= 32000)
317                         nb += 2;
318                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
319                 if (nb > nb_max)
320                         nb = nb_max;
321                 pwd->nb_block_sizes = nb + 1;
322         } else
323                 pwd->nb_block_sizes = 1;
324
325         /* init rate dependent parameters */
326         pwd->use_noise_coding = 1;
327         high_freq = ahi->sample_rate * 0.5;
328
329         /* wma2 rates are normalized */
330         sample_rate1 = ahi->sample_rate;
331         if (sample_rate1 >= 44100)
332                 sample_rate1 = 44100;
333         else if (sample_rate1 >= 22050)
334                 sample_rate1 = 22050;
335         else if (sample_rate1 >= 16000)
336                 sample_rate1 = 16000;
337         else if (sample_rate1 >= 11025)
338                 sample_rate1 = 11025;
339         else if (sample_rate1 >= 8000)
340                 sample_rate1 = 8000;
341
342         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
343         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
344         /*
345          * Compute high frequency value and choose if noise coding should be
346          * activated.
347          */
348         bps1 = bps;
349         if (ahi->channels == 2)
350                 bps1 = bps * 1.6;
351         if (sample_rate1 == 44100) {
352                 if (bps1 >= 0.61)
353                         pwd->use_noise_coding = 0;
354                 else
355                         high_freq = high_freq * 0.4;
356         } else if (sample_rate1 == 22050) {
357                 if (bps1 >= 1.16)
358                         pwd->use_noise_coding = 0;
359                 else if (bps1 >= 0.72)
360                         high_freq = high_freq * 0.7;
361                 else
362                         high_freq = high_freq * 0.6;
363         } else if (sample_rate1 == 16000) {
364                 if (bps > 0.5)
365                         high_freq = high_freq * 0.5;
366                 else
367                         high_freq = high_freq * 0.3;
368         } else if (sample_rate1 == 11025)
369                 high_freq = high_freq * 0.7;
370         else if (sample_rate1 == 8000) {
371                 if (bps <= 0.625)
372                         high_freq = high_freq * 0.5;
373                 else if (bps > 0.75)
374                         pwd->use_noise_coding = 0;
375                 else
376                         high_freq = high_freq * 0.65;
377         } else {
378                 if (bps >= 0.8)
379                         high_freq = high_freq * 0.75;
380                 else if (bps >= 0.6)
381                         high_freq = high_freq * 0.6;
382                 else
383                         high_freq = high_freq * 0.5;
384         }
385         PARA_INFO_LOG("channels=%d sample_rate=%d "
386                 "bitrate=%d block_align=%d\n",
387                 ahi->channels, ahi->sample_rate,
388                 ahi->bit_rate, ahi->block_align);
389         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
390                 "high_freq=%f bitoffset=%d\n",
391                 pwd->frame_len, bps, bps1,
392                 high_freq, pwd->byte_offset_bits);
393         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
394                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
395
396         compute_scale_factor_band_sizes(pwd, high_freq);
397         /* init MDCT windows : simple sinus window */
398         for (i = 0; i < pwd->nb_block_sizes; i++) {
399                 int n;
400                 n = 1 << (pwd->frame_len_bits - i);
401                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
402                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
403         }
404
405         pwd->reset_block_lengths = 1;
406
407         if (pwd->use_noise_coding) {
408                 /* init the noise generator */
409                 if (pwd->use_exp_vlc)
410                         pwd->noise_mult = 0.02;
411                 else
412                         pwd->noise_mult = 0.04;
413
414                 {
415                         unsigned int seed;
416                         float norm;
417                         seed = 1;
418                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
419                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
420                                 seed = seed * 314159 + 1;
421                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
422                         }
423                 }
424         }
425
426         /* choose the VLC tables for the coefficients */
427         coef_vlc_table = 2;
428         if (ahi->sample_rate >= 32000) {
429                 if (bps1 < 0.72)
430                         coef_vlc_table = 0;
431                 else if (bps1 < 1.16)
432                         coef_vlc_table = 1;
433         }
434         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
435         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
436         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
437                 pwd->coef_vlcs[0]);
438         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
439                 pwd->coef_vlcs[1]);
440         return 0;
441 }
442
443 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
444 {
445         float wdel, a, b;
446         int i, e, m;
447
448         wdel = M_PI / frame_len;
449         for (i = 0; i < frame_len; i++)
450                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
451
452         /* tables for x^-0.25 computation */
453         for (i = 0; i < 256; i++) {
454                 e = i - 126;
455                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
456         }
457
458         /* These two tables are needed to avoid two operations in pow_m1_4. */
459         b = 1.0;
460         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
461                 m = (1 << LSP_POW_BITS) + i;
462                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
463                 a = pow(a, -0.25);
464                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
465                 pwd->lsp_pow_m_table2[i] = b - a;
466                 b = a;
467         }
468 }
469
470 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
471 {
472         struct private_wmadec_data *pwd;
473         int ret, i;
474
475         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
476         pwd = para_calloc(sizeof(*pwd));
477         ret = read_asf_header(initial_buf, len, &pwd->ahi);
478         if (ret <= 0) {
479                 free(pwd);
480                 return ret;
481         }
482
483         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
484         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
485         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
486
487         ret = wma_init(pwd);
488         if (ret < 0)
489                 return ret;
490         /* init MDCT */
491         for (i = 0; i < pwd->nb_block_sizes; i++) {
492                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
493                 if (ret < 0)
494                         return ret;
495         }
496         if (pwd->use_noise_coding) {
497                 PARA_INFO_LOG("using noise coding\n");
498                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
499                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
500                         wma_hgain_huffcodes, 2);
501         }
502
503         if (pwd->use_exp_vlc) {
504                 PARA_INFO_LOG("using exp_vlc\n");
505                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
506                 sizeof(wma_scale_huffbits), wma_scale_huffbits,
507                 wma_scale_huffcodes, 4);
508         } else {
509                 PARA_INFO_LOG("using curve\n");
510                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
511         }
512         *result = pwd;
513         return pwd->ahi.header_len;
514 }
515
516 /**
517  * compute x^-0.25 with an exponent and mantissa table. We use linear
518  * interpolation to reduce the mantissa table size at a small speed
519  * expense (linear interpolation approximately doubles the number of
520  * bits of precision).
521  */
522 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
523 {
524         union {
525                 float f;
526                 unsigned int v;
527         } u, t;
528         unsigned int e, m;
529         float a, b;
530
531         u.f = x;
532         e = u.v >> 23;
533         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
534         /* build interpolation scale: 1 <= t < 2. */
535         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
536         a = pwd->lsp_pow_m_table1[m];
537         b = pwd->lsp_pow_m_table2[m];
538         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
539 }
540
541 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
542                 float *out, float *val_max_ptr, int n, float *lsp)
543 {
544         int i, j;
545         float p, q, w, v, val_max;
546
547         val_max = 0;
548         for (i = 0; i < n; i++) {
549                 p = 0.5f;
550                 q = 0.5f;
551                 w = pwd->lsp_cos_table[i];
552                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
553                         q *= w - lsp[j - 1];
554                         p *= w - lsp[j];
555                 }
556                 p *= p * (2.0f - w);
557                 q *= q * (2.0f + w);
558                 v = p + q;
559                 v = pow_m1_4(pwd, v);
560                 if (v > val_max)
561                         val_max = v;
562                 out[i] = v;
563         }
564         *val_max_ptr = val_max;
565 }
566
567 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
568 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
569 {
570         float lsp_coefs[NB_LSP_COEFS];
571         int val, i;
572
573         for (i = 0; i < NB_LSP_COEFS; i++) {
574                 if (i == 0 || i >= 8)
575                         val = get_bits(&pwd->gb, 3);
576                 else
577                         val = get_bits(&pwd->gb, 4);
578                 lsp_coefs[i] = wma_lsp_codebook[i][val];
579         }
580
581         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
582                 pwd->block_len, lsp_coefs);
583 }
584
585 /* Decode exponents coded with VLC codes. */
586 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
587 {
588         int last_exp, n, code;
589         const uint16_t *ptr, *band_ptr;
590         float v, *q, max_scale, *q_end;
591
592         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
593         ptr = band_ptr;
594         q = pwd->exponents[ch];
595         q_end = q + pwd->block_len;
596         max_scale = 0;
597         last_exp = 36;
598
599         while (q < q_end) {
600                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
601                 if (code < 0)
602                         return code;
603                 /* NOTE: this offset is the same as MPEG4 AAC ! */
604                 last_exp += code - 60;
605                 /* XXX: use a table */
606                 v = pow(10, last_exp * (1.0 / 16.0));
607                 if (v > max_scale)
608                         max_scale = v;
609                 n = *ptr++;
610                 do {
611                         *q++ = v;
612                 } while (--n);
613         }
614         pwd->max_exponent[ch] = max_scale;
615         return 0;
616 }
617
618 /* compute src0 * src1 + src2 */
619 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
620                 const float *src2, int len)
621 {
622         int i;
623
624         for (i = 0; i < len; i++)
625                 dst[i] = src0[i] * src1[i] + src2[i];
626 }
627
628 static inline void vector_mult_reverse(float *dst, const float *src0,
629                 const float *src1, int len)
630 {
631         int i;
632
633         src1 += len - 1;
634         for (i = 0; i < len; i++)
635                 dst[i] = src0[i] * src1[-i];
636 }
637
638 /**
639  * Apply MDCT window and add into output.
640  *
641  * We ensure that when the windows overlap their squared sum
642  * is always 1 (MDCT reconstruction rule).
643  */
644 static void wma_window(struct private_wmadec_data *pwd, float *out)
645 {
646         float *in = pwd->output;
647         int block_len, bsize, n;
648
649         /* left part */
650         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
651                 block_len = pwd->block_len;
652                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
653                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
654         } else {
655                 block_len = 1 << pwd->prev_block_len_bits;
656                 n = (pwd->block_len - block_len) / 2;
657                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
658                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
659                         block_len);
660                 memcpy(out + n + block_len, in + n + block_len,
661                         n * sizeof(float));
662         }
663         out += pwd->block_len;
664         in += pwd->block_len;
665         /* right part */
666         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
667                 block_len = pwd->block_len;
668                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
669                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
670         } else {
671                 block_len = 1 << pwd->next_block_len_bits;
672                 n = (pwd->block_len - block_len) / 2;
673                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
674                 memcpy(out, in, n * sizeof(float));
675                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
676                         block_len);
677                 memset(out + n + block_len, 0, n * sizeof(float));
678         }
679 }
680
681 static int wma_total_gain_to_bits(int total_gain)
682 {
683         if (total_gain < 15)
684                 return 13;
685         else if (total_gain < 32)
686                 return 12;
687         else if (total_gain < 40)
688                 return 11;
689         else if (total_gain < 45)
690                 return 10;
691         else
692                 return 9;
693 }
694
695 static int compute_high_band_values(struct private_wmadec_data *pwd,
696                 int bsize, int nb_coefs[MAX_CHANNELS])
697 {
698         int ch;
699
700         if (!pwd->use_noise_coding)
701                 return 0;
702         for (ch = 0; ch < pwd->ahi.channels; ch++) {
703                 int i, m, a;
704                 if (!pwd->channel_coded[ch])
705                         continue;
706                 m = pwd->exponent_high_sizes[bsize];
707                 for (i = 0; i < m; i++) {
708                         a = get_bit(&pwd->gb);
709                         pwd->high_band_coded[ch][i] = a;
710                         if (!a)
711                                 continue;
712                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
713                 }
714         }
715         for (ch = 0; ch < pwd->ahi.channels; ch++) {
716                 int i, n, val;
717                 if (!pwd->channel_coded[ch])
718                         continue;
719                 n = pwd->exponent_high_sizes[bsize];
720                 val = (int)0x80000000;
721                 for (i = 0; i < n; i++) {
722                         if (!pwd->high_band_coded[ch][i])
723                                 continue;
724                         if (val == (int)0x80000000)
725                                 val = get_bits(&pwd->gb, 7) - 19;
726                         else {
727                                 int code = get_vlc(&pwd->gb,
728                                         pwd->hgain_vlc.table, HGAINVLCBITS,
729                                         HGAINMAX);
730                                 if (code < 0)
731                                         return code;
732                                 val += code - 18;
733                         }
734                         pwd->high_band_values[ch][i] = val;
735                 }
736         }
737         return 1;
738 }
739
740 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
741                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
742 {
743         int ch;
744         float mdct_norm = 1.0 / (pwd->block_len / 2);
745
746         for (ch = 0; ch < pwd->ahi.channels; ch++) {
747                 int16_t *coefs1;
748                 float *coefs, *exponents, mult, mult1, noise;
749                 int i, j, n, n1, last_high_band, esize;
750                 float exp_power[HIGH_BAND_MAX_SIZE];
751
752                 if (!pwd->channel_coded[ch])
753                         continue;
754                 coefs1 = pwd->coefs1[ch];
755                 exponents = pwd->exponents[ch];
756                 esize = pwd->exponents_bsize[ch];
757                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
758                 mult *= mdct_norm;
759                 coefs = pwd->coefs[ch];
760                 if (!pwd->use_noise_coding) {
761                         /* XXX: optimize more */
762                         n = nb_coefs[ch];
763                         for (i = 0; i < n; i++)
764                                 *coefs++ = coefs1[i] *
765                                         exponents[i << bsize >> esize] * mult;
766                         n = pwd->block_len - pwd->coefs_end[bsize];
767                         for (i = 0; i < n; i++)
768                                 *coefs++ = 0.0;
769                         continue;
770                 }
771                 n1 = pwd->exponent_high_sizes[bsize];
772                 /* compute power of high bands */
773                 exponents = pwd->exponents[ch] +
774                         (pwd->high_band_start[bsize] << bsize);
775                 last_high_band = 0; /* avoid warning */
776                 for (j = 0; j < n1; j++) {
777                         n = pwd->exponent_high_bands[
778                                 pwd->frame_len_bits - pwd->block_len_bits][j];
779                         if (pwd->high_band_coded[ch][j]) {
780                                 float e2, val;
781                                 e2 = 0;
782                                 for (i = 0; i < n; i++) {
783                                         val = exponents[i << bsize >> esize];
784                                         e2 += val * val;
785                                 }
786                                 exp_power[j] = e2 / n;
787                                 last_high_band = j;
788                         }
789                         exponents += n << bsize;
790                 }
791                 /* main freqs and high freqs */
792                 exponents = pwd->exponents[ch];
793                 for (j = -1; j < n1; j++) {
794                         if (j < 0)
795                                 n = pwd->high_band_start[bsize];
796                         else
797                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
798                                         - pwd->block_len_bits][j];
799                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
800                                 /* use noise with specified power */
801                                 mult1 = sqrt(exp_power[j]
802                                         / exp_power[last_high_band]);
803                                 /* XXX: use a table */
804                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
805                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
806                                 mult1 *= mdct_norm;
807                                 for (i = 0; i < n; i++) {
808                                         noise = pwd->noise_table[pwd->noise_index];
809                                         pwd->noise_index = (pwd->noise_index + 1)
810                                                 & (NOISE_TAB_SIZE - 1);
811                                         *coefs++ = noise * exponents[
812                                                 i << bsize >> esize] * mult1;
813                                 }
814                                 exponents += n << bsize;
815                         } else {
816                                 /* coded values + small noise */
817                                 for (i = 0; i < n; i++) {
818                                         noise = pwd->noise_table[pwd->noise_index];
819                                         pwd->noise_index = (pwd->noise_index + 1)
820                                                 & (NOISE_TAB_SIZE - 1);
821                                         *coefs++ = ((*coefs1++) + noise) *
822                                                 exponents[i << bsize >> esize]
823                                                 * mult;
824                                 }
825                                 exponents += n << bsize;
826                         }
827                 }
828                 /* very high freqs: noise */
829                 n = pwd->block_len - pwd->coefs_end[bsize];
830                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
831                 for (i = 0; i < n; i++) {
832                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
833                         pwd->noise_index = (pwd->noise_index + 1)
834                                 & (NOISE_TAB_SIZE - 1);
835                 }
836         }
837 }
838
839 /**
840  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
841  * errors.
842  */
843 static int wma_decode_block(struct private_wmadec_data *pwd)
844 {
845         int ret, n, v, ch, code, bsize;
846         int coef_nb_bits, total_gain;
847         int nb_coefs[MAX_CHANNELS];
848
849         /* compute current block length */
850         if (pwd->use_variable_block_len) {
851                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
852
853                 if (pwd->reset_block_lengths) {
854                         pwd->reset_block_lengths = 0;
855                         v = get_bits(&pwd->gb, n);
856                         if (v >= pwd->nb_block_sizes)
857                                 return -E_WMA_BLOCK_SIZE;
858                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
859                         v = get_bits(&pwd->gb, n);
860                         if (v >= pwd->nb_block_sizes)
861                                 return -E_WMA_BLOCK_SIZE;
862                         pwd->block_len_bits = pwd->frame_len_bits - v;
863                 } else {
864                         /* update block lengths */
865                         pwd->prev_block_len_bits = pwd->block_len_bits;
866                         pwd->block_len_bits = pwd->next_block_len_bits;
867                 }
868                 v = get_bits(&pwd->gb, n);
869                 if (v >= pwd->nb_block_sizes)
870                         return -E_WMA_BLOCK_SIZE;
871                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
872         } else {
873                 /* fixed block len */
874                 pwd->next_block_len_bits = pwd->frame_len_bits;
875                 pwd->prev_block_len_bits = pwd->frame_len_bits;
876                 pwd->block_len_bits = pwd->frame_len_bits;
877         }
878
879         /* now check if the block length is coherent with the frame length */
880         pwd->block_len = 1 << pwd->block_len_bits;
881         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
882                 return -E_INCOHERENT_BLOCK_LEN;
883
884         if (pwd->ahi.channels == 2)
885                 pwd->ms_stereo = get_bit(&pwd->gb);
886         v = 0;
887         for (ch = 0; ch < pwd->ahi.channels; ch++) {
888                 int a = get_bit(&pwd->gb);
889                 pwd->channel_coded[ch] = a;
890                 v |= a;
891         }
892
893         bsize = pwd->frame_len_bits - pwd->block_len_bits;
894
895         /* if no channel coded, no need to go further */
896         /* XXX: fix potential framing problems */
897         if (!v)
898                 goto next;
899
900         /*
901          * Read total gain and extract corresponding number of bits for coef
902          * escape coding.
903          */
904         total_gain = 1;
905         for (;;) {
906                 int a = get_bits(&pwd->gb, 7);
907                 total_gain += a;
908                 if (a != 127)
909                         break;
910         }
911
912         coef_nb_bits = wma_total_gain_to_bits(total_gain);
913
914         /* compute number of coefficients */
915         n = pwd->coefs_end[bsize];
916         for (ch = 0; ch < pwd->ahi.channels; ch++)
917                 nb_coefs[ch] = n;
918
919         ret = compute_high_band_values(pwd, bsize, nb_coefs);
920         if (ret < 0)
921                 return ret;
922
923         /* exponents can be reused in short blocks. */
924         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
925                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
926                         if (pwd->channel_coded[ch]) {
927                                 if (pwd->use_exp_vlc) {
928                                         ret = decode_exp_vlc(pwd, ch);
929                                         if (ret < 0)
930                                                 return ret;
931                                 } else
932                                         decode_exp_lsp(pwd, ch);
933                                 pwd->exponents_bsize[ch] = bsize;
934                         }
935                 }
936         }
937
938         /* parse spectral coefficients : just RLE encoding */
939         for (ch = 0; ch < pwd->ahi.channels; ch++) {
940                 struct vlc *coef_vlc;
941                 int level, run, tindex;
942                 int16_t *ptr, *eptr;
943                 const uint16_t *level_table, *run_table;
944
945                 if (!pwd->channel_coded[ch])
946                         continue;
947                 /*
948                  * special VLC tables are used for ms stereo because there is
949                  * potentially less energy there
950                  */
951                 tindex = (ch == 1 && pwd->ms_stereo);
952                 coef_vlc = &pwd->coef_vlc[tindex];
953                 run_table = pwd->run_table[tindex];
954                 level_table = pwd->level_table[tindex];
955                 /* XXX: optimize */
956                 ptr = &pwd->coefs1[ch][0];
957                 eptr = ptr + nb_coefs[ch];
958                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
959                 for (;;) {
960                         code = get_vlc(&pwd->gb, coef_vlc->table,
961                                 VLCBITS, VLCMAX);
962                         if (code < 0)
963                                 return code;
964                         if (code == 1) /* EOB */
965                                 break;
966                         if (code == 0) { /* escape */
967                                 level = get_bits(&pwd->gb, coef_nb_bits);
968                                 /* reading block_len_bits would be better */
969                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
970                         } else { /* normal code */
971                                 run = run_table[code];
972                                 level = level_table[code];
973                         }
974                         if (!get_bit(&pwd->gb))
975                                 level = -level;
976                         ptr += run;
977                         if (ptr >= eptr) {
978                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
979                                 break;
980                         }
981                         *ptr++ = level;
982                         if (ptr >= eptr) /* EOB can be omitted */
983                                 break;
984                 }
985         }
986         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
987         if (pwd->ms_stereo && pwd->channel_coded[1]) {
988                 float a, b;
989                 int i;
990                 /*
991                  * Nominal case for ms stereo: we do it before mdct.
992                  *
993                  * No need to optimize this case because it should almost never
994                  * happen.
995                  */
996                 if (!pwd->channel_coded[0]) {
997                         PARA_NOTICE_LOG("rare ms-stereo\n");
998                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
999                         pwd->channel_coded[0] = 1;
1000                 }
1001                 for (i = 0; i < pwd->block_len; i++) {
1002                         a = pwd->coefs[0][i];
1003                         b = pwd->coefs[1][i];
1004                         pwd->coefs[0][i] = a + b;
1005                         pwd->coefs[1][i] = a - b;
1006                 }
1007         }
1008 next:
1009         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1010                 int n4, idx;
1011
1012                 n4 = pwd->block_len / 2;
1013                 if (pwd->channel_coded[ch])
1014                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1015                 else if (!(pwd->ms_stereo && ch == 1))
1016                         memset(pwd->output, 0, sizeof(pwd->output));
1017
1018                 /* multiply by the window and add in the frame */
1019                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
1020                 wma_window(pwd, &pwd->frame_out[ch][idx]);
1021         }
1022
1023         /* update block number */
1024         pwd->block_pos += pwd->block_len;
1025         if (pwd->block_pos >= pwd->frame_len)
1026                 return 1;
1027         else
1028                 return 0;
1029 }
1030
1031 /*
1032  * Clip a signed integer value into the -32768,32767 range.
1033  *
1034  * \param a The value to clip.
1035  *
1036  * \return The clipped value.
1037  */
1038 static inline int16_t av_clip_int16(int a)
1039 {
1040         if ((a + 32768) & ~65535)
1041                 return (a >> 31) ^ 32767;
1042         else
1043                 return a;
1044 }
1045
1046 /* Decode a frame of frame_len samples. */
1047 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1048 {
1049         int ret, i, n, ch, incr;
1050         int16_t *ptr;
1051         float *iptr;
1052
1053         /* read each block */
1054         pwd->block_pos = 0;
1055         for (;;) {
1056                 ret = wma_decode_block(pwd);
1057                 if (ret < 0)
1058                         return ret;
1059                 if (ret)
1060                         break;
1061         }
1062
1063         /* convert frame to integer */
1064         n = pwd->frame_len;
1065         incr = pwd->ahi.channels;
1066         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1067                 ptr = samples + ch;
1068                 iptr = pwd->frame_out[ch];
1069
1070                 for (i = 0; i < n; i++) {
1071                         *ptr = av_clip_int16(lrintf(*iptr++));
1072                         ptr += incr;
1073                 }
1074                 /* prepare for next block */
1075                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1076                         pwd->frame_len * sizeof(float));
1077         }
1078         return 0;
1079 }
1080
1081 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1082                 int *data_size, const uint8_t *buf, int buf_size)
1083 {
1084         int ret;
1085         int16_t *samples;
1086
1087         if (buf_size == 0) {
1088                 pwd->last_superframe_len = 0;
1089                 return 0;
1090         }
1091         if (buf_size < pwd->ahi.block_align)
1092                 return 0;
1093         buf_size = pwd->ahi.block_align;
1094         samples = data;
1095         init_get_bits(&pwd->gb, buf, buf_size);
1096         if (pwd->use_bit_reservoir) {
1097                 int i, nb_frames, bit_offset, pos, len;
1098                 uint8_t *q;
1099
1100                 /* read super frame header */
1101                 skip_bits(&pwd->gb, 4); /* super frame index */
1102                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1103                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1104                 ret = -E_WMA_OUTPUT_SPACE;
1105                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1106                                 * sizeof(int16_t) > *data_size)
1107                         goto fail;
1108
1109                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1110
1111                 if (pwd->last_superframe_len > 0) {
1112                         /* add bit_offset bits to last frame */
1113                         ret = -E_WMA_BAD_SUPERFRAME;
1114                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1115                                         MAX_CODED_SUPERFRAME_SIZE)
1116                                 goto fail;
1117                         q = pwd->last_superframe + pwd->last_superframe_len;
1118                         len = bit_offset;
1119                         while (len > 7) {
1120                                 *q++ = get_bits(&pwd->gb, 8);
1121                                 len -= 8;
1122                         }
1123                         if (len > 0)
1124                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1125
1126                         /* XXX: bit_offset bits into last frame */
1127                         init_get_bits(&pwd->gb, pwd->last_superframe,
1128                                 MAX_CODED_SUPERFRAME_SIZE);
1129                         /* skip unused bits */
1130                         if (pwd->last_bitoffset > 0)
1131                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1132                         /*
1133                          * This frame is stored in the last superframe and in
1134                          * the current one.
1135                          */
1136                         ret = wma_decode_frame(pwd, samples);
1137                         if (ret < 0)
1138                                 goto fail;
1139                         samples += pwd->ahi.channels * pwd->frame_len;
1140                 }
1141
1142                 /* read each frame starting from bit_offset */
1143                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1144                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1145                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1146                 len = pos & 7;
1147                 if (len > 0)
1148                         skip_bits(&pwd->gb, len);
1149
1150                 pwd->reset_block_lengths = 1;
1151                 for (i = 0; i < nb_frames; i++) {
1152                         ret = wma_decode_frame(pwd, samples);
1153                         if (ret < 0)
1154                                 goto fail;
1155                         samples += pwd->ahi.channels * pwd->frame_len;
1156                 }
1157
1158                 /* we copy the end of the frame in the last frame buffer */
1159                 pos = get_bits_count(&pwd->gb) +
1160                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1161                 pwd->last_bitoffset = pos & 7;
1162                 pos >>= 3;
1163                 len = buf_size - pos;
1164                 ret = -E_WMA_BAD_SUPERFRAME;
1165                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1166                         goto fail;
1167                 pwd->last_superframe_len = len;
1168                 memcpy(pwd->last_superframe, buf + pos, len);
1169         } else {
1170                 PARA_DEBUG_LOG("not using bit reservoir\n");
1171                 ret = -E_WMA_OUTPUT_SPACE;
1172                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1173                         goto fail;
1174                 /* single frame decode */
1175                 ret = wma_decode_frame(pwd, samples);
1176                 if (ret < 0)
1177                         goto fail;
1178                 samples += pwd->ahi.channels * pwd->frame_len;
1179         }
1180         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1181                 pwd->frame_len, pwd->block_len,
1182                 (int)((int8_t *)samples - (int8_t *)data), pwd->ahi.block_align);
1183         *data_size = (int8_t *)samples - (int8_t *)data;
1184         return pwd->ahi.block_align;
1185 fail:
1186         /* reset the bit reservoir on errors */
1187         pwd->last_superframe_len = 0;
1188         return ret;
1189 }
1190
1191 static void wmadec_close(struct filter_node *fn)
1192 {
1193         struct private_wmadec_data *pwd = fn->private_data;
1194
1195         if (!pwd)
1196                 return;
1197         wmadec_cleanup(pwd);
1198         free(fn->private_data);
1199         fn->private_data = NULL;
1200 }
1201
1202 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1203 {
1204         struct filter_node *fn = btr_context(btrn);
1205         struct private_wmadec_data *pwd = fn->private_data;
1206
1207         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1208                 result);
1209 }
1210
1211 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1212
1213 static void wmadec_post_select(__a_unused struct sched *s, struct task *t)
1214 {
1215         struct filter_node *fn = container_of(t, struct filter_node, task);
1216         int ret, converted;
1217         struct private_wmadec_data *pwd = fn->private_data;
1218         struct btr_node *btrn = fn->btrn;
1219         size_t len;
1220         char *in;
1221
1222 next_buffer:
1223         converted = 0;
1224         t->error = 0;
1225         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1226         if (ret < 0)
1227                 goto err;
1228         if (ret == 0)
1229                 return;
1230         btr_merge(btrn, fn->min_iqs);
1231         len = btr_next_buffer(btrn, (char **)&in);
1232         ret = -E_WMADEC_EOF;
1233         if (len < fn->min_iqs)
1234                 goto err;
1235         if (!pwd) {
1236                 ret = wma_decode_init(in, len, &pwd);
1237                 if (ret < 0)
1238                         goto err;
1239                 if (ret == 0) {
1240                         fn->min_iqs += 4096;
1241                         goto next_buffer;
1242                 }
1243                 fn->min_iqs = 2 * (WMA_FRAME_SKIP + pwd->ahi.block_align);
1244                 fn->private_data = pwd;
1245                 converted = pwd->ahi.header_len;
1246                 goto success;
1247         }
1248         fn->min_iqs = WMA_FRAME_SKIP + pwd->ahi.block_align;
1249         for (;;) {
1250                 char *out;
1251                 int out_size = WMA_OUTPUT_BUFFER_SIZE;
1252                 if (converted + fn->min_iqs > len)
1253                         break;
1254                 out = para_malloc(WMA_OUTPUT_BUFFER_SIZE);
1255                 ret = wma_decode_superframe(pwd, out,
1256                         &out_size, (uint8_t *)in + converted + WMA_FRAME_SKIP,
1257                         len - WMA_FRAME_SKIP);
1258                 if (ret < 0) {
1259                         free(out);
1260                         goto err;
1261                 }
1262                 btr_add_output(out, out_size, btrn);
1263                 converted += ret + WMA_FRAME_SKIP;
1264         }
1265 success:
1266         btr_consume(btrn, converted);
1267         return;
1268 err:
1269         assert(ret < 0);
1270         t->error = ret;
1271         btr_remove_node(btrn);
1272 }
1273
1274 static void wmadec_open(struct filter_node *fn)
1275 {
1276         fn->private_data = NULL;
1277         fn->min_iqs = 4096;
1278 }
1279
1280 /**
1281  * The init function of the wma decoder.
1282  *
1283  * \param f Its fields are filled in by the function.
1284  */
1285 void wmadec_filter_init(struct filter *f)
1286 {
1287         f->open = wmadec_open;
1288         f->close = wmadec_close;
1289         f->execute = wmadec_execute;
1290         f->pre_select = generic_filter_pre_select;
1291         f->post_select = wmadec_post_select;
1292 }