]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
85ba871c3761829b92a0c04eca7a4fd1c679f6b7
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27
28 #include "para.h"
29 #include "error.h"
30 #include "list.h"
31 #include "ggo.h"
32 #include "string.h"
33 #include "sched.h"
34 #include "filter.h"
35 #include "bitstream.h"
36 #include "imdct.h"
37 #include "wma.h"
38 #include "wmadata.h"
39
40
41 /* size of blocks */
42 #define BLOCK_MIN_BITS 7
43 #define BLOCK_MAX_BITS 11
44 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
45
46 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
47
48 /* XXX: find exact max size */
49 #define HIGH_BAND_MAX_SIZE 16
50
51 /* XXX: is it a suitable value ? */
52 #define MAX_CODED_SUPERFRAME_SIZE 16384
53
54 #define MAX_CHANNELS 2
55
56 #define NOISE_TAB_SIZE 8192
57
58 #define LSP_POW_BITS 7
59
60 struct private_wmadec_data {
61         struct asf_header_info ahi;
62         struct getbit_context gb;
63         int use_bit_reservoir;
64         int use_variable_block_len;
65         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
66         int use_noise_coding;   ///< true if perceptual noise is added
67         int byte_offset_bits;
68         struct vlc exp_vlc;
69         int exponent_sizes[BLOCK_NB_SIZES];
70         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
71         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
72         int coefs_start;        ///< first coded coef
73         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
74         int exponent_high_sizes[BLOCK_NB_SIZES];
75         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
76         struct vlc hgain_vlc;
77
78         /* coded values in high bands */
79         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
80         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81
82         /* there are two possible tables for spectral coefficients */
83         struct vlc coef_vlc[2];
84         uint16_t *run_table[2];
85         uint16_t *level_table[2];
86         const struct coef_vlc_table *coef_vlcs[2];
87         /* frame info */
88         int frame_len;          ///< frame length in samples
89         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
90         int nb_block_sizes;     ///< number of block sizes
91         /* block info */
92         int reset_block_lengths;
93         int block_len_bits;     ///< log2 of current block length
94         int next_block_len_bits;        ///< log2 of next block length
95         int prev_block_len_bits;        ///< log2 of prev block length
96         int block_len;          ///< block length in samples
97         int block_pos;          ///< current position in frame
98         uint8_t ms_stereo;      ///< true if mid/side stereo mode
99         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
100         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
101         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
102         float max_exponent[MAX_CHANNELS];
103         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
104         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float output[BLOCK_MAX_SIZE * 2];
106         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
107         float *windows[BLOCK_NB_SIZES];
108         /* output buffer for one frame and the last for IMDCT windowing */
109         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
110         /* last frame info */
111         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
112         int last_bitoffset;
113         int last_superframe_len;
114         float noise_table[NOISE_TAB_SIZE];
115         int noise_index;
116         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
117         /* lsp_to_curve tables */
118         float lsp_cos_table[BLOCK_MAX_SIZE];
119         float lsp_pow_e_table[256];
120         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
121         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
122 };
123
124 #define EXPVLCBITS 8
125 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
126
127 #define HGAINVLCBITS 9
128 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
129
130 #define VLCBITS 9
131 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
132
133 DECLARE_ALIGNED(16, float, ff_sine_128[128]);
134 DECLARE_ALIGNED(16, float, ff_sine_256[256]);
135 DECLARE_ALIGNED(16, float, ff_sine_512[512]);
136 DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
137 DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
138 DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
139
140 static float *ff_sine_windows[6] = {
141         ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024,
142         ff_sine_2048, ff_sine_4096
143 };
144
145 /* Generate a sine window. */
146 static void sine_window_init(float *window, int n)
147 {
148         int i;
149
150         for (i = 0; i < n; i++)
151                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
152 }
153
154 static void wmadec_cleanup(struct private_wmadec_data *pwd)
155 {
156         int i;
157
158         for (i = 0; i < pwd->nb_block_sizes; i++)
159                 imdct_end(pwd->mdct_ctx[i]);
160         if (pwd->use_exp_vlc)
161                 free_vlc(&pwd->exp_vlc);
162         if (pwd->use_noise_coding)
163                 free_vlc(&pwd->hgain_vlc);
164         for (i = 0; i < 2; i++) {
165                 free_vlc(&pwd->coef_vlc[i]);
166                 free(pwd->run_table[i]);
167                 free(pwd->level_table[i]);
168         }
169 }
170
171 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
172                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
173 {
174         int n = vlc_table->n;
175         const uint8_t *table_bits = vlc_table->huffbits;
176         const uint32_t *table_codes = vlc_table->huffcodes;
177         const uint16_t *levels_table = vlc_table->levels;
178         uint16_t *run_table, *level_table;
179         int i, l, j, k, level;
180
181         PARA_ERROR_LOG("n: %d\n", n);
182         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
183
184         run_table = para_malloc(n * sizeof(uint16_t));
185         level_table = para_malloc(n * sizeof(uint16_t));
186         i = 2;
187         level = 1;
188         k = 0;
189         while (i < n) {
190                 l = levels_table[k++];
191                 for (j = 0; j < l; j++) {
192                         run_table[i] = j;
193                         level_table[i] = level;
194                         i++;
195                 }
196                 level++;
197         }
198         *prun_table = run_table;
199         *plevel_table = level_table;
200 }
201
202 /* compute the scale factor band sizes for each MDCT block size */
203 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
204         float high_freq)
205 {
206         struct asf_header_info *ahi = &pwd->ahi;
207         int a, b, pos, lpos, k, block_len, i, j, n;
208         const uint8_t *table;
209
210         pwd->coefs_start = 0;
211         for (k = 0; k < pwd->nb_block_sizes; k++) {
212                 block_len = pwd->frame_len >> k;
213
214                 table = NULL;
215                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
216                 if (a < 3) {
217                         if (ahi->sample_rate >= 44100)
218                                 table = exponent_band_44100[a];
219                         else if (ahi->sample_rate >= 32000)
220                                 table = exponent_band_32000[a];
221                         else if (ahi->sample_rate >= 22050)
222                                 table = exponent_band_22050[a];
223                 }
224                 if (table) {
225                         n = *table++;
226                         for (i = 0; i < n; i++)
227                                 pwd->exponent_bands[k][i] = table[i];
228                         pwd->exponent_sizes[k] = n;
229                 } else {
230                         j = 0;
231                         lpos = 0;
232                         for (i = 0; i < 25; i++) {
233                                 a = wma_critical_freqs[i];
234                                 b = ahi->sample_rate;
235                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
236                                 pos <<= 2;
237                                 if (pos > block_len)
238                                         pos = block_len;
239                                 if (pos > lpos)
240                                         pwd->exponent_bands[k][j++] = pos - lpos;
241                                 if (pos >= block_len)
242                                         break;
243                                 lpos = pos;
244                         }
245                         pwd->exponent_sizes[k] = j;
246                 }
247
248                 /* max number of coefs */
249                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
250                 /* high freq computation */
251                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
252                         / ahi->sample_rate + 0.5);
253                 n = pwd->exponent_sizes[k];
254                 j = 0;
255                 pos = 0;
256                 for (i = 0; i < n; i++) {
257                         int start, end;
258                         start = pos;
259                         pos += pwd->exponent_bands[k][i];
260                         end = pos;
261                         if (start < pwd->high_band_start[k])
262                                 start = pwd->high_band_start[k];
263                         if (end > pwd->coefs_end[k])
264                                 end = pwd->coefs_end[k];
265                         if (end > start)
266                                 pwd->exponent_high_bands[k][j++] = end - start;
267                 }
268                 pwd->exponent_high_sizes[k] = j;
269         }
270 }
271
272 static int wma_init(struct private_wmadec_data *pwd)
273 {
274         int i;
275         float bps1, high_freq;
276         volatile float bps;
277         int sample_rate1;
278         int coef_vlc_table;
279         struct asf_header_info *ahi = &pwd->ahi;
280         int flags2 = ahi->flags2;
281
282         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
283                 || ahi->channels <= 0 || ahi->channels > 8
284                 || ahi->bit_rate <= 0)
285                 return -E_WMA_BAD_PARAMS;
286
287         /* compute MDCT block size */
288         if (ahi->sample_rate <= 16000) {
289                 pwd->frame_len_bits = 9;
290         } else if (ahi->sample_rate <= 22050) {
291                 pwd->frame_len_bits = 10;
292         } else {
293                 pwd->frame_len_bits = 11;
294         }
295         pwd->frame_len = 1 << pwd->frame_len_bits;
296         if (pwd->use_variable_block_len) {
297                 int nb_max, nb;
298                 nb = ((flags2 >> 3) & 3) + 1;
299                 if ((ahi->bit_rate / ahi->channels) >= 32000)
300                         nb += 2;
301                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
302                 if (nb > nb_max)
303                         nb = nb_max;
304                 pwd->nb_block_sizes = nb + 1;
305         } else
306                 pwd->nb_block_sizes = 1;
307
308         /* init rate dependent parameters */
309         pwd->use_noise_coding = 1;
310         high_freq = ahi->sample_rate * 0.5;
311
312         /* wma2 rates are normalized */
313         sample_rate1 = ahi->sample_rate;
314         if (sample_rate1 >= 44100)
315                 sample_rate1 = 44100;
316         else if (sample_rate1 >= 22050)
317                 sample_rate1 = 22050;
318         else if (sample_rate1 >= 16000)
319                 sample_rate1 = 16000;
320         else if (sample_rate1 >= 11025)
321                 sample_rate1 = 11025;
322         else if (sample_rate1 >= 8000)
323                 sample_rate1 = 8000;
324
325         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
326         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
327         /*
328          * Compute high frequency value and choose if noise coding should be
329          * activated.
330          */
331         bps1 = bps;
332         if (ahi->channels == 2)
333                 bps1 = bps * 1.6;
334         if (sample_rate1 == 44100) {
335                 if (bps1 >= 0.61)
336                         pwd->use_noise_coding = 0;
337                 else
338                         high_freq = high_freq * 0.4;
339         } else if (sample_rate1 == 22050) {
340                 if (bps1 >= 1.16)
341                         pwd->use_noise_coding = 0;
342                 else if (bps1 >= 0.72)
343                         high_freq = high_freq * 0.7;
344                 else
345                         high_freq = high_freq * 0.6;
346         } else if (sample_rate1 == 16000) {
347                 if (bps > 0.5)
348                         high_freq = high_freq * 0.5;
349                 else
350                         high_freq = high_freq * 0.3;
351         } else if (sample_rate1 == 11025) {
352                 high_freq = high_freq * 0.7;
353         } else if (sample_rate1 == 8000) {
354                 if (bps <= 0.625) {
355                         high_freq = high_freq * 0.5;
356                 } else if (bps > 0.75) {
357                         pwd->use_noise_coding = 0;
358                 } else {
359                         high_freq = high_freq * 0.65;
360                 }
361         } else {
362                 if (bps >= 0.8) {
363                         high_freq = high_freq * 0.75;
364                 } else if (bps >= 0.6) {
365                         high_freq = high_freq * 0.6;
366                 } else {
367                         high_freq = high_freq * 0.5;
368                 }
369         }
370         PARA_INFO_LOG("channels=%d sample_rate=%d "
371                 "bitrate=%d block_align=%d\n",
372                 ahi->channels, ahi->sample_rate,
373                 ahi->bit_rate, ahi->block_align);
374         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
375                 "high_freq=%f bitoffset=%d\n",
376                 pwd->frame_len, bps, bps1,
377                 high_freq, pwd->byte_offset_bits);
378         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
379                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
380
381         compute_scale_factor_band_sizes(pwd, high_freq);
382         /* init MDCT windows : simple sinus window */
383         for (i = 0; i < pwd->nb_block_sizes; i++) {
384                 int n;
385                 n = 1 << (pwd->frame_len_bits - i);
386                 sine_window_init(ff_sine_windows[pwd->frame_len_bits - i - 7], n);
387                 pwd->windows[i] = ff_sine_windows[pwd->frame_len_bits - i - 7];
388         }
389
390         pwd->reset_block_lengths = 1;
391
392         if (pwd->use_noise_coding) {
393                 /* init the noise generator */
394                 if (pwd->use_exp_vlc)
395                         pwd->noise_mult = 0.02;
396                 else
397                         pwd->noise_mult = 0.04;
398
399                 {
400                         unsigned int seed;
401                         float norm;
402                         seed = 1;
403                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
404                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
405                                 seed = seed * 314159 + 1;
406                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
407                         }
408                 }
409         }
410
411         /* choose the VLC tables for the coefficients */
412         coef_vlc_table = 2;
413         if (ahi->sample_rate >= 32000) {
414                 if (bps1 < 0.72)
415                         coef_vlc_table = 0;
416                 else if (bps1 < 1.16)
417                         coef_vlc_table = 1;
418         }
419         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
420         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
421         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
422                 pwd->coef_vlcs[0]);
423         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
424                 pwd->coef_vlcs[1]);
425         return 0;
426 }
427
428 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
429 {
430         float wdel, a, b;
431         int i, e, m;
432
433         wdel = M_PI / frame_len;
434         for (i = 0; i < frame_len; i++)
435                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
436
437         /* tables for x^-0.25 computation */
438         for (i = 0; i < 256; i++) {
439                 e = i - 126;
440                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
441         }
442
443         /* These two tables are needed to avoid two operations in pow_m1_4. */
444         b = 1.0;
445         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
446                 m = (1 << LSP_POW_BITS) + i;
447                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
448                 a = pow(a, -0.25);
449                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
450                 pwd->lsp_pow_m_table2[i] = b - a;
451                 b = a;
452         }
453 }
454
455 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
456 {
457         struct private_wmadec_data *pwd;
458         int ret, i;
459
460         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
461         pwd = para_calloc(sizeof(*pwd));
462         ret = read_asf_header(initial_buf, len, &pwd->ahi);
463         if (ret <= 0) {
464                 free(pwd);
465                 return ret;
466         }
467
468         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
469         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
470         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
471
472         ret = wma_init(pwd);
473         if (ret < 0)
474                 return ret;
475         /* init MDCT */
476         for (i = 0; i < pwd->nb_block_sizes; i++) {
477                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
478                 if (ret < 0)
479                         return ret;
480         }
481         if (pwd->use_noise_coding) {
482                 PARA_INFO_LOG("using noise coding\n");
483                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
484                         sizeof(ff_wma_hgain_huffbits), ff_wma_hgain_huffbits,
485                         ff_wma_hgain_huffcodes, 2);
486         }
487
488         if (pwd->use_exp_vlc) {
489                 PARA_INFO_LOG("using exp_vlc\n");
490                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
491                 sizeof(ff_wma_scale_huffbits), ff_wma_scale_huffbits,
492                 ff_wma_scale_huffcodes, 4);
493         } else {
494                 PARA_INFO_LOG("using curve\n");
495                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
496         }
497         *result = pwd;
498         return pwd->ahi.header_len;
499 }
500
501 /**
502  * compute x^-0.25 with an exponent and mantissa table. We use linear
503  * interpolation to reduce the mantissa table size at a small speed
504  * expense (linear interpolation approximately doubles the number of
505  * bits of precision).
506  */
507 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
508 {
509         union {
510                 float f;
511                 unsigned int v;
512         } u, t;
513         unsigned int e, m;
514         float a, b;
515
516         u.f = x;
517         e = u.v >> 23;
518         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
519         /* build interpolation scale: 1 <= t < 2. */
520         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
521         a = pwd->lsp_pow_m_table1[m];
522         b = pwd->lsp_pow_m_table2[m];
523         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
524 }
525
526 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
527                 float *out, float *val_max_ptr, int n, float *lsp)
528 {
529         int i, j;
530         float p, q, w, v, val_max;
531
532         val_max = 0;
533         for (i = 0; i < n; i++) {
534                 p = 0.5f;
535                 q = 0.5f;
536                 w = pwd->lsp_cos_table[i];
537                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
538                         q *= w - lsp[j - 1];
539                         p *= w - lsp[j];
540                 }
541                 p *= p * (2.0f - w);
542                 q *= q * (2.0f + w);
543                 v = p + q;
544                 v = pow_m1_4(pwd, v);
545                 if (v > val_max)
546                         val_max = v;
547                 out[i] = v;
548         }
549         *val_max_ptr = val_max;
550 }
551
552 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
553 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
554 {
555         float lsp_coefs[NB_LSP_COEFS];
556         int val, i;
557
558         for (i = 0; i < NB_LSP_COEFS; i++) {
559                 if (i == 0 || i >= 8)
560                         val = get_bits(&pwd->gb, 3);
561                 else
562                         val = get_bits(&pwd->gb, 4);
563                 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
564         }
565
566         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
567                 pwd->block_len, lsp_coefs);
568 }
569
570 /* Decode exponents coded with VLC codes. */
571 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
572 {
573         int last_exp, n, code;
574         const uint16_t *ptr, *band_ptr;
575         float v, *q, max_scale, *q_end;
576
577         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
578         ptr = band_ptr;
579         q = pwd->exponents[ch];
580         q_end = q + pwd->block_len;
581         max_scale = 0;
582         last_exp = 36;
583
584         while (q < q_end) {
585                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
586                 if (code < 0)
587                         return -1;
588                 /* NOTE: this offset is the same as MPEG4 AAC ! */
589                 last_exp += code - 60;
590                 /* XXX: use a table */
591                 v = pow(10, last_exp * (1.0 / 16.0));
592                 if (v > max_scale)
593                         max_scale = v;
594                 n = *ptr++;
595                 do {
596                         *q++ = v;
597                 } while (--n);
598         }
599         pwd->max_exponent[ch] = max_scale;
600         return 0;
601 }
602
603 /* compute src0 * src1 + src2 */
604 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
605                 const float *src2, int len)
606 {
607         int i;
608
609         for (i = 0; i < len; i++)
610                 dst[i] = src0[i] * src1[i] + src2[i];
611 }
612
613 static inline void vector_mult_reverse(float *dst, const float *src0,
614                 const float *src1, int len)
615 {
616         int i;
617
618         src1 += len - 1;
619         for (i = 0; i < len; i++)
620                 dst[i] = src0[i] * src1[-i];
621 }
622
623 /**
624  * Apply MDCT window and add into output.
625  *
626  * We ensure that when the windows overlap their squared sum
627  * is always 1 (MDCT reconstruction rule).
628  */
629 static void wma_window(struct private_wmadec_data *pwd, float *out)
630 {
631         float *in = pwd->output;
632         int block_len, bsize, n;
633
634         /* left part */
635         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
636                 block_len = pwd->block_len;
637                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
638                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
639         } else {
640                 block_len = 1 << pwd->prev_block_len_bits;
641                 n = (pwd->block_len - block_len) / 2;
642                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
643                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
644                         block_len);
645                 memcpy(out + n + block_len, in + n + block_len,
646                         n * sizeof(float));
647         }
648         out += pwd->block_len;
649         in += pwd->block_len;
650         /* right part */
651         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
652                 block_len = pwd->block_len;
653                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
654                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
655         } else {
656                 block_len = 1 << pwd->next_block_len_bits;
657                 n = (pwd->block_len - block_len) / 2;
658                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
659                 memcpy(out, in, n * sizeof(float));
660                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
661                         block_len);
662                 memset(out + n + block_len, 0, n * sizeof(float));
663         }
664 }
665
666 static int wma_total_gain_to_bits(int total_gain)
667 {
668         if (total_gain < 15)
669                 return 13;
670         else if (total_gain < 32)
671                 return 12;
672         else if (total_gain < 40)
673                 return 11;
674         else if (total_gain < 45)
675                 return 10;
676         else
677                 return 9;
678 }
679
680 /**
681  * @return 0 if OK. 1 if last block of frame. return -1 if
682  * unrecorrable error.
683  */
684 static int wma_decode_block(struct private_wmadec_data *pwd)
685 {
686         int n, v, ch, code, bsize;
687         int coef_nb_bits, total_gain;
688         int nb_coefs[MAX_CHANNELS];
689         float mdct_norm;
690
691         /* compute current block length */
692         if (pwd->use_variable_block_len) {
693                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
694
695                 if (pwd->reset_block_lengths) {
696                         pwd->reset_block_lengths = 0;
697                         v = get_bits(&pwd->gb, n);
698                         if (v >= pwd->nb_block_sizes)
699                                 return -1;
700                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
701                         v = get_bits(&pwd->gb, n);
702                         if (v >= pwd->nb_block_sizes)
703                                 return -1;
704                         pwd->block_len_bits = pwd->frame_len_bits - v;
705                 } else {
706                         /* update block lengths */
707                         pwd->prev_block_len_bits = pwd->block_len_bits;
708                         pwd->block_len_bits = pwd->next_block_len_bits;
709                 }
710                 v = get_bits(&pwd->gb, n);
711                 if (v >= pwd->nb_block_sizes)
712                         return -1;
713                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
714         } else {
715                 /* fixed block len */
716                 pwd->next_block_len_bits = pwd->frame_len_bits;
717                 pwd->prev_block_len_bits = pwd->frame_len_bits;
718                 pwd->block_len_bits = pwd->frame_len_bits;
719         }
720
721         /* now check if the block length is coherent with the frame length */
722         pwd->block_len = 1 << pwd->block_len_bits;
723         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
724                 return -E_INCOHERENT_BLOCK_LEN;
725
726         if (pwd->ahi.channels == 2)
727                 pwd->ms_stereo = get_bit(&pwd->gb);
728         v = 0;
729         for (ch = 0; ch < pwd->ahi.channels; ch++) {
730                 int a = get_bit(&pwd->gb);
731                 pwd->channel_coded[ch] = a;
732                 v |= a;
733         }
734
735         bsize = pwd->frame_len_bits - pwd->block_len_bits;
736
737         /* if no channel coded, no need to go further */
738         /* XXX: fix potential framing problems */
739         if (!v)
740                 goto next;
741
742         /* read total gain and extract corresponding number of bits for
743            coef escape coding */
744         total_gain = 1;
745         for (;;) {
746                 int a = get_bits(&pwd->gb, 7);
747                 total_gain += a;
748                 if (a != 127)
749                         break;
750         }
751
752         coef_nb_bits = wma_total_gain_to_bits(total_gain);
753
754         /* compute number of coefficients */
755         n = pwd->coefs_end[bsize] - pwd->coefs_start;
756         for (ch = 0; ch < pwd->ahi.channels; ch++)
757                 nb_coefs[ch] = n;
758
759         /* complex coding */
760         if (pwd->use_noise_coding) {
761                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
762                         if (pwd->channel_coded[ch]) {
763                                 int i, m, a;
764                                 m = pwd->exponent_high_sizes[bsize];
765                                 for (i = 0; i < m; i++) {
766                                         a = get_bit(&pwd->gb);
767                                         pwd->high_band_coded[ch][i] = a;
768                                         /* if noise coding, the coefficients are not transmitted */
769                                         if (a)
770                                                 nb_coefs[ch] -=
771                                                     pwd->
772                                                     exponent_high_bands[bsize]
773                                                     [i];
774                                 }
775                         }
776                 }
777                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
778                         if (pwd->channel_coded[ch]) {
779                                 int i, val;
780
781                                 n = pwd->exponent_high_sizes[bsize];
782                                 val = (int) 0x80000000;
783                                 for (i = 0; i < n; i++) {
784                                         if (pwd->high_band_coded[ch][i]) {
785                                                 if (val == (int) 0x80000000) {
786                                                         val =
787                                                             get_bits(&pwd->gb,
788                                                                      7) - 19;
789                                                 } else {
790                                                         code =
791                                                             get_vlc(&pwd->gb,
792                                                                      pwd->
793                                                                      hgain_vlc.
794                                                                      table,
795                                                                      HGAINVLCBITS,
796                                                                      HGAINMAX);
797                                                         if (code < 0)
798                                                                 return -1;
799                                                         val += code - 18;
800                                                 }
801                                                 pwd->high_band_values[ch][i] =
802                                                     val;
803                                         }
804                                 }
805                         }
806                 }
807         }
808
809         /* exponents can be reused in short blocks. */
810         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
811                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
812                         if (pwd->channel_coded[ch]) {
813                                 if (pwd->use_exp_vlc) {
814                                         if (decode_exp_vlc(pwd, ch) < 0)
815                                                 return -1;
816                                 } else {
817                                         decode_exp_lsp(pwd, ch);
818                                 }
819                                 pwd->exponents_bsize[ch] = bsize;
820                         }
821                 }
822         }
823
824         /* parse spectral coefficients : just RLE encoding */
825         for (ch = 0; ch < pwd->ahi.channels; ch++) {
826                 struct vlc *coef_vlc;
827                 int level, run, tindex;
828                 int16_t *ptr, *eptr;
829                 const uint16_t *level_table, *run_table;
830
831                 if (!pwd->channel_coded[ch])
832                         continue;
833                 /*
834                  * special VLC tables are used for ms stereo because there is
835                  * potentially less energy there
836                  */
837                 tindex = (ch == 1 && pwd->ms_stereo);
838                 coef_vlc = &pwd->coef_vlc[tindex];
839                 run_table = pwd->run_table[tindex];
840                 level_table = pwd->level_table[tindex];
841                 /* XXX: optimize */
842                 ptr = &pwd->coefs1[ch][0];
843                 eptr = ptr + nb_coefs[ch];
844                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
845                 for (;;) {
846                         code = get_vlc(&pwd->gb, coef_vlc->table,
847                                 VLCBITS, VLCMAX);
848                         if (code < 0)
849                                 return -1;
850                         if (code == 1) /* EOB */
851                                 break;
852                         if (code == 0) { /* escape */
853                                 level = get_bits(&pwd->gb, coef_nb_bits);
854                                 /* reading block_len_bits would be better */
855                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
856                         } else { /* normal code */
857                                 run = run_table[code];
858                                 level = level_table[code];
859                         }
860                         if (!get_bit(&pwd->gb))
861                                 level = -level;
862                         ptr += run;
863                         if (ptr >= eptr) {
864                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
865                                 break;
866                         }
867                         *ptr++ = level;
868                         if (ptr >= eptr) /* EOB can be omitted */
869                                 break;
870                 }
871         }
872
873         /* normalize */
874         {
875                 int n4 = pwd->block_len / 2;
876                 mdct_norm = 1.0 / (float) n4;
877         }
878
879         /* finally compute the MDCT coefficients */
880         for (ch = 0; ch < pwd->ahi.channels; ch++) {
881                 if (pwd->channel_coded[ch]) {
882                         int16_t *coefs1;
883                         float *coefs, *exponents, mult, mult1, noise;
884                         int i, j, n1, last_high_band, esize;
885                         float exp_power[HIGH_BAND_MAX_SIZE];
886
887                         coefs1 = pwd->coefs1[ch];
888                         exponents = pwd->exponents[ch];
889                         esize = pwd->exponents_bsize[ch];
890                         mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
891                         mult *= mdct_norm;
892                         coefs = pwd->coefs[ch];
893                         if (pwd->use_noise_coding) {
894                                 mult1 = mult;
895                                 /* very low freqs : noise */
896                                 for (i = 0; i < pwd->coefs_start; i++) {
897                                         *coefs++ =
898                                             pwd->noise_table[pwd->noise_index] *
899                                             exponents[i << bsize >> esize] *
900                                             mult1;
901                                         pwd->noise_index =
902                                             (pwd->noise_index +
903                                              1) & (NOISE_TAB_SIZE - 1);
904                                 }
905
906                                 n1 = pwd->exponent_high_sizes[bsize];
907
908                                 /* compute power of high bands */
909                                 exponents = pwd->exponents[ch] +
910                                     (pwd->high_band_start[bsize] << bsize);
911                                 last_high_band = 0;     /* avoid warning */
912                                 for (j = 0; j < n1; j++) {
913                                         n = pwd->exponent_high_bands[pwd->
914                                                                    frame_len_bits
915                                                                    -
916                                                                    pwd->
917                                                                    block_len_bits]
918                                             [j];
919                                         if (pwd->high_band_coded[ch][j]) {
920                                                 float e2, val;
921                                                 e2 = 0;
922                                                 for (i = 0; i < n; i++) {
923                                                         val = exponents[i << bsize
924                                                                       >> esize];
925                                                         e2 += val * val;
926                                                 }
927                                                 exp_power[j] = e2 / n;
928                                                 last_high_band = j;
929                                         }
930                                         exponents += n << bsize;
931                                 }
932
933                                 /* main freqs and high freqs */
934                                 exponents =
935                                     pwd->exponents[ch] +
936                                     (pwd->coefs_start << bsize);
937                                 for (j = -1; j < n1; j++) {
938                                         if (j < 0) {
939                                                 n = pwd->high_band_start[bsize] -
940                                                     pwd->coefs_start;
941                                         } else {
942                                                 n = pwd->exponent_high_bands[pwd->
943                                                                            frame_len_bits
944                                                                            -
945                                                                            pwd->
946                                                                            block_len_bits]
947                                                     [j];
948                                         }
949                                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
950                                                 /* use noise with specified power */
951                                                 mult1 =
952                                                     sqrt(exp_power[j] /
953                                                          exp_power
954                                                          [last_high_band]);
955                                                 /* XXX: use a table */
956                                                 mult1 =
957                                                     mult1 * pow(10,
958                                                                 pwd->
959                                                                 high_band_values
960                                                                 [ch][j] * 0.05);
961                                                 mult1 =
962                                                     mult1 /
963                                                     (pwd->max_exponent[ch] *
964                                                      pwd->noise_mult);
965                                                 mult1 *= mdct_norm;
966                                                 for (i = 0; i < n; i++) {
967                                                         noise =
968                                                             pwd->noise_table[pwd->
969                                                                            noise_index];
970                                                         pwd->noise_index =
971                                                             (pwd->noise_index +
972                                                              1) &
973                                                             (NOISE_TAB_SIZE -
974                                                              1);
975                                                         *coefs++ =
976                                                             noise *
977                                                             exponents[i << bsize
978                                                                       >> esize]
979                                                             * mult1;
980                                                 }
981                                                 exponents += n << bsize;
982                                         } else {
983                                                 /* coded values + small noise */
984                                                 for (i = 0; i < n; i++) {
985                                                         noise =
986                                                             pwd->noise_table[pwd->
987                                                                            noise_index];
988                                                         pwd->noise_index =
989                                                             (pwd->noise_index +
990                                                              1) &
991                                                             (NOISE_TAB_SIZE -
992                                                              1);
993                                                         *coefs++ =
994                                                             ((*coefs1++) +
995                                                              noise) *
996                                                             exponents[i << bsize
997                                                                       >> esize]
998                                                             * mult;
999                                                 }
1000                                                 exponents += n << bsize;
1001                                         }
1002                                 }
1003
1004                                 /* very high freqs : noise */
1005                                 n = pwd->block_len - pwd->coefs_end[bsize];
1006                                 mult1 =
1007                                     mult * exponents[((-1 << bsize)) >> esize];
1008                                 for (i = 0; i < n; i++) {
1009                                         *coefs++ =
1010                                             pwd->noise_table[pwd->noise_index] *
1011                                             mult1;
1012                                         pwd->noise_index =
1013                                             (pwd->noise_index +
1014                                              1) & (NOISE_TAB_SIZE - 1);
1015                                 }
1016                         } else {
1017                                 /* XXX: optimize more */
1018                                 for (i = 0; i < pwd->coefs_start; i++)
1019                                         *coefs++ = 0.0;
1020                                 n = nb_coefs[ch];
1021                                 for (i = 0; i < n; i++) {
1022                                         *coefs++ =
1023                                             coefs1[i] *
1024                                             exponents[i << bsize >> esize] *
1025                                             mult;
1026                                 }
1027                                 n = pwd->block_len - pwd->coefs_end[bsize];
1028                                 for (i = 0; i < n; i++)
1029                                         *coefs++ = 0.0;
1030                         }
1031                 }
1032         }
1033
1034         if (pwd->ms_stereo && pwd->channel_coded[1]) {
1035                 float a, b;
1036                 int i;
1037
1038                 /*
1039                  * Nominal case for ms stereo: we do it before mdct.
1040                  *
1041                  * No need to optimize this case because it should almost never
1042                  * happen.
1043                  */
1044                 if (!pwd->channel_coded[0]) {
1045                         PARA_NOTICE_LOG("rare ms-stereo\n");
1046                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
1047                         pwd->channel_coded[0] = 1;
1048                 }
1049                 for (i = 0; i < pwd->block_len; i++) {
1050                         a = pwd->coefs[0][i];
1051                         b = pwd->coefs[1][i];
1052                         pwd->coefs[0][i] = a + b;
1053                         pwd->coefs[1][i] = a - b;
1054                 }
1055         }
1056
1057 next:
1058         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1059                 int n4, index;
1060
1061                 n = pwd->block_len;
1062                 n4 = pwd->block_len / 2;
1063                 if (pwd->channel_coded[ch])
1064                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1065                 else if (!(pwd->ms_stereo && ch == 1))
1066                         memset(pwd->output, 0, sizeof(pwd->output));
1067
1068                 /* multiply by the window and add in the frame */
1069                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1070                 wma_window(pwd, &pwd->frame_out[ch][index]);
1071         }
1072
1073         /* update block number */
1074         pwd->block_pos += pwd->block_len;
1075         if (pwd->block_pos >= pwd->frame_len)
1076                 return 1;
1077         else
1078                 return 0;
1079 }
1080
1081 /*
1082  * Clip a signed integer value into the -32768,32767 range.
1083  *
1084  * \param a The value to clip.
1085  *
1086  * \return The clipped value.
1087  */
1088 static inline int16_t av_clip_int16(int a)
1089 {
1090         if ((a + 32768) & ~65535)
1091                 return (a >> 31) ^ 32767;
1092         else
1093                 return a;
1094 }
1095
1096 /* Decode a frame of frame_len samples. */
1097 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1098 {
1099         int ret, i, n, ch, incr;
1100         int16_t *ptr;
1101         float *iptr;
1102
1103         /* read each block */
1104         pwd->block_pos = 0;
1105         for (;;) {
1106                 ret = wma_decode_block(pwd);
1107                 if (ret < 0)
1108                         return -1;
1109                 if (ret)
1110                         break;
1111         }
1112
1113         /* convert frame to integer */
1114         n = pwd->frame_len;
1115         incr = pwd->ahi.channels;
1116         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1117                 ptr = samples + ch;
1118                 iptr = pwd->frame_out[ch];
1119
1120                 for (i = 0; i < n; i++) {
1121                         *ptr = av_clip_int16(lrintf(*iptr++));
1122                         ptr += incr;
1123                 }
1124                 /* prepare for next block */
1125                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1126                         pwd->frame_len * sizeof(float));
1127         }
1128         return 0;
1129 }
1130
1131 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1132                 int *data_size, const uint8_t *buf, int buf_size)
1133 {
1134         int ret;
1135         int16_t *samples;
1136         static int frame_count;
1137
1138         if (buf_size == 0) {
1139                 pwd->last_superframe_len = 0;
1140                 return 0;
1141         }
1142         if (buf_size < pwd->ahi.block_align)
1143                 return 0;
1144         buf_size = pwd->ahi.block_align;
1145         samples = data;
1146         init_get_bits(&pwd->gb, buf, buf_size);
1147         if (pwd->use_bit_reservoir) {
1148                 int i, nb_frames, bit_offset, pos, len;
1149                 uint8_t *q;
1150
1151                 /* read super frame header */
1152                 skip_bits(&pwd->gb, 4); /* super frame index */
1153                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1154                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1155                 ret = -E_WMA_OUTPUT_SPACE;
1156                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1157                                 * sizeof(int16_t) > *data_size)
1158                         goto fail;
1159
1160                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1161
1162                 if (pwd->last_superframe_len > 0) {
1163                         /* add bit_offset bits to last frame */
1164                         ret = -E_WMA_BAD_SUPERFRAME;
1165                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1166                                         MAX_CODED_SUPERFRAME_SIZE)
1167                                 goto fail;
1168                         q = pwd->last_superframe + pwd->last_superframe_len;
1169                         len = bit_offset;
1170                         while (len > 7) {
1171                                 *q++ = get_bits(&pwd->gb, 8);
1172                                 len -= 8;
1173                         }
1174                         if (len > 0)
1175                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1176
1177                         /* XXX: bit_offset bits into last frame */
1178                         init_get_bits(&pwd->gb, pwd->last_superframe,
1179                                 MAX_CODED_SUPERFRAME_SIZE);
1180                         /* skip unused bits */
1181                         if (pwd->last_bitoffset > 0)
1182                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1183                         /*
1184                          * This frame is stored in the last superframe and in
1185                          * the current one.
1186                          */
1187                         ret = -E_WMA_DECODE;
1188                         if (wma_decode_frame(pwd, samples) < 0)
1189                                 goto fail;
1190                         frame_count++;
1191                         samples += pwd->ahi.channels * pwd->frame_len;
1192                 }
1193
1194                 /* read each frame starting from bit_offset */
1195                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1196                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1197                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1198                 len = pos & 7;
1199                 if (len > 0)
1200                         skip_bits(&pwd->gb, len);
1201
1202                 pwd->reset_block_lengths = 1;
1203                 for (i = 0; i < nb_frames; i++) {
1204                         ret = -E_WMA_DECODE;
1205                         if (wma_decode_frame(pwd, samples) < 0)
1206                                 goto fail;
1207                         frame_count++;
1208                         samples += pwd->ahi.channels * pwd->frame_len;
1209                 }
1210
1211                 /* we copy the end of the frame in the last frame buffer */
1212                 pos = get_bits_count(&pwd->gb) +
1213                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1214                 pwd->last_bitoffset = pos & 7;
1215                 pos >>= 3;
1216                 len = buf_size - pos;
1217                 ret = -E_WMA_BAD_SUPERFRAME;
1218                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1219                         goto fail;
1220                 pwd->last_superframe_len = len;
1221                 memcpy(pwd->last_superframe, buf + pos, len);
1222         } else {
1223                 PARA_DEBUG_LOG("not using bit reservoir\n");
1224                 ret = -E_WMA_OUTPUT_SPACE;
1225                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1226                         goto fail;
1227                 /* single frame decode */
1228                 ret = -E_WMA_DECODE;
1229                 if (wma_decode_frame(pwd, samples) < 0)
1230                         goto fail;
1231                 frame_count++;
1232                 samples += pwd->ahi.channels * pwd->frame_len;
1233         }
1234         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1235                 "outbytes: %d, eaten: %d\n",
1236                 frame_count, pwd->frame_len, pwd->block_len,
1237                 (int8_t *) samples - (int8_t *) data, pwd->ahi.block_align);
1238         *data_size = (int8_t *)samples - (int8_t *)data;
1239         return pwd->ahi.block_align;
1240 fail:
1241         /* reset the bit reservoir on errors */
1242         pwd->last_superframe_len = 0;
1243         return ret;
1244 }
1245
1246 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1247                 struct filter_node *fn)
1248 {
1249         int ret, out_size = fn->bufsize - fn->loaded;
1250         struct private_wmadec_data *pwd = fn->private_data;
1251
1252         if (out_size < 128 * 1024)
1253                 return 0;
1254         if (!pwd) {
1255                 ret = wma_decode_init(inbuffer, len, &pwd);
1256                 if (ret <= 0)
1257                         return ret;
1258                 fn->private_data = pwd;
1259                 fn->fc->channels = pwd->ahi.channels;
1260                 fn->fc->samplerate = pwd->ahi.sample_rate;
1261                 return pwd->ahi.header_len;
1262         }
1263         /* skip 31 bytes */
1264         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1265                 return 0;
1266         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1267                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1268                 len - WMA_FRAME_SKIP);
1269         if (ret < 0)
1270                 return ret;
1271         fn->loaded += out_size;
1272         return ret + WMA_FRAME_SKIP;
1273 }
1274
1275 static void wmadec_close(struct filter_node *fn)
1276 {
1277         struct private_wmadec_data *pwd = fn->private_data;
1278
1279         if (!pwd)
1280                 return;
1281         wmadec_cleanup(pwd);
1282         free(fn->buf);
1283         fn->buf = NULL;
1284         free(fn->private_data);
1285         fn->private_data = NULL;
1286 }
1287
1288 static void wmadec_open(struct filter_node *fn)
1289 {
1290         fn->bufsize = 1024 * 1024;
1291         fn->buf = para_malloc(fn->bufsize);
1292         fn->private_data = NULL;
1293         fn->loaded = 0;
1294 }
1295
1296 /**
1297  * The init function of the wma decoder.
1298  *
1299  * \param f Its fields are filled in by the function.
1300  */
1301 void wmadec_filter_init(struct filter *f)
1302 {
1303         f->open = wmadec_open;
1304         f->close = wmadec_close;
1305         f->convert = wmadec_convert;
1306 }