9b103f9f80aa71b187602a54c46056f5a5d96a0c
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27
28 #include "para.h"
29 #include "error.h"
30 #include "list.h"
31 #include "ggo.h"
32 #include "string.h"
33 #include "sched.h"
34 #include "filter.h"
35 #include "bitstream.h"
36 #include "imdct.h"
37 #include "wma.h"
38 #include "wmadata.h"
39
40
41 /* size of blocks */
42 #define BLOCK_MIN_BITS 7
43 #define BLOCK_MAX_BITS 11
44 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
45
46 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
47
48 /* XXX: find exact max size */
49 #define HIGH_BAND_MAX_SIZE 16
50
51 /* XXX: is it a suitable value ? */
52 #define MAX_CODED_SUPERFRAME_SIZE 16384
53
54 #define MAX_CHANNELS 2
55
56 #define NOISE_TAB_SIZE 8192
57
58 #define LSP_POW_BITS 7
59
60 struct private_wmadec_data {
61         struct asf_header_info ahi;
62         struct getbit_context gb;
63         int use_bit_reservoir;
64         int use_variable_block_len;
65         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
66         int use_noise_coding;   ///< true if perceptual noise is added
67         int byte_offset_bits;
68         struct vlc exp_vlc;
69         int exponent_sizes[BLOCK_NB_SIZES];
70         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
71         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
72         int coefs_start;        ///< first coded coef
73         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
74         int exponent_high_sizes[BLOCK_NB_SIZES];
75         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
76         struct vlc hgain_vlc;
77
78         /* coded values in high bands */
79         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
80         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81
82         /* there are two possible tables for spectral coefficients */
83         struct vlc coef_vlc[2];
84         uint16_t *run_table[2];
85         uint16_t *level_table[2];
86         uint16_t *int_table[2];
87         const struct coef_vlc_table *coef_vlcs[2];
88         /* frame info */
89         int frame_len;          ///< frame length in samples
90         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
91         int nb_block_sizes;     ///< number of block sizes
92         /* block info */
93         int reset_block_lengths;
94         int block_len_bits;     ///< log2 of current block length
95         int next_block_len_bits;        ///< log2 of next block length
96         int prev_block_len_bits;        ///< log2 of prev block length
97         int block_len;          ///< block length in samples
98         int block_pos;          ///< current position in frame
99         uint8_t ms_stereo;      ///< true if mid/side stereo mode
100         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
101         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
102         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
103         float max_exponent[MAX_CHANNELS];
104         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
106         float output[BLOCK_MAX_SIZE * 2];
107         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
108         float *windows[BLOCK_NB_SIZES];
109         /* output buffer for one frame and the last for IMDCT windowing */
110         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
111         /* last frame info */
112         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
113         int last_bitoffset;
114         int last_superframe_len;
115         float noise_table[NOISE_TAB_SIZE];
116         int noise_index;
117         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
118         /* lsp_to_curve tables */
119         float lsp_cos_table[BLOCK_MAX_SIZE];
120         float lsp_pow_e_table[256];
121         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
122         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
123 };
124
125 #define EXPVLCBITS 8
126 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
127
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
130
131 #define VLCBITS 9
132 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
133
134 DECLARE_ALIGNED(16, float, ff_sine_128[128]);
135 DECLARE_ALIGNED(16, float, ff_sine_256[256]);
136 DECLARE_ALIGNED(16, float, ff_sine_512[512]);
137 DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
138 DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
139 DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
140
141 static float *ff_sine_windows[6] = {
142         ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024,
143         ff_sine_2048, ff_sine_4096
144 };
145
146 /* Generate a sine window. */
147 static void sine_window_init(float *window, int n)
148 {
149         int i;
150
151         for (i = 0; i < n; i++)
152                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
153 }
154
155 static void wmadec_cleanup(struct private_wmadec_data *s)
156 {
157         int i;
158
159         for (i = 0; i < s->nb_block_sizes; i++)
160                 imdct_end(s->mdct_ctx[i]);
161         if (s->use_exp_vlc)
162                 free_vlc(&s->exp_vlc);
163         if (s->use_noise_coding)
164                 free_vlc(&s->hgain_vlc);
165         for (i = 0; i < 2; i++) {
166                 free_vlc(&s->coef_vlc[i]);
167                 free(s->run_table[i]);
168                 free(s->level_table[i]);
169                 free(s->int_table[i]);
170         }
171 }
172
173 /* XXX: use same run/length optimization as mpeg decoders */
174 //FIXME maybe split decode / encode or pass flag
175 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
176                 uint16_t **plevel_table, uint16_t **pint_table,
177                 const struct coef_vlc_table *vlc_table)
178 {
179         int n = vlc_table->n;
180         const uint8_t *table_bits = vlc_table->huffbits;
181         const uint32_t *table_codes = vlc_table->huffcodes;
182         const uint16_t *levels_table = vlc_table->levels;
183         uint16_t *run_table, *level_table, *int_table;
184         int i, l, j, k, level;
185
186         init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4);
187
188         run_table = para_malloc(n * sizeof(uint16_t));
189         level_table = para_malloc(n * sizeof(uint16_t));
190         int_table = para_malloc(n * sizeof(uint16_t));
191         i = 2;
192         level = 1;
193         k = 0;
194         while (i < n) {
195                 int_table[k] = i;
196                 l = levels_table[k++];
197                 for (j = 0; j < l; j++) {
198                         run_table[i] = j;
199                         level_table[i] = level;
200                         i++;
201                 }
202                 level++;
203         }
204         *prun_table = run_table;
205         *plevel_table = level_table;
206         *pint_table = int_table;
207 }
208
209 /* compute the scale factor band sizes for each MDCT block size */
210 static void compute_scale_factor_band_sizes(struct private_wmadec_data *s,
211         float high_freq)
212 {
213         struct asf_header_info *ahi = &s->ahi;
214         int a, b, pos, lpos, k, block_len, i, j, n;
215         const uint8_t *table;
216
217         s->coefs_start = 0;
218         for (k = 0; k < s->nb_block_sizes; k++) {
219                 block_len = s->frame_len >> k;
220
221                 table = NULL;
222                 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
223                 if (a < 3) {
224                         if (ahi->sample_rate >= 44100)
225                                 table = exponent_band_44100[a];
226                         else if (ahi->sample_rate >= 32000)
227                                 table = exponent_band_32000[a];
228                         else if (ahi->sample_rate >= 22050)
229                                 table = exponent_band_22050[a];
230                 }
231                 if (table) {
232                         n = *table++;
233                         for (i = 0; i < n; i++)
234                                 s->exponent_bands[k][i] = table[i];
235                         s->exponent_sizes[k] = n;
236                 } else {
237                         j = 0;
238                         lpos = 0;
239                         for (i = 0; i < 25; i++) {
240                                 a = wma_critical_freqs[i];
241                                 b = ahi->sample_rate;
242                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
243                                 pos <<= 2;
244                                 if (pos > block_len)
245                                         pos = block_len;
246                                 if (pos > lpos)
247                                         s->exponent_bands[k][j++] = pos - lpos;
248                                 if (pos >= block_len)
249                                         break;
250                                 lpos = pos;
251                         }
252                         s->exponent_sizes[k] = j;
253                 }
254
255                 /* max number of coefs */
256                 s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
257                 /* high freq computation */
258                 s->high_band_start[k] = (int) ((block_len * 2 * high_freq)
259                         / ahi->sample_rate + 0.5);
260                 n = s->exponent_sizes[k];
261                 j = 0;
262                 pos = 0;
263                 for (i = 0; i < n; i++) {
264                         int start, end;
265                         start = pos;
266                         pos += s->exponent_bands[k][i];
267                         end = pos;
268                         if (start < s->high_band_start[k])
269                                 start = s->high_band_start[k];
270                         if (end > s->coefs_end[k])
271                                 end = s->coefs_end[k];
272                         if (end > start)
273                                 s->exponent_high_bands[k][j++] = end - start;
274                 }
275                 s->exponent_high_sizes[k] = j;
276         }
277 }
278
279 static int wma_init(struct private_wmadec_data *s, int flags2, struct asf_header_info *ahi)
280 {
281         int i;
282         float bps1, high_freq;
283         volatile float bps;
284         int sample_rate1;
285         int coef_vlc_table;
286
287         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
288                 || ahi->channels <= 0 || ahi->channels > 8
289                 || ahi->bit_rate <= 0)
290                 return -E_WMA_BAD_PARAMS;
291
292         /* compute MDCT block size */
293         if (ahi->sample_rate <= 16000) {
294                 s->frame_len_bits = 9;
295         } else if (ahi->sample_rate <= 22050) {
296                 s->frame_len_bits = 10;
297         } else {
298                 s->frame_len_bits = 11;
299         }
300         s->frame_len = 1 << s->frame_len_bits;
301         if (s->use_variable_block_len) {
302                 int nb_max, nb;
303                 nb = ((flags2 >> 3) & 3) + 1;
304                 if ((ahi->bit_rate / ahi->channels) >= 32000)
305                         nb += 2;
306                 nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
307                 if (nb > nb_max)
308                         nb = nb_max;
309                 s->nb_block_sizes = nb + 1;
310         } else
311                 s->nb_block_sizes = 1;
312
313         /* init rate dependent parameters */
314         s->use_noise_coding = 1;
315         high_freq = ahi->sample_rate * 0.5;
316
317         /* wma2 rates are normalized */
318         sample_rate1 = ahi->sample_rate;
319         if (sample_rate1 >= 44100)
320                 sample_rate1 = 44100;
321         else if (sample_rate1 >= 22050)
322                 sample_rate1 = 22050;
323         else if (sample_rate1 >= 16000)
324                 sample_rate1 = 16000;
325         else if (sample_rate1 >= 11025)
326                 sample_rate1 = 11025;
327         else if (sample_rate1 >= 8000)
328                 sample_rate1 = 8000;
329
330         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
331         s->byte_offset_bits = wma_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
332         /*
333          * Compute high frequency value and choose if noise coding should be
334          * activated.
335          */
336         bps1 = bps;
337         if (ahi->channels == 2)
338                 bps1 = bps * 1.6;
339         if (sample_rate1 == 44100) {
340                 if (bps1 >= 0.61)
341                         s->use_noise_coding = 0;
342                 else
343                         high_freq = high_freq * 0.4;
344         } else if (sample_rate1 == 22050) {
345                 if (bps1 >= 1.16)
346                         s->use_noise_coding = 0;
347                 else if (bps1 >= 0.72)
348                         high_freq = high_freq * 0.7;
349                 else
350                         high_freq = high_freq * 0.6;
351         } else if (sample_rate1 == 16000) {
352                 if (bps > 0.5)
353                         high_freq = high_freq * 0.5;
354                 else
355                         high_freq = high_freq * 0.3;
356         } else if (sample_rate1 == 11025) {
357                 high_freq = high_freq * 0.7;
358         } else if (sample_rate1 == 8000) {
359                 if (bps <= 0.625) {
360                         high_freq = high_freq * 0.5;
361                 } else if (bps > 0.75) {
362                         s->use_noise_coding = 0;
363                 } else {
364                         high_freq = high_freq * 0.65;
365                 }
366         } else {
367                 if (bps >= 0.8) {
368                         high_freq = high_freq * 0.75;
369                 } else if (bps >= 0.6) {
370                         high_freq = high_freq * 0.6;
371                 } else {
372                         high_freq = high_freq * 0.5;
373                 }
374         }
375         PARA_INFO_LOG("channels=%d sample_rate=%d "
376                 "bitrate=%d block_align=%d\n",
377                 ahi->channels, ahi->sample_rate,
378                 ahi->bit_rate, ahi->block_align);
379         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
380                 "high_freq=%f bitoffset=%d\n",
381                 s->frame_len, bps, bps1,
382                 high_freq, s->byte_offset_bits);
383         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
384                 s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
385
386         compute_scale_factor_band_sizes(s, high_freq);
387         /* init MDCT windows : simple sinus window */
388         for (i = 0; i < s->nb_block_sizes; i++) {
389                 int n;
390                 n = 1 << (s->frame_len_bits - i);
391                 sine_window_init(ff_sine_windows[s->frame_len_bits - i - 7], n);
392                 s->windows[i] = ff_sine_windows[s->frame_len_bits - i - 7];
393         }
394
395         s->reset_block_lengths = 1;
396
397         if (s->use_noise_coding) {
398                 /* init the noise generator */
399                 if (s->use_exp_vlc)
400                         s->noise_mult = 0.02;
401                 else
402                         s->noise_mult = 0.04;
403
404                 {
405                         unsigned int seed;
406                         float norm;
407                         seed = 1;
408                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
409                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
410                                 seed = seed * 314159 + 1;
411                                 s->noise_table[i] = (float) ((int) seed) * norm;
412                         }
413                 }
414         }
415
416         /* choose the VLC tables for the coefficients */
417         coef_vlc_table = 2;
418         if (ahi->sample_rate >= 32000) {
419                 if (bps1 < 0.72)
420                         coef_vlc_table = 0;
421                 else if (bps1 < 1.16)
422                         coef_vlc_table = 1;
423         }
424         s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
425         s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
426         init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
427                 &s->int_table[0], s->coef_vlcs[0]);
428         init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
429                 &s->int_table[1], s->coef_vlcs[1]);
430         return 0;
431 }
432
433 static void wma_lsp_to_curve_init(struct private_wmadec_data *s, int frame_len)
434 {
435         float wdel, a, b;
436         int i, e, m;
437
438         wdel = M_PI / frame_len;
439         for (i = 0; i < frame_len; i++)
440                 s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
441
442         /* tables for x^-0.25 computation */
443         for (i = 0; i < 256; i++) {
444                 e = i - 126;
445                 s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
446         }
447
448         /* These two tables are needed to avoid two operations in pow_m1_4. */
449         b = 1.0;
450         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
451                 m = (1 << LSP_POW_BITS) + i;
452                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
453                 a = pow(a, -0.25);
454                 s->lsp_pow_m_table1[i] = 2 * a - b;
455                 s->lsp_pow_m_table2[i] = b - a;
456                 b = a;
457         }
458 }
459
460 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
461 {
462         struct private_wmadec_data *s;
463         int ret, i;
464
465         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
466         s = para_calloc(sizeof(*s));
467         ret = read_asf_header(initial_buf, len, &s->ahi);
468         if (ret <= 0) {
469                 free(s);
470                 return ret;
471         }
472
473         s->use_exp_vlc = s->ahi.flags2 & 0x0001;
474         s->use_bit_reservoir = s->ahi.flags2 & 0x0002;
475         s->use_variable_block_len = s->ahi.flags2 & 0x0004;
476
477         ret = wma_init(s, s->ahi.flags2, &s->ahi);
478         if (ret < 0)
479                 return ret;
480         /* init MDCT */
481         for (i = 0; i < s->nb_block_sizes; i++) {
482                 ret = imdct_init(s->frame_len_bits - i + 1, &s->mdct_ctx[i]);
483                 if (ret < 0)
484                         return ret;
485         }
486         if (s->use_noise_coding) {
487                 PARA_INFO_LOG("using noise coding\n");
488                 init_vlc(&s->hgain_vlc, HGAINVLCBITS,
489                         sizeof(ff_wma_hgain_huffbits), ff_wma_hgain_huffbits,
490                         1, 1, ff_wma_hgain_huffcodes, 2, 2);
491         }
492
493         if (s->use_exp_vlc) {
494                 PARA_INFO_LOG("using exp_vlc\n");
495                 init_vlc(&s->exp_vlc, EXPVLCBITS,
496                 sizeof(ff_wma_scale_huffbits), ff_wma_scale_huffbits,
497                 1, 1, ff_wma_scale_huffcodes, 4, 4);
498         } else {
499                 PARA_INFO_LOG("using curve\n");
500                 wma_lsp_to_curve_init(s, s->frame_len);
501         }
502         *result = s;
503         return s->ahi.header_len;
504 }
505
506 /**
507  * compute x^-0.25 with an exponent and mantissa table. We use linear
508  * interpolation to reduce the mantissa table size at a small speed
509  * expense (linear interpolation approximately doubles the number of
510  * bits of precision).
511  */
512 static inline float pow_m1_4(struct private_wmadec_data *s, float x)
513 {
514         union {
515                 float f;
516                 unsigned int v;
517         } u, t;
518         unsigned int e, m;
519         float a, b;
520
521         u.f = x;
522         e = u.v >> 23;
523         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
524         /* build interpolation scale: 1 <= t < 2. */
525         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
526         a = s->lsp_pow_m_table1[m];
527         b = s->lsp_pow_m_table2[m];
528         return s->lsp_pow_e_table[e] * (a + b * t.f);
529 }
530
531 static void wma_lsp_to_curve(struct private_wmadec_data *s,
532                 float *out, float *val_max_ptr, int n, float *lsp)
533 {
534         int i, j;
535         float p, q, w, v, val_max;
536
537         val_max = 0;
538         for (i = 0; i < n; i++) {
539                 p = 0.5f;
540                 q = 0.5f;
541                 w = s->lsp_cos_table[i];
542                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
543                         q *= w - lsp[j - 1];
544                         p *= w - lsp[j];
545                 }
546                 p *= p * (2.0f - w);
547                 q *= q * (2.0f + w);
548                 v = p + q;
549                 v = pow_m1_4(s, v);
550                 if (v > val_max)
551                         val_max = v;
552                 out[i] = v;
553         }
554         *val_max_ptr = val_max;
555 }
556
557 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
558 static void decode_exp_lsp(struct private_wmadec_data *s, int ch)
559 {
560         float lsp_coefs[NB_LSP_COEFS];
561         int val, i;
562
563         for (i = 0; i < NB_LSP_COEFS; i++) {
564                 if (i == 0 || i >= 8)
565                         val = get_bits(&s->gb, 3);
566                 else
567                         val = get_bits(&s->gb, 4);
568                 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
569         }
570
571         wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
572                          s->block_len, lsp_coefs);
573 }
574
575 /*
576  * Parse a vlc code, faster then get_vlc().
577  *
578  * \param bits The number of bits which will be read at once, must be
579  * identical to nb_bits in init_vlc()
580  *
581  * \param max_depth The number of times bits bits must be read to completely
582  * read the longest vlc code = (max_vlc_length + bits - 1) / bits.
583  */
584 static int get_vlc2(struct getbit_context *s, VLC_TYPE(*table)[2],
585                 int bits, int max_depth)
586 {
587         int code;
588
589         OPEN_READER(re, s)
590         UPDATE_CACHE(re, s)
591         GET_VLC(code, re, s, table, bits, max_depth)
592         CLOSE_READER(re, s)
593         return code;
594 }
595
596 /* Decode exponents coded with VLC codes. */
597 static int decode_exp_vlc(struct private_wmadec_data *s, int ch)
598 {
599         int last_exp, n, code;
600         const uint16_t *ptr, *band_ptr;
601         float v, *q, max_scale, *q_end;
602
603         band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
604         ptr = band_ptr;
605         q = s->exponents[ch];
606         q_end = q + s->block_len;
607         max_scale = 0;
608         last_exp = 36;
609
610         while (q < q_end) {
611                 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
612                 if (code < 0)
613                         return -1;
614                 /* NOTE: this offset is the same as MPEG4 AAC ! */
615                 last_exp += code - 60;
616                 /* XXX: use a table */
617                 v = pow(10, last_exp * (1.0 / 16.0));
618                 if (v > max_scale)
619                         max_scale = v;
620                 n = *ptr++;
621                 do {
622                         *q++ = v;
623                 } while (--n);
624         }
625         s->max_exponent[ch] = max_scale;
626         return 0;
627 }
628
629 /* compute src0 * src1 + src2 */
630 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
631                 const float *src2, int len)
632 {
633         int i;
634
635         for (i = 0; i < len; i++)
636                 dst[i] = src0[i] * src1[i] + src2[i];
637 }
638
639 static inline void vector_mult_reverse(float *dst, const float *src0,
640                 const float *src1, int len)
641 {
642         int i;
643
644         src1 += len - 1;
645         for (i = 0; i < len; i++)
646                 dst[i] = src0[i] * src1[-i];
647 }
648
649 /**
650  * Apply MDCT window and add into output.
651  *
652  * We ensure that when the windows overlap their squared sum
653  * is always 1 (MDCT reconstruction rule).
654  */
655 static void wma_window(struct private_wmadec_data *s, float *out)
656 {
657         float *in = s->output;
658         int block_len, bsize, n;
659
660         /* left part */
661         if (s->block_len_bits <= s->prev_block_len_bits) {
662                 block_len = s->block_len;
663                 bsize = s->frame_len_bits - s->block_len_bits;
664                 vector_mult_add(out, in, s->windows[bsize], out, block_len);
665         } else {
666                 block_len = 1 << s->prev_block_len_bits;
667                 n = (s->block_len - block_len) / 2;
668                 bsize = s->frame_len_bits - s->prev_block_len_bits;
669                 vector_mult_add(out + n, in + n, s->windows[bsize], out + n,
670                         block_len);
671                 memcpy(out + n + block_len, in + n + block_len,
672                         n * sizeof(float));
673         }
674         out += s->block_len;
675         in += s->block_len;
676         /* right part */
677         if (s->block_len_bits <= s->next_block_len_bits) {
678                 block_len = s->block_len;
679                 bsize = s->frame_len_bits - s->block_len_bits;
680                 vector_mult_reverse(out, in, s->windows[bsize], block_len);
681         } else {
682                 block_len = 1 << s->next_block_len_bits;
683                 n = (s->block_len - block_len) / 2;
684                 bsize = s->frame_len_bits - s->next_block_len_bits;
685                 memcpy(out, in, n * sizeof(float));
686                 vector_mult_reverse(out + n, in + n, s->windows[bsize],
687                         block_len);
688                 memset(out + n + block_len, 0, n * sizeof(float));
689         }
690 }
691
692 static int wma_total_gain_to_bits(int total_gain)
693 {
694         if (total_gain < 15)
695                 return 13;
696         else if (total_gain < 32)
697                 return 12;
698         else if (total_gain < 40)
699                 return 11;
700         else if (total_gain < 45)
701                 return 10;
702         else
703                 return 9;
704 }
705
706 /**
707  * @return 0 if OK. 1 if last block of frame. return -1 if
708  * unrecorrable error.
709  */
710 static int wma_decode_block(struct private_wmadec_data *s)
711 {
712         int n, v, ch, code, bsize;
713         int coef_nb_bits, total_gain;
714         int nb_coefs[MAX_CHANNELS];
715         float mdct_norm;
716
717         /* compute current block length */
718         if (s->use_variable_block_len) {
719                 n = wma_log2(s->nb_block_sizes - 1) + 1;
720
721                 if (s->reset_block_lengths) {
722                         s->reset_block_lengths = 0;
723                         v = get_bits(&s->gb, n);
724                         if (v >= s->nb_block_sizes)
725                                 return -1;
726                         s->prev_block_len_bits = s->frame_len_bits - v;
727                         v = get_bits(&s->gb, n);
728                         if (v >= s->nb_block_sizes)
729                                 return -1;
730                         s->block_len_bits = s->frame_len_bits - v;
731                 } else {
732                         /* update block lengths */
733                         s->prev_block_len_bits = s->block_len_bits;
734                         s->block_len_bits = s->next_block_len_bits;
735                 }
736                 v = get_bits(&s->gb, n);
737                 if (v >= s->nb_block_sizes)
738                         return -1;
739                 s->next_block_len_bits = s->frame_len_bits - v;
740         } else {
741                 /* fixed block len */
742                 s->next_block_len_bits = s->frame_len_bits;
743                 s->prev_block_len_bits = s->frame_len_bits;
744                 s->block_len_bits = s->frame_len_bits;
745         }
746
747         /* now check if the block length is coherent with the frame length */
748         s->block_len = 1 << s->block_len_bits;
749         if ((s->block_pos + s->block_len) > s->frame_len)
750                 return -E_INCOHERENT_BLOCK_LEN;
751
752         if (s->ahi.channels == 2)
753                 s->ms_stereo = get_bits1(&s->gb);
754         v = 0;
755         for (ch = 0; ch < s->ahi.channels; ch++) {
756                 int a = get_bits1(&s->gb);
757                 s->channel_coded[ch] = a;
758                 v |= a;
759         }
760
761         bsize = s->frame_len_bits - s->block_len_bits;
762
763         /* if no channel coded, no need to go further */
764         /* XXX: fix potential framing problems */
765         if (!v)
766                 goto next;
767
768         /* read total gain and extract corresponding number of bits for
769            coef escape coding */
770         total_gain = 1;
771         for (;;) {
772                 int a = get_bits(&s->gb, 7);
773                 total_gain += a;
774                 if (a != 127)
775                         break;
776         }
777
778         coef_nb_bits = wma_total_gain_to_bits(total_gain);
779
780         /* compute number of coefficients */
781         n = s->coefs_end[bsize] - s->coefs_start;
782         for (ch = 0; ch < s->ahi.channels; ch++)
783                 nb_coefs[ch] = n;
784
785         /* complex coding */
786         if (s->use_noise_coding) {
787                 for (ch = 0; ch < s->ahi.channels; ch++) {
788                         if (s->channel_coded[ch]) {
789                                 int i, m, a;
790                                 m = s->exponent_high_sizes[bsize];
791                                 for (i = 0; i < m; i++) {
792                                         a = get_bits1(&s->gb);
793                                         s->high_band_coded[ch][i] = a;
794                                         /* if noise coding, the coefficients are not transmitted */
795                                         if (a)
796                                                 nb_coefs[ch] -=
797                                                     s->
798                                                     exponent_high_bands[bsize]
799                                                     [i];
800                                 }
801                         }
802                 }
803                 for (ch = 0; ch < s->ahi.channels; ch++) {
804                         if (s->channel_coded[ch]) {
805                                 int i, val;
806
807                                 n = s->exponent_high_sizes[bsize];
808                                 val = (int) 0x80000000;
809                                 for (i = 0; i < n; i++) {
810                                         if (s->high_band_coded[ch][i]) {
811                                                 if (val == (int) 0x80000000) {
812                                                         val =
813                                                             get_bits(&s->gb,
814                                                                      7) - 19;
815                                                 } else {
816                                                         code =
817                                                             get_vlc2(&s->gb,
818                                                                      s->
819                                                                      hgain_vlc.
820                                                                      table,
821                                                                      HGAINVLCBITS,
822                                                                      HGAINMAX);
823                                                         if (code < 0)
824                                                                 return -1;
825                                                         val += code - 18;
826                                                 }
827                                                 s->high_band_values[ch][i] =
828                                                     val;
829                                         }
830                                 }
831                         }
832                 }
833         }
834
835         /* exponents can be reused in short blocks. */
836         if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb)) {
837                 for (ch = 0; ch < s->ahi.channels; ch++) {
838                         if (s->channel_coded[ch]) {
839                                 if (s->use_exp_vlc) {
840                                         if (decode_exp_vlc(s, ch) < 0)
841                                                 return -1;
842                                 } else {
843                                         decode_exp_lsp(s, ch);
844                                 }
845                                 s->exponents_bsize[ch] = bsize;
846                         }
847                 }
848         }
849
850         /* parse spectral coefficients : just RLE encoding */
851         for (ch = 0; ch < s->ahi.channels; ch++) {
852                 if (s->channel_coded[ch]) {
853                         struct vlc *coef_vlc;
854                         int level, run, sign, tindex;
855                         int16_t *ptr, *eptr;
856                         const uint16_t *level_table, *run_table;
857
858                         /* special VLC tables are used for ms stereo because
859                            there is potentially less energy there */
860                         tindex = (ch == 1 && s->ms_stereo);
861                         coef_vlc = &s->coef_vlc[tindex];
862                         run_table = s->run_table[tindex];
863                         level_table = s->level_table[tindex];
864                         /* XXX: optimize */
865                         ptr = &s->coefs1[ch][0];
866                         eptr = ptr + nb_coefs[ch];
867                         memset(ptr, 0, s->block_len * sizeof(int16_t));
868                         for (;;) {
869                                 code =
870                                     get_vlc2(&s->gb, coef_vlc->table, VLCBITS,
871                                              VLCMAX);
872                                 if (code < 0)
873                                         return -1;
874                                 if (code == 1) {
875                                         /* EOB */
876                                         break;
877                                 } else if (code == 0) {
878                                         /* escape */
879                                         level = get_bits(&s->gb, coef_nb_bits);
880                                         /* NOTE: this is rather suboptimal. reading
881                                            block_len_bits would be better */
882                                         run =
883                                             get_bits(&s->gb, s->frame_len_bits);
884                                 } else {
885                                         /* normal code */
886                                         run = run_table[code];
887                                         level = level_table[code];
888                                 }
889                                 sign = get_bits1(&s->gb);
890                                 if (!sign)
891                                         level = -level;
892                                 ptr += run;
893                                 if (ptr >= eptr) {
894                                         PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
895                                         break;
896                                 }
897                                 *ptr++ = level;
898                                 /* NOTE: EOB can be omitted */
899                                 if (ptr >= eptr)
900                                         break;
901                         }
902                 }
903         }
904
905         /* normalize */
906         {
907                 int n4 = s->block_len / 2;
908                 mdct_norm = 1.0 / (float) n4;
909         }
910
911         /* finally compute the MDCT coefficients */
912         for (ch = 0; ch < s->ahi.channels; ch++) {
913                 if (s->channel_coded[ch]) {
914                         int16_t *coefs1;
915                         float *coefs, *exponents, mult, mult1, noise;
916                         int i, j, n1, last_high_band, esize;
917                         float exp_power[HIGH_BAND_MAX_SIZE];
918
919                         coefs1 = s->coefs1[ch];
920                         exponents = s->exponents[ch];
921                         esize = s->exponents_bsize[ch];
922                         mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
923                         mult *= mdct_norm;
924                         coefs = s->coefs[ch];
925                         if (s->use_noise_coding) {
926                                 mult1 = mult;
927                                 /* very low freqs : noise */
928                                 for (i = 0; i < s->coefs_start; i++) {
929                                         *coefs++ =
930                                             s->noise_table[s->noise_index] *
931                                             exponents[i << bsize >> esize] *
932                                             mult1;
933                                         s->noise_index =
934                                             (s->noise_index +
935                                              1) & (NOISE_TAB_SIZE - 1);
936                                 }
937
938                                 n1 = s->exponent_high_sizes[bsize];
939
940                                 /* compute power of high bands */
941                                 exponents = s->exponents[ch] +
942                                     (s->high_band_start[bsize] << bsize);
943                                 last_high_band = 0;     /* avoid warning */
944                                 for (j = 0; j < n1; j++) {
945                                         n = s->exponent_high_bands[s->
946                                                                    frame_len_bits
947                                                                    -
948                                                                    s->
949                                                                    block_len_bits]
950                                             [j];
951                                         if (s->high_band_coded[ch][j]) {
952                                                 float e2, val;
953                                                 e2 = 0;
954                                                 for (i = 0; i < n; i++) {
955                                                         val = exponents[i << bsize
956                                                                       >> esize];
957                                                         e2 += val * val;
958                                                 }
959                                                 exp_power[j] = e2 / n;
960                                                 last_high_band = j;
961                                         }
962                                         exponents += n << bsize;
963                                 }
964
965                                 /* main freqs and high freqs */
966                                 exponents =
967                                     s->exponents[ch] +
968                                     (s->coefs_start << bsize);
969                                 for (j = -1; j < n1; j++) {
970                                         if (j < 0) {
971                                                 n = s->high_band_start[bsize] -
972                                                     s->coefs_start;
973                                         } else {
974                                                 n = s->exponent_high_bands[s->
975                                                                            frame_len_bits
976                                                                            -
977                                                                            s->
978                                                                            block_len_bits]
979                                                     [j];
980                                         }
981                                         if (j >= 0 && s->high_band_coded[ch][j]) {
982                                                 /* use noise with specified power */
983                                                 mult1 =
984                                                     sqrt(exp_power[j] /
985                                                          exp_power
986                                                          [last_high_band]);
987                                                 /* XXX: use a table */
988                                                 mult1 =
989                                                     mult1 * pow(10,
990                                                                 s->
991                                                                 high_band_values
992                                                                 [ch][j] * 0.05);
993                                                 mult1 =
994                                                     mult1 /
995                                                     (s->max_exponent[ch] *
996                                                      s->noise_mult);
997                                                 mult1 *= mdct_norm;
998                                                 for (i = 0; i < n; i++) {
999                                                         noise =
1000                                                             s->noise_table[s->
1001                                                                            noise_index];
1002                                                         s->noise_index =
1003                                                             (s->noise_index +
1004                                                              1) &
1005                                                             (NOISE_TAB_SIZE -
1006                                                              1);
1007                                                         *coefs++ =
1008                                                             noise *
1009                                                             exponents[i << bsize
1010                                                                       >> esize]
1011                                                             * mult1;
1012                                                 }
1013                                                 exponents += n << bsize;
1014                                         } else {
1015                                                 /* coded values + small noise */
1016                                                 for (i = 0; i < n; i++) {
1017                                                         noise =
1018                                                             s->noise_table[s->
1019                                                                            noise_index];
1020                                                         s->noise_index =
1021                                                             (s->noise_index +
1022                                                              1) &
1023                                                             (NOISE_TAB_SIZE -
1024                                                              1);
1025                                                         *coefs++ =
1026                                                             ((*coefs1++) +
1027                                                              noise) *
1028                                                             exponents[i << bsize
1029                                                                       >> esize]
1030                                                             * mult;
1031                                                 }
1032                                                 exponents += n << bsize;
1033                                         }
1034                                 }
1035
1036                                 /* very high freqs : noise */
1037                                 n = s->block_len - s->coefs_end[bsize];
1038                                 mult1 =
1039                                     mult * exponents[((-1 << bsize)) >> esize];
1040                                 for (i = 0; i < n; i++) {
1041                                         *coefs++ =
1042                                             s->noise_table[s->noise_index] *
1043                                             mult1;
1044                                         s->noise_index =
1045                                             (s->noise_index +
1046                                              1) & (NOISE_TAB_SIZE - 1);
1047                                 }
1048                         } else {
1049                                 /* XXX: optimize more */
1050                                 for (i = 0; i < s->coefs_start; i++)
1051                                         *coefs++ = 0.0;
1052                                 n = nb_coefs[ch];
1053                                 for (i = 0; i < n; i++) {
1054                                         *coefs++ =
1055                                             coefs1[i] *
1056                                             exponents[i << bsize >> esize] *
1057                                             mult;
1058                                 }
1059                                 n = s->block_len - s->coefs_end[bsize];
1060                                 for (i = 0; i < n; i++)
1061                                         *coefs++ = 0.0;
1062                         }
1063                 }
1064         }
1065
1066         if (s->ms_stereo && s->channel_coded[1]) {
1067                 float a, b;
1068                 int i;
1069
1070                 /*
1071                  * Nominal case for ms stereo: we do it before mdct.
1072                  *
1073                  * No need to optimize this case because it should almost never
1074                  * happen.
1075                  */
1076                 if (!s->channel_coded[0]) {
1077                         PARA_NOTICE_LOG("rare ms-stereo\n");
1078                         memset(s->coefs[0], 0, sizeof(float) * s->block_len);
1079                         s->channel_coded[0] = 1;
1080                 }
1081                 for (i = 0; i < s->block_len; i++) {
1082                         a = s->coefs[0][i];
1083                         b = s->coefs[1][i];
1084                         s->coefs[0][i] = a + b;
1085                         s->coefs[1][i] = a - b;
1086                 }
1087         }
1088
1089 next:
1090         for (ch = 0; ch < s->ahi.channels; ch++) {
1091                 int n4, index;
1092
1093                 n = s->block_len;
1094                 n4 = s->block_len / 2;
1095                 if (s->channel_coded[ch])
1096                         imdct(s->mdct_ctx[bsize], s->output, s->coefs[ch]);
1097                 else if (!(s->ms_stereo && ch == 1))
1098                         memset(s->output, 0, sizeof(s->output));
1099
1100                 /* multiply by the window and add in the frame */
1101                 index = (s->frame_len / 2) + s->block_pos - n4;
1102                 wma_window(s, &s->frame_out[ch][index]);
1103         }
1104
1105         /* update block number */
1106         s->block_pos += s->block_len;
1107         if (s->block_pos >= s->frame_len)
1108                 return 1;
1109         else
1110                 return 0;
1111 }
1112
1113 /*
1114  * Clip a signed integer value into the -32768,32767 range.
1115  *
1116  * \param a The value to clip.
1117  *
1118  * \return The clipped value.
1119  */
1120 static inline int16_t av_clip_int16(int a)
1121 {
1122         if ((a + 32768) & ~65535)
1123                 return (a >> 31) ^ 32767;
1124         else
1125                 return a;
1126 }
1127
1128 /* Decode a frame of frame_len samples. */
1129 static int wma_decode_frame(struct private_wmadec_data *s, int16_t *samples)
1130 {
1131         int ret, i, n, ch, incr;
1132         int16_t *ptr;
1133         float *iptr;
1134
1135         /* read each block */
1136         s->block_pos = 0;
1137         for (;;) {
1138                 ret = wma_decode_block(s);
1139                 if (ret < 0)
1140                         return -1;
1141                 if (ret)
1142                         break;
1143         }
1144
1145         /* convert frame to integer */
1146         n = s->frame_len;
1147         incr = s->ahi.channels;
1148         for (ch = 0; ch < s->ahi.channels; ch++) {
1149                 ptr = samples + ch;
1150                 iptr = s->frame_out[ch];
1151
1152                 for (i = 0; i < n; i++) {
1153                         *ptr = av_clip_int16(lrintf(*iptr++));
1154                         ptr += incr;
1155                 }
1156                 /* prepare for next block */
1157                 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
1158                         s->frame_len * sizeof(float));
1159         }
1160         return 0;
1161 }
1162
1163 static int wma_decode_superframe(struct private_wmadec_data *s, void *data,
1164                 int *data_size, const uint8_t *buf, int buf_size)
1165 {
1166         int ret, nb_frames, bit_offset, i, pos, len;
1167         uint8_t *q;
1168         int16_t *samples;
1169         static int frame_count;
1170
1171         if (buf_size == 0) {
1172                 s->last_superframe_len = 0;
1173                 return 0;
1174         }
1175         if (buf_size < s->ahi.block_align)
1176                 return 0;
1177         buf_size = s->ahi.block_align;
1178         samples = data;
1179         init_get_bits(&s->gb, buf, buf_size * 8);
1180         if (s->use_bit_reservoir) {
1181                 /* read super frame header */
1182                 skip_bits(&s->gb, 4);   /* super frame index */
1183                 nb_frames = get_bits(&s->gb, 4) - 1;
1184                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1185                 ret = -E_WMA_OUTPUT_SPACE;
1186                 if ((nb_frames + 1) * s->ahi.channels * s->frame_len
1187                                 * sizeof(int16_t) > *data_size)
1188                         goto fail;
1189
1190                 bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
1191
1192                 if (s->last_superframe_len > 0) {
1193                         /* add bit_offset bits to last frame */
1194                         ret = -E_WMA_BAD_SUPERFRAME;
1195                         if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
1196                                         MAX_CODED_SUPERFRAME_SIZE)
1197                                 goto fail;
1198                         q = s->last_superframe + s->last_superframe_len;
1199                         len = bit_offset;
1200                         while (len > 7) {
1201                                 *q++ = get_bits(&s->gb, 8);
1202                                 len -= 8;
1203                         }
1204                         if (len > 0)
1205                                 *q++ = get_bits(&s->gb, len) << (8 - len);
1206
1207                         /* XXX: bit_offset bits into last frame */
1208                         init_get_bits(&s->gb, s->last_superframe,
1209                                 MAX_CODED_SUPERFRAME_SIZE * 8);
1210                         /* skip unused bits */
1211                         if (s->last_bitoffset > 0)
1212                                 skip_bits(&s->gb, s->last_bitoffset);
1213                         /*
1214                          * This frame is stored in the last superframe and in
1215                          * the current one.
1216                          */
1217                         ret = -E_WMA_DECODE;
1218                         if (wma_decode_frame(s, samples) < 0)
1219                                 goto fail;
1220                         frame_count++;
1221                         samples += s->ahi.channels * s->frame_len;
1222                 }
1223
1224                 /* read each frame starting from bit_offset */
1225                 pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
1226                 init_get_bits(&s->gb, buf + (pos >> 3),
1227                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)) * 8);
1228                 len = pos & 7;
1229                 if (len > 0)
1230                         skip_bits(&s->gb, len);
1231
1232                 s->reset_block_lengths = 1;
1233                 for (i = 0; i < nb_frames; i++) {
1234                         ret = -E_WMA_DECODE;
1235                         if (wma_decode_frame(s, samples) < 0)
1236                                 goto fail;
1237                         frame_count++;
1238                         samples += s->ahi.channels * s->frame_len;
1239                 }
1240
1241                 /* we copy the end of the frame in the last frame buffer */
1242                 pos = get_bits_count(&s->gb) +
1243                         ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
1244                 s->last_bitoffset = pos & 7;
1245                 pos >>= 3;
1246                 len = buf_size - pos;
1247                 ret = -E_WMA_BAD_SUPERFRAME;
1248                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1249                         goto fail;
1250                 s->last_superframe_len = len;
1251                 memcpy(s->last_superframe, buf + pos, len);
1252         } else {
1253                 PARA_DEBUG_LOG("not using bit reservoir\n");
1254                 ret = -E_WMA_OUTPUT_SPACE;
1255                 if (s->ahi.channels * s->frame_len * sizeof(int16_t) > *data_size)
1256                         goto fail;
1257                 /* single frame decode */
1258                 ret = -E_WMA_DECODE;
1259                 if (wma_decode_frame(s, samples) < 0)
1260                         goto fail;
1261                 frame_count++;
1262                 samples += s->ahi.channels * s->frame_len;
1263         }
1264         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1265                 "outbytes: %d, eaten: %d\n",
1266                 frame_count, s->frame_len, s->block_len,
1267                 (int8_t *) samples - (int8_t *) data, s->ahi.block_align);
1268         *data_size = (int8_t *)samples - (int8_t *)data;
1269         return s->ahi.block_align;
1270 fail:
1271         /* reset the bit reservoir on errors */
1272         s->last_superframe_len = 0;
1273         return ret;
1274 }
1275
1276 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1277                 struct filter_node *fn)
1278 {
1279         int ret, out_size = fn->bufsize - fn->loaded;
1280         struct private_wmadec_data *pwd = fn->private_data;
1281
1282         if (out_size < 128 * 1024)
1283                 return 0;
1284         if (!pwd) {
1285                 ret = wma_decode_init(inbuffer, len, &pwd);
1286                 if (ret <= 0)
1287                         return ret;
1288                 fn->private_data = pwd;
1289                 fn->fc->channels = pwd->ahi.channels;
1290                 fn->fc->samplerate = pwd->ahi.sample_rate;
1291                 return pwd->ahi.header_len;
1292         }
1293         /* skip 31 bytes */
1294         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1295                 return 0;
1296         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1297                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1298                 len - WMA_FRAME_SKIP);
1299         if (ret < 0)
1300                 return ret;
1301         fn->loaded += out_size;
1302         return ret + WMA_FRAME_SKIP;
1303 }
1304
1305 static void wmadec_close(struct filter_node *fn)
1306 {
1307         struct private_wmadec_data *pwd = fn->private_data;
1308
1309         if (!pwd)
1310                 return;
1311         wmadec_cleanup(pwd);
1312         free(fn->buf);
1313         fn->buf = NULL;
1314         free(fn->private_data);
1315         fn->private_data = NULL;
1316 }
1317
1318 static void wmadec_open(struct filter_node *fn)
1319 {
1320         fn->bufsize = 1024 * 1024;
1321         fn->buf = para_malloc(fn->bufsize);
1322         fn->private_data = NULL;
1323         fn->loaded = 0;
1324 }
1325
1326 /**
1327  * The init function of the wma decoder.
1328  *
1329  * \param f Its fields are filled in by the function.
1330  */
1331 void wmadec_filter_init(struct filter *f)
1332 {
1333         f->open = wmadec_open;
1334         f->close = wmadec_close;
1335         f->convert = wmadec_convert;
1336 }