]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
9cb964fca0648af10f142732892262aa45db3f80
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27 #include <sys/select.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "imdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         struct asf_header_info ahi;
63         struct getbit_context gb;
64         /** Whether to use the bit reservoir. */
65         int use_bit_reservoir;
66         /** Whether to use variable block length. */
67         int use_variable_block_len;
68         /** Whether to use exponent coding. */
69         int use_exp_vlc;
70         /** Whether perceptual noise is added. */
71         int use_noise_coding;
72         int byte_offset_bits;
73         struct vlc exp_vlc;
74         int exponent_sizes[BLOCK_NB_SIZES];
75         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
76         /** The index of the first coef in high band. */
77         int high_band_start[BLOCK_NB_SIZES];
78         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
79         int exponent_high_sizes[BLOCK_NB_SIZES];
80         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
81         struct vlc hgain_vlc;
82
83         /* coded values in high bands */
84         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
85         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
86
87         /* there are two possible tables for spectral coefficients */
88         struct vlc coef_vlc[2];
89         uint16_t *run_table[2];
90         uint16_t *level_table[2];
91         const struct coef_vlc_table *coef_vlcs[2];
92         /* frame info */
93         int frame_len;          ///< frame length in samples
94         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
95         int nb_block_sizes;     ///< number of block sizes
96         /* block info */
97         int reset_block_lengths;
98         int block_len_bits;     ///< log2 of current block length
99         int next_block_len_bits;        ///< log2 of next block length
100         int prev_block_len_bits;        ///< log2 of prev block length
101         int block_len;          ///< block length in samples
102         int block_pos;          ///< current position in frame
103         uint8_t ms_stereo;      ///< true if mid/side stereo mode
104         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
105         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
106         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
107         float max_exponent[MAX_CHANNELS];
108         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
109         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
110         float output[BLOCK_MAX_SIZE * 2];
111         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
112         float *windows[BLOCK_NB_SIZES];
113         /* output buffer for one frame and the last for IMDCT windowing */
114         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
115         /* last frame info */
116         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
117         int last_bitoffset;
118         int last_superframe_len;
119         float noise_table[NOISE_TAB_SIZE];
120         int noise_index;
121         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
122         /* lsp_to_curve tables */
123         float lsp_cos_table[BLOCK_MAX_SIZE];
124         float lsp_pow_e_table[256];
125         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
126         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
127 };
128
129 #define EXPVLCBITS 8
130 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
131
132 #define HGAINVLCBITS 9
133 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
134
135 #define VLCBITS 9
136 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
137
138 #define SINE_WINDOW(x) float sine_ ## x[x] __aligned(16)
139
140 SINE_WINDOW(128);
141 SINE_WINDOW(256);
142 SINE_WINDOW(512);
143 SINE_WINDOW(1024);
144 SINE_WINDOW(2048);
145 SINE_WINDOW(4096);
146
147 static float *sine_windows[6] = {
148         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
149 };
150
151 /* Generate a sine window. */
152 static void sine_window_init(float *window, int n)
153 {
154         int i;
155
156         for (i = 0; i < n; i++)
157                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
158 }
159
160 static void wmadec_cleanup(struct private_wmadec_data *pwd)
161 {
162         int i;
163
164         for (i = 0; i < pwd->nb_block_sizes; i++)
165                 imdct_end(pwd->mdct_ctx[i]);
166         if (pwd->use_exp_vlc)
167                 free_vlc(&pwd->exp_vlc);
168         if (pwd->use_noise_coding)
169                 free_vlc(&pwd->hgain_vlc);
170         for (i = 0; i < 2; i++) {
171                 free_vlc(&pwd->coef_vlc[i]);
172                 free(pwd->run_table[i]);
173                 free(pwd->level_table[i]);
174         }
175 }
176
177 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
178                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
179 {
180         int n = vlc_table->n;
181         const uint8_t *table_bits = vlc_table->huffbits;
182         const uint32_t *table_codes = vlc_table->huffcodes;
183         const uint16_t *levels_table = vlc_table->levels;
184         uint16_t *run_table, *level_table;
185         int i, l, j, k, level;
186
187         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
188
189         run_table = para_malloc(n * sizeof(uint16_t));
190         level_table = para_malloc(n * sizeof(uint16_t));
191         i = 2;
192         level = 1;
193         k = 0;
194         while (i < n) {
195                 l = levels_table[k++];
196                 for (j = 0; j < l; j++) {
197                         run_table[i] = j;
198                         level_table[i] = level;
199                         i++;
200                 }
201                 level++;
202         }
203         *prun_table = run_table;
204         *plevel_table = level_table;
205 }
206
207 /* compute the scale factor band sizes for each MDCT block size */
208 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
209         float high_freq)
210 {
211         struct asf_header_info *ahi = &pwd->ahi;
212         int a, b, pos, lpos, k, block_len, i, j, n;
213         const uint8_t *table;
214
215         for (k = 0; k < pwd->nb_block_sizes; k++) {
216                 block_len = pwd->frame_len >> k;
217
218                 table = NULL;
219                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
220                 if (a < 3) {
221                         if (ahi->sample_rate >= 44100)
222                                 table = exponent_band_44100[a];
223                         else if (ahi->sample_rate >= 32000)
224                                 table = exponent_band_32000[a];
225                         else if (ahi->sample_rate >= 22050)
226                                 table = exponent_band_22050[a];
227                 }
228                 if (table) {
229                         n = *table++;
230                         for (i = 0; i < n; i++)
231                                 pwd->exponent_bands[k][i] = table[i];
232                         pwd->exponent_sizes[k] = n;
233                 } else {
234                         j = 0;
235                         lpos = 0;
236                         for (i = 0; i < 25; i++) {
237                                 a = wma_critical_freqs[i];
238                                 b = ahi->sample_rate;
239                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
240                                 pos <<= 2;
241                                 if (pos > block_len)
242                                         pos = block_len;
243                                 if (pos > lpos)
244                                         pwd->exponent_bands[k][j++] = pos - lpos;
245                                 if (pos >= block_len)
246                                         break;
247                                 lpos = pos;
248                         }
249                         pwd->exponent_sizes[k] = j;
250                 }
251
252                 /* max number of coefs */
253                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
254                 /* high freq computation */
255                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
256                         / ahi->sample_rate + 0.5);
257                 n = pwd->exponent_sizes[k];
258                 j = 0;
259                 pos = 0;
260                 for (i = 0; i < n; i++) {
261                         int start, end;
262                         start = pos;
263                         pos += pwd->exponent_bands[k][i];
264                         end = pos;
265                         if (start < pwd->high_band_start[k])
266                                 start = pwd->high_band_start[k];
267                         if (end > pwd->coefs_end[k])
268                                 end = pwd->coefs_end[k];
269                         if (end > start)
270                                 pwd->exponent_high_bands[k][j++] = end - start;
271                 }
272                 pwd->exponent_high_sizes[k] = j;
273         }
274 }
275
276 static int wma_init(struct private_wmadec_data *pwd)
277 {
278         int i;
279         float bps1, high_freq;
280         volatile float bps;
281         int sample_rate1;
282         int coef_vlc_table;
283         struct asf_header_info *ahi = &pwd->ahi;
284         int flags2 = ahi->flags2;
285
286         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
287                 || ahi->channels <= 0 || ahi->channels > 8
288                 || ahi->bit_rate <= 0)
289                 return -E_WMA_BAD_PARAMS;
290
291         /* compute MDCT block size */
292         if (ahi->sample_rate <= 16000) {
293                 pwd->frame_len_bits = 9;
294         } else if (ahi->sample_rate <= 22050) {
295                 pwd->frame_len_bits = 10;
296         } else {
297                 pwd->frame_len_bits = 11;
298         }
299         pwd->frame_len = 1 << pwd->frame_len_bits;
300         if (pwd->use_variable_block_len) {
301                 int nb_max, nb;
302                 nb = ((flags2 >> 3) & 3) + 1;
303                 if ((ahi->bit_rate / ahi->channels) >= 32000)
304                         nb += 2;
305                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
306                 if (nb > nb_max)
307                         nb = nb_max;
308                 pwd->nb_block_sizes = nb + 1;
309         } else
310                 pwd->nb_block_sizes = 1;
311
312         /* init rate dependent parameters */
313         pwd->use_noise_coding = 1;
314         high_freq = ahi->sample_rate * 0.5;
315
316         /* wma2 rates are normalized */
317         sample_rate1 = ahi->sample_rate;
318         if (sample_rate1 >= 44100)
319                 sample_rate1 = 44100;
320         else if (sample_rate1 >= 22050)
321                 sample_rate1 = 22050;
322         else if (sample_rate1 >= 16000)
323                 sample_rate1 = 16000;
324         else if (sample_rate1 >= 11025)
325                 sample_rate1 = 11025;
326         else if (sample_rate1 >= 8000)
327                 sample_rate1 = 8000;
328
329         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
330         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
331         /*
332          * Compute high frequency value and choose if noise coding should be
333          * activated.
334          */
335         bps1 = bps;
336         if (ahi->channels == 2)
337                 bps1 = bps * 1.6;
338         if (sample_rate1 == 44100) {
339                 if (bps1 >= 0.61)
340                         pwd->use_noise_coding = 0;
341                 else
342                         high_freq = high_freq * 0.4;
343         } else if (sample_rate1 == 22050) {
344                 if (bps1 >= 1.16)
345                         pwd->use_noise_coding = 0;
346                 else if (bps1 >= 0.72)
347                         high_freq = high_freq * 0.7;
348                 else
349                         high_freq = high_freq * 0.6;
350         } else if (sample_rate1 == 16000) {
351                 if (bps > 0.5)
352                         high_freq = high_freq * 0.5;
353                 else
354                         high_freq = high_freq * 0.3;
355         } else if (sample_rate1 == 11025) {
356                 high_freq = high_freq * 0.7;
357         } else if (sample_rate1 == 8000) {
358                 if (bps <= 0.625) {
359                         high_freq = high_freq * 0.5;
360                 } else if (bps > 0.75) {
361                         pwd->use_noise_coding = 0;
362                 } else {
363                         high_freq = high_freq * 0.65;
364                 }
365         } else {
366                 if (bps >= 0.8) {
367                         high_freq = high_freq * 0.75;
368                 } else if (bps >= 0.6) {
369                         high_freq = high_freq * 0.6;
370                 } else {
371                         high_freq = high_freq * 0.5;
372                 }
373         }
374         PARA_INFO_LOG("channels=%d sample_rate=%d "
375                 "bitrate=%d block_align=%d\n",
376                 ahi->channels, ahi->sample_rate,
377                 ahi->bit_rate, ahi->block_align);
378         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
379                 "high_freq=%f bitoffset=%d\n",
380                 pwd->frame_len, bps, bps1,
381                 high_freq, pwd->byte_offset_bits);
382         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
383                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
384
385         compute_scale_factor_band_sizes(pwd, high_freq);
386         /* init MDCT windows : simple sinus window */
387         for (i = 0; i < pwd->nb_block_sizes; i++) {
388                 int n;
389                 n = 1 << (pwd->frame_len_bits - i);
390                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
391                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
392         }
393
394         pwd->reset_block_lengths = 1;
395
396         if (pwd->use_noise_coding) {
397                 /* init the noise generator */
398                 if (pwd->use_exp_vlc)
399                         pwd->noise_mult = 0.02;
400                 else
401                         pwd->noise_mult = 0.04;
402
403                 {
404                         unsigned int seed;
405                         float norm;
406                         seed = 1;
407                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
408                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
409                                 seed = seed * 314159 + 1;
410                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
411                         }
412                 }
413         }
414
415         /* choose the VLC tables for the coefficients */
416         coef_vlc_table = 2;
417         if (ahi->sample_rate >= 32000) {
418                 if (bps1 < 0.72)
419                         coef_vlc_table = 0;
420                 else if (bps1 < 1.16)
421                         coef_vlc_table = 1;
422         }
423         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
424         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
425         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
426                 pwd->coef_vlcs[0]);
427         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
428                 pwd->coef_vlcs[1]);
429         return 0;
430 }
431
432 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
433 {
434         float wdel, a, b;
435         int i, e, m;
436
437         wdel = M_PI / frame_len;
438         for (i = 0; i < frame_len; i++)
439                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
440
441         /* tables for x^-0.25 computation */
442         for (i = 0; i < 256; i++) {
443                 e = i - 126;
444                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
445         }
446
447         /* These two tables are needed to avoid two operations in pow_m1_4. */
448         b = 1.0;
449         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
450                 m = (1 << LSP_POW_BITS) + i;
451                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
452                 a = pow(a, -0.25);
453                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
454                 pwd->lsp_pow_m_table2[i] = b - a;
455                 b = a;
456         }
457 }
458
459 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
460 {
461         struct private_wmadec_data *pwd;
462         int ret, i;
463
464         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
465         pwd = para_calloc(sizeof(*pwd));
466         ret = read_asf_header(initial_buf, len, &pwd->ahi);
467         if (ret <= 0) {
468                 free(pwd);
469                 return ret;
470         }
471
472         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
473         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
474         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
475
476         ret = wma_init(pwd);
477         if (ret < 0)
478                 return ret;
479         /* init MDCT */
480         for (i = 0; i < pwd->nb_block_sizes; i++) {
481                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
482                 if (ret < 0)
483                         return ret;
484         }
485         if (pwd->use_noise_coding) {
486                 PARA_INFO_LOG("using noise coding\n");
487                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
488                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
489                         wma_hgain_huffcodes, 2);
490         }
491
492         if (pwd->use_exp_vlc) {
493                 PARA_INFO_LOG("using exp_vlc\n");
494                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
495                 sizeof(wma_scale_huffbits), wma_scale_huffbits,
496                 wma_scale_huffcodes, 4);
497         } else {
498                 PARA_INFO_LOG("using curve\n");
499                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
500         }
501         *result = pwd;
502         return pwd->ahi.header_len;
503 }
504
505 /**
506  * compute x^-0.25 with an exponent and mantissa table. We use linear
507  * interpolation to reduce the mantissa table size at a small speed
508  * expense (linear interpolation approximately doubles the number of
509  * bits of precision).
510  */
511 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
512 {
513         union {
514                 float f;
515                 unsigned int v;
516         } u, t;
517         unsigned int e, m;
518         float a, b;
519
520         u.f = x;
521         e = u.v >> 23;
522         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
523         /* build interpolation scale: 1 <= t < 2. */
524         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
525         a = pwd->lsp_pow_m_table1[m];
526         b = pwd->lsp_pow_m_table2[m];
527         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
528 }
529
530 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
531                 float *out, float *val_max_ptr, int n, float *lsp)
532 {
533         int i, j;
534         float p, q, w, v, val_max;
535
536         val_max = 0;
537         for (i = 0; i < n; i++) {
538                 p = 0.5f;
539                 q = 0.5f;
540                 w = pwd->lsp_cos_table[i];
541                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
542                         q *= w - lsp[j - 1];
543                         p *= w - lsp[j];
544                 }
545                 p *= p * (2.0f - w);
546                 q *= q * (2.0f + w);
547                 v = p + q;
548                 v = pow_m1_4(pwd, v);
549                 if (v > val_max)
550                         val_max = v;
551                 out[i] = v;
552         }
553         *val_max_ptr = val_max;
554 }
555
556 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
557 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
558 {
559         float lsp_coefs[NB_LSP_COEFS];
560         int val, i;
561
562         for (i = 0; i < NB_LSP_COEFS; i++) {
563                 if (i == 0 || i >= 8)
564                         val = get_bits(&pwd->gb, 3);
565                 else
566                         val = get_bits(&pwd->gb, 4);
567                 lsp_coefs[i] = wma_lsp_codebook[i][val];
568         }
569
570         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
571                 pwd->block_len, lsp_coefs);
572 }
573
574 /* Decode exponents coded with VLC codes. */
575 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
576 {
577         int last_exp, n, code;
578         const uint16_t *ptr, *band_ptr;
579         float v, *q, max_scale, *q_end;
580
581         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
582         ptr = band_ptr;
583         q = pwd->exponents[ch];
584         q_end = q + pwd->block_len;
585         max_scale = 0;
586         last_exp = 36;
587
588         while (q < q_end) {
589                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
590                 if (code < 0)
591                         return -1;
592                 /* NOTE: this offset is the same as MPEG4 AAC ! */
593                 last_exp += code - 60;
594                 /* XXX: use a table */
595                 v = pow(10, last_exp * (1.0 / 16.0));
596                 if (v > max_scale)
597                         max_scale = v;
598                 n = *ptr++;
599                 do {
600                         *q++ = v;
601                 } while (--n);
602         }
603         pwd->max_exponent[ch] = max_scale;
604         return 0;
605 }
606
607 /* compute src0 * src1 + src2 */
608 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
609                 const float *src2, int len)
610 {
611         int i;
612
613         for (i = 0; i < len; i++)
614                 dst[i] = src0[i] * src1[i] + src2[i];
615 }
616
617 static inline void vector_mult_reverse(float *dst, const float *src0,
618                 const float *src1, int len)
619 {
620         int i;
621
622         src1 += len - 1;
623         for (i = 0; i < len; i++)
624                 dst[i] = src0[i] * src1[-i];
625 }
626
627 /**
628  * Apply MDCT window and add into output.
629  *
630  * We ensure that when the windows overlap their squared sum
631  * is always 1 (MDCT reconstruction rule).
632  */
633 static void wma_window(struct private_wmadec_data *pwd, float *out)
634 {
635         float *in = pwd->output;
636         int block_len, bsize, n;
637
638         /* left part */
639         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
640                 block_len = pwd->block_len;
641                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
642                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
643         } else {
644                 block_len = 1 << pwd->prev_block_len_bits;
645                 n = (pwd->block_len - block_len) / 2;
646                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
647                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
648                         block_len);
649                 memcpy(out + n + block_len, in + n + block_len,
650                         n * sizeof(float));
651         }
652         out += pwd->block_len;
653         in += pwd->block_len;
654         /* right part */
655         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
656                 block_len = pwd->block_len;
657                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
658                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
659         } else {
660                 block_len = 1 << pwd->next_block_len_bits;
661                 n = (pwd->block_len - block_len) / 2;
662                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
663                 memcpy(out, in, n * sizeof(float));
664                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
665                         block_len);
666                 memset(out + n + block_len, 0, n * sizeof(float));
667         }
668 }
669
670 static int wma_total_gain_to_bits(int total_gain)
671 {
672         if (total_gain < 15)
673                 return 13;
674         else if (total_gain < 32)
675                 return 12;
676         else if (total_gain < 40)
677                 return 11;
678         else if (total_gain < 45)
679                 return 10;
680         else
681                 return 9;
682 }
683
684 static int compute_high_band_values(struct private_wmadec_data *pwd,
685                 int bsize, int nb_coefs[MAX_CHANNELS])
686 {
687         int ch;
688
689         if (!pwd->use_noise_coding)
690                 return 0;
691         for (ch = 0; ch < pwd->ahi.channels; ch++) {
692                 int i, m, a;
693                 if (!pwd->channel_coded[ch])
694                         continue;
695                 m = pwd->exponent_high_sizes[bsize];
696                 for (i = 0; i < m; i++) {
697                         a = get_bit(&pwd->gb);
698                         pwd->high_band_coded[ch][i] = a;
699                         if (!a)
700                                 continue;
701                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
702                 }
703         }
704         for (ch = 0; ch < pwd->ahi.channels; ch++) {
705                 int i, n, val;
706                 if (!pwd->channel_coded[ch])
707                         continue;
708                 n = pwd->exponent_high_sizes[bsize];
709                 val = (int)0x80000000;
710                 for (i = 0; i < n; i++) {
711                         if (!pwd->high_band_coded[ch][i])
712                                 continue;
713                         if (val == (int)0x80000000)
714                                 val = get_bits(&pwd->gb, 7) - 19;
715                         else {
716                                 int code = get_vlc(&pwd->gb,
717                                         pwd->hgain_vlc.table, HGAINVLCBITS,
718                                         HGAINMAX);
719                                 if (code < 0)
720                                         return -1;
721                                 val += code - 18;
722                         }
723                         pwd->high_band_values[ch][i] = val;
724                 }
725         }
726         return 1;
727 }
728
729 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
730                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
731 {
732         int ch;
733         float mdct_norm = 1.0 / (pwd->block_len / 2);
734
735         for (ch = 0; ch < pwd->ahi.channels; ch++) {
736                 int16_t *coefs1;
737                 float *coefs, *exponents, mult, mult1, noise;
738                 int i, j, n, n1, last_high_band, esize;
739                 float exp_power[HIGH_BAND_MAX_SIZE];
740
741                 if (!pwd->channel_coded[ch])
742                         continue;
743                 coefs1 = pwd->coefs1[ch];
744                 exponents = pwd->exponents[ch];
745                 esize = pwd->exponents_bsize[ch];
746                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
747                 mult *= mdct_norm;
748                 coefs = pwd->coefs[ch];
749                 if (!pwd->use_noise_coding) {
750                         /* XXX: optimize more */
751                         n = nb_coefs[ch];
752                         for (i = 0; i < n; i++)
753                                 *coefs++ = coefs1[i] *
754                                         exponents[i << bsize >> esize] * mult;
755                         n = pwd->block_len - pwd->coefs_end[bsize];
756                         for (i = 0; i < n; i++)
757                                 *coefs++ = 0.0;
758                         continue;
759                 }
760                 mult1 = mult;
761                 n1 = pwd->exponent_high_sizes[bsize];
762                 /* compute power of high bands */
763                 exponents = pwd->exponents[ch] +
764                         (pwd->high_band_start[bsize] << bsize);
765                 last_high_band = 0; /* avoid warning */
766                 for (j = 0; j < n1; j++) {
767                         n = pwd->exponent_high_bands[
768                                 pwd->frame_len_bits - pwd->block_len_bits][j];
769                         if (pwd->high_band_coded[ch][j]) {
770                                 float e2, val;
771                                 e2 = 0;
772                                 for (i = 0; i < n; i++) {
773                                         val = exponents[i << bsize >> esize];
774                                         e2 += val * val;
775                                 }
776                                 exp_power[j] = e2 / n;
777                                 last_high_band = j;
778                         }
779                         exponents += n << bsize;
780                 }
781                 /* main freqs and high freqs */
782                 exponents = pwd->exponents[ch];
783                 for (j = -1; j < n1; j++) {
784                         if (j < 0)
785                                 n = pwd->high_band_start[bsize];
786                         else
787                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
788                                         - pwd->block_len_bits][j];
789                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
790                                 /* use noise with specified power */
791                                 mult1 = sqrt(exp_power[j]
792                                         / exp_power[last_high_band]);
793                                 /* XXX: use a table */
794                                 mult1 = mult1 * pow(10,
795                                         pwd->high_band_values[ch][j] * 0.05);
796                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
797                                 mult1 *= mdct_norm;
798                                 for (i = 0; i < n; i++) {
799                                         noise = pwd->noise_table[pwd->noise_index];
800                                         pwd->noise_index = (pwd->noise_index + 1)
801                                                 & (NOISE_TAB_SIZE - 1);
802                                         *coefs++ = noise * exponents[
803                                                 i << bsize >> esize] * mult1;
804                                 }
805                                 exponents += n << bsize;
806                         } else {
807                                 /* coded values + small noise */
808                                 for (i = 0; i < n; i++) {
809                                         noise = pwd->noise_table[pwd->noise_index];
810                                         pwd->noise_index = (pwd->noise_index + 1)
811                                                 & (NOISE_TAB_SIZE - 1);
812                                         *coefs++ = ((*coefs1++) + noise) *
813                                                 exponents[i << bsize >> esize]
814                                                 * mult;
815                                 }
816                                 exponents += n << bsize;
817                         }
818                 }
819                 /* very high freqs: noise */
820                 n = pwd->block_len - pwd->coefs_end[bsize];
821                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
822                 for (i = 0; i < n; i++) {
823                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
824                         pwd->noise_index = (pwd->noise_index + 1)
825                                 & (NOISE_TAB_SIZE - 1);
826                 }
827         }
828 }
829
830 /**
831  * @return 0 if OK. 1 if last block of frame. return -1 if
832  * unrecorrable error.
833  */
834 static int wma_decode_block(struct private_wmadec_data *pwd)
835 {
836         int n, v, ch, code, bsize;
837         int coef_nb_bits, total_gain;
838         int nb_coefs[MAX_CHANNELS];
839
840         /* compute current block length */
841         if (pwd->use_variable_block_len) {
842                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
843
844                 if (pwd->reset_block_lengths) {
845                         pwd->reset_block_lengths = 0;
846                         v = get_bits(&pwd->gb, n);
847                         if (v >= pwd->nb_block_sizes)
848                                 return -1;
849                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
850                         v = get_bits(&pwd->gb, n);
851                         if (v >= pwd->nb_block_sizes)
852                                 return -1;
853                         pwd->block_len_bits = pwd->frame_len_bits - v;
854                 } else {
855                         /* update block lengths */
856                         pwd->prev_block_len_bits = pwd->block_len_bits;
857                         pwd->block_len_bits = pwd->next_block_len_bits;
858                 }
859                 v = get_bits(&pwd->gb, n);
860                 if (v >= pwd->nb_block_sizes)
861                         return -1;
862                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
863         } else {
864                 /* fixed block len */
865                 pwd->next_block_len_bits = pwd->frame_len_bits;
866                 pwd->prev_block_len_bits = pwd->frame_len_bits;
867                 pwd->block_len_bits = pwd->frame_len_bits;
868         }
869
870         /* now check if the block length is coherent with the frame length */
871         pwd->block_len = 1 << pwd->block_len_bits;
872         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
873                 return -E_INCOHERENT_BLOCK_LEN;
874
875         if (pwd->ahi.channels == 2)
876                 pwd->ms_stereo = get_bit(&pwd->gb);
877         v = 0;
878         for (ch = 0; ch < pwd->ahi.channels; ch++) {
879                 int a = get_bit(&pwd->gb);
880                 pwd->channel_coded[ch] = a;
881                 v |= a;
882         }
883
884         bsize = pwd->frame_len_bits - pwd->block_len_bits;
885
886         /* if no channel coded, no need to go further */
887         /* XXX: fix potential framing problems */
888         if (!v)
889                 goto next;
890
891         /*
892          * Read total gain and extract corresponding number of bits for coef
893          * escape coding.
894          */
895         total_gain = 1;
896         for (;;) {
897                 int a = get_bits(&pwd->gb, 7);
898                 total_gain += a;
899                 if (a != 127)
900                         break;
901         }
902
903         coef_nb_bits = wma_total_gain_to_bits(total_gain);
904
905         /* compute number of coefficients */
906         n = pwd->coefs_end[bsize];
907         for (ch = 0; ch < pwd->ahi.channels; ch++)
908                 nb_coefs[ch] = n;
909
910         if (compute_high_band_values(pwd, bsize, nb_coefs) < 0)
911                 return -1;
912
913         /* exponents can be reused in short blocks. */
914         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
915                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
916                         if (pwd->channel_coded[ch]) {
917                                 if (pwd->use_exp_vlc) {
918                                         if (decode_exp_vlc(pwd, ch) < 0)
919                                                 return -1;
920                                 } else {
921                                         decode_exp_lsp(pwd, ch);
922                                 }
923                                 pwd->exponents_bsize[ch] = bsize;
924                         }
925                 }
926         }
927
928         /* parse spectral coefficients : just RLE encoding */
929         for (ch = 0; ch < pwd->ahi.channels; ch++) {
930                 struct vlc *coef_vlc;
931                 int level, run, tindex;
932                 int16_t *ptr, *eptr;
933                 const uint16_t *level_table, *run_table;
934
935                 if (!pwd->channel_coded[ch])
936                         continue;
937                 /*
938                  * special VLC tables are used for ms stereo because there is
939                  * potentially less energy there
940                  */
941                 tindex = (ch == 1 && pwd->ms_stereo);
942                 coef_vlc = &pwd->coef_vlc[tindex];
943                 run_table = pwd->run_table[tindex];
944                 level_table = pwd->level_table[tindex];
945                 /* XXX: optimize */
946                 ptr = &pwd->coefs1[ch][0];
947                 eptr = ptr + nb_coefs[ch];
948                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
949                 for (;;) {
950                         code = get_vlc(&pwd->gb, coef_vlc->table,
951                                 VLCBITS, VLCMAX);
952                         if (code < 0)
953                                 return -1;
954                         if (code == 1) /* EOB */
955                                 break;
956                         if (code == 0) { /* escape */
957                                 level = get_bits(&pwd->gb, coef_nb_bits);
958                                 /* reading block_len_bits would be better */
959                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
960                         } else { /* normal code */
961                                 run = run_table[code];
962                                 level = level_table[code];
963                         }
964                         if (!get_bit(&pwd->gb))
965                                 level = -level;
966                         ptr += run;
967                         if (ptr >= eptr) {
968                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
969                                 break;
970                         }
971                         *ptr++ = level;
972                         if (ptr >= eptr) /* EOB can be omitted */
973                                 break;
974                 }
975         }
976         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
977         if (pwd->ms_stereo && pwd->channel_coded[1]) {
978                 float a, b;
979                 int i;
980                 /*
981                  * Nominal case for ms stereo: we do it before mdct.
982                  *
983                  * No need to optimize this case because it should almost never
984                  * happen.
985                  */
986                 if (!pwd->channel_coded[0]) {
987                         PARA_NOTICE_LOG("rare ms-stereo\n");
988                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
989                         pwd->channel_coded[0] = 1;
990                 }
991                 for (i = 0; i < pwd->block_len; i++) {
992                         a = pwd->coefs[0][i];
993                         b = pwd->coefs[1][i];
994                         pwd->coefs[0][i] = a + b;
995                         pwd->coefs[1][i] = a - b;
996                 }
997         }
998 next:
999         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1000                 int n4, index;
1001
1002                 n = pwd->block_len;
1003                 n4 = pwd->block_len / 2;
1004                 if (pwd->channel_coded[ch])
1005                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1006                 else if (!(pwd->ms_stereo && ch == 1))
1007                         memset(pwd->output, 0, sizeof(pwd->output));
1008
1009                 /* multiply by the window and add in the frame */
1010                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1011                 wma_window(pwd, &pwd->frame_out[ch][index]);
1012         }
1013
1014         /* update block number */
1015         pwd->block_pos += pwd->block_len;
1016         if (pwd->block_pos >= pwd->frame_len)
1017                 return 1;
1018         else
1019                 return 0;
1020 }
1021
1022 /*
1023  * Clip a signed integer value into the -32768,32767 range.
1024  *
1025  * \param a The value to clip.
1026  *
1027  * \return The clipped value.
1028  */
1029 static inline int16_t av_clip_int16(int a)
1030 {
1031         if ((a + 32768) & ~65535)
1032                 return (a >> 31) ^ 32767;
1033         else
1034                 return a;
1035 }
1036
1037 /* Decode a frame of frame_len samples. */
1038 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1039 {
1040         int ret, i, n, ch, incr;
1041         int16_t *ptr;
1042         float *iptr;
1043
1044         /* read each block */
1045         pwd->block_pos = 0;
1046         for (;;) {
1047                 ret = wma_decode_block(pwd);
1048                 if (ret < 0)
1049                         return -1;
1050                 if (ret)
1051                         break;
1052         }
1053
1054         /* convert frame to integer */
1055         n = pwd->frame_len;
1056         incr = pwd->ahi.channels;
1057         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1058                 ptr = samples + ch;
1059                 iptr = pwd->frame_out[ch];
1060
1061                 for (i = 0; i < n; i++) {
1062                         *ptr = av_clip_int16(lrintf(*iptr++));
1063                         ptr += incr;
1064                 }
1065                 /* prepare for next block */
1066                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1067                         pwd->frame_len * sizeof(float));
1068         }
1069         return 0;
1070 }
1071
1072 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1073                 int *data_size, const uint8_t *buf, int buf_size)
1074 {
1075         int ret;
1076         int16_t *samples;
1077         static int frame_count;
1078
1079         if (buf_size == 0) {
1080                 pwd->last_superframe_len = 0;
1081                 return 0;
1082         }
1083         if (buf_size < pwd->ahi.block_align)
1084                 return 0;
1085         buf_size = pwd->ahi.block_align;
1086         samples = data;
1087         init_get_bits(&pwd->gb, buf, buf_size);
1088         if (pwd->use_bit_reservoir) {
1089                 int i, nb_frames, bit_offset, pos, len;
1090                 uint8_t *q;
1091
1092                 /* read super frame header */
1093                 skip_bits(&pwd->gb, 4); /* super frame index */
1094                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1095                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1096                 ret = -E_WMA_OUTPUT_SPACE;
1097                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1098                                 * sizeof(int16_t) > *data_size)
1099                         goto fail;
1100
1101                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1102
1103                 if (pwd->last_superframe_len > 0) {
1104                         /* add bit_offset bits to last frame */
1105                         ret = -E_WMA_BAD_SUPERFRAME;
1106                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1107                                         MAX_CODED_SUPERFRAME_SIZE)
1108                                 goto fail;
1109                         q = pwd->last_superframe + pwd->last_superframe_len;
1110                         len = bit_offset;
1111                         while (len > 7) {
1112                                 *q++ = get_bits(&pwd->gb, 8);
1113                                 len -= 8;
1114                         }
1115                         if (len > 0)
1116                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1117
1118                         /* XXX: bit_offset bits into last frame */
1119                         init_get_bits(&pwd->gb, pwd->last_superframe,
1120                                 MAX_CODED_SUPERFRAME_SIZE);
1121                         /* skip unused bits */
1122                         if (pwd->last_bitoffset > 0)
1123                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1124                         /*
1125                          * This frame is stored in the last superframe and in
1126                          * the current one.
1127                          */
1128                         ret = -E_WMA_DECODE;
1129                         if (wma_decode_frame(pwd, samples) < 0)
1130                                 goto fail;
1131                         frame_count++;
1132                         samples += pwd->ahi.channels * pwd->frame_len;
1133                 }
1134
1135                 /* read each frame starting from bit_offset */
1136                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1137                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1138                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1139                 len = pos & 7;
1140                 if (len > 0)
1141                         skip_bits(&pwd->gb, len);
1142
1143                 pwd->reset_block_lengths = 1;
1144                 for (i = 0; i < nb_frames; i++) {
1145                         ret = -E_WMA_DECODE;
1146                         if (wma_decode_frame(pwd, samples) < 0)
1147                                 goto fail;
1148                         frame_count++;
1149                         samples += pwd->ahi.channels * pwd->frame_len;
1150                 }
1151
1152                 /* we copy the end of the frame in the last frame buffer */
1153                 pos = get_bits_count(&pwd->gb) +
1154                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1155                 pwd->last_bitoffset = pos & 7;
1156                 pos >>= 3;
1157                 len = buf_size - pos;
1158                 ret = -E_WMA_BAD_SUPERFRAME;
1159                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1160                         goto fail;
1161                 pwd->last_superframe_len = len;
1162                 memcpy(pwd->last_superframe, buf + pos, len);
1163         } else {
1164                 PARA_DEBUG_LOG("not using bit reservoir\n");
1165                 ret = -E_WMA_OUTPUT_SPACE;
1166                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1167                         goto fail;
1168                 /* single frame decode */
1169                 ret = -E_WMA_DECODE;
1170                 if (wma_decode_frame(pwd, samples) < 0)
1171                         goto fail;
1172                 frame_count++;
1173                 samples += pwd->ahi.channels * pwd->frame_len;
1174         }
1175         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1176                 "outbytes: %zd, eaten: %d\n",
1177                 frame_count, pwd->frame_len, pwd->block_len,
1178                 (int8_t *) samples - (int8_t *) data, pwd->ahi.block_align);
1179         *data_size = (int8_t *)samples - (int8_t *)data;
1180         return pwd->ahi.block_align;
1181 fail:
1182         /* reset the bit reservoir on errors */
1183         pwd->last_superframe_len = 0;
1184         return ret;
1185 }
1186
1187 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1188                 struct filter_node *fn)
1189 {
1190         int ret, converted = 0;
1191         struct private_wmadec_data *pwd = fn->private_data;
1192
1193         if (len <= WMA_FRAME_SKIP)
1194                 return 0;
1195         if (!pwd) {
1196                 ret = wma_decode_init(inbuffer, len, &pwd);
1197                 if (ret <= 0)
1198                         return ret;
1199                 fn->private_data = pwd;
1200                 fn->fc->channels = pwd->ahi.channels;
1201                 fn->fc->samplerate = pwd->ahi.sample_rate;
1202                 return pwd->ahi.header_len;
1203         }
1204         for (;;) {
1205                 int out_size;
1206                 if (converted + WMA_FRAME_SKIP + pwd->ahi.block_align > len)
1207                         break;
1208                 out_size = fn->bufsize - fn->loaded;
1209                 if (out_size < 128 * 1024)
1210                         break;
1211                 ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1212                         &out_size, (uint8_t *)inbuffer + converted + WMA_FRAME_SKIP,
1213                         len - WMA_FRAME_SKIP);
1214                 if (ret < 0)
1215                         return ret;
1216                 fn->loaded += out_size;
1217                 converted += ret + WMA_FRAME_SKIP;
1218         }
1219         return converted;
1220 }
1221
1222 static void wmadec_close(struct filter_node *fn)
1223 {
1224         struct private_wmadec_data *pwd = fn->private_data;
1225
1226         if (!pwd)
1227                 return;
1228         wmadec_cleanup(pwd);
1229         free(fn->buf);
1230         fn->buf = NULL;
1231         free(fn->private_data);
1232         fn->private_data = NULL;
1233 }
1234
1235 static void wmadec_open(struct filter_node *fn)
1236 {
1237         fn->bufsize = 1024 * 1024;
1238         fn->buf = para_malloc(fn->bufsize);
1239         fn->private_data = NULL;
1240         fn->loaded = 0;
1241 }
1242
1243 /**
1244  * The init function of the wma decoder.
1245  *
1246  * \param f Its fields are filled in by the function.
1247  */
1248 void wmadec_filter_init(struct filter *f)
1249 {
1250         f->open = wmadec_open;
1251         f->close = wmadec_close;
1252         f->convert = wmadec_convert;
1253 }