a17c90adae0fae0acd9c87146a057f197a592a6f
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27 #include <sys/select.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "imdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         struct asf_header_info ahi;
63         struct getbit_context gb;
64         /** Whether to use the bit reservoir. */
65         int use_bit_reservoir;
66         /** Whether to use variable block length. */
67         int use_variable_block_len;
68         /** Whether to use exponent coding. */
69         int use_exp_vlc;
70         /** Whether perceptual noise is added. */
71         int use_noise_coding;
72         int byte_offset_bits;
73         struct vlc exp_vlc;
74         int exponent_sizes[BLOCK_NB_SIZES];
75         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
76         /** The index of the first coef in high band. */
77         int high_band_start[BLOCK_NB_SIZES];
78         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
79         int exponent_high_sizes[BLOCK_NB_SIZES];
80         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
81         struct vlc hgain_vlc;
82
83         /* coded values in high bands */
84         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
85         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
86
87         /* there are two possible tables for spectral coefficients */
88         struct vlc coef_vlc[2];
89         uint16_t *run_table[2];
90         uint16_t *level_table[2];
91         const struct coef_vlc_table *coef_vlcs[2];
92         /* frame info */
93         int frame_len;          ///< frame length in samples
94         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
95         /** Number of block sizes. */
96         int nb_block_sizes;
97         /* block info */
98         int reset_block_lengths;
99         int block_len_bits;     ///< log2 of current block length
100         int next_block_len_bits;        ///< log2 of next block length
101         int prev_block_len_bits;        ///< log2 of prev block length
102         int block_len;          ///< block length in samples
103         int block_pos;          ///< current position in frame
104         uint8_t ms_stereo;      ///< true if mid/side stereo mode
105         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
106         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
107         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
108         float max_exponent[MAX_CHANNELS];
109         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
110         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
111         float output[BLOCK_MAX_SIZE * 2];
112         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
113         float *windows[BLOCK_NB_SIZES];
114         /* output buffer for one frame and the last for IMDCT windowing */
115         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
116         /* last frame info */
117         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
118         int last_bitoffset;
119         int last_superframe_len;
120         float noise_table[NOISE_TAB_SIZE];
121         int noise_index;
122         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
123         /* lsp_to_curve tables */
124         float lsp_cos_table[BLOCK_MAX_SIZE];
125         float lsp_pow_e_table[256];
126         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
127         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
128 };
129
130 #define EXPVLCBITS 8
131 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
132
133 #define HGAINVLCBITS 9
134 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
135
136 #define VLCBITS 9
137 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
138
139 #define SINE_WINDOW(x) float sine_ ## x[x] __aligned(16)
140
141 SINE_WINDOW(128);
142 SINE_WINDOW(256);
143 SINE_WINDOW(512);
144 SINE_WINDOW(1024);
145 SINE_WINDOW(2048);
146 SINE_WINDOW(4096);
147
148 static float *sine_windows[6] = {
149         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
150 };
151
152 /* Generate a sine window. */
153 static void sine_window_init(float *window, int n)
154 {
155         int i;
156
157         for (i = 0; i < n; i++)
158                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
159 }
160
161 static void wmadec_cleanup(struct private_wmadec_data *pwd)
162 {
163         int i;
164
165         for (i = 0; i < pwd->nb_block_sizes; i++)
166                 imdct_end(pwd->mdct_ctx[i]);
167         if (pwd->use_exp_vlc)
168                 free_vlc(&pwd->exp_vlc);
169         if (pwd->use_noise_coding)
170                 free_vlc(&pwd->hgain_vlc);
171         for (i = 0; i < 2; i++) {
172                 free_vlc(&pwd->coef_vlc[i]);
173                 free(pwd->run_table[i]);
174                 free(pwd->level_table[i]);
175         }
176 }
177
178 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
179                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
180 {
181         int n = vlc_table->n;
182         const uint8_t *table_bits = vlc_table->huffbits;
183         const uint32_t *table_codes = vlc_table->huffcodes;
184         const uint16_t *levels_table = vlc_table->levels;
185         uint16_t *run_table, *level_table;
186         int i, l, j, k, level;
187
188         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
189
190         run_table = para_malloc(n * sizeof(uint16_t));
191         level_table = para_malloc(n * sizeof(uint16_t));
192         i = 2;
193         level = 1;
194         k = 0;
195         while (i < n) {
196                 l = levels_table[k++];
197                 for (j = 0; j < l; j++) {
198                         run_table[i] = j;
199                         level_table[i] = level;
200                         i++;
201                 }
202                 level++;
203         }
204         *prun_table = run_table;
205         *plevel_table = level_table;
206 }
207
208 /* compute the scale factor band sizes for each MDCT block size */
209 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
210         float high_freq)
211 {
212         struct asf_header_info *ahi = &pwd->ahi;
213         int a, b, pos, lpos, k, block_len, i, j, n;
214         const uint8_t *table;
215
216         for (k = 0; k < pwd->nb_block_sizes; k++) {
217                 block_len = pwd->frame_len >> k;
218
219                 table = NULL;
220                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
221                 if (a < 3) {
222                         if (ahi->sample_rate >= 44100)
223                                 table = exponent_band_44100[a];
224                         else if (ahi->sample_rate >= 32000)
225                                 table = exponent_band_32000[a];
226                         else if (ahi->sample_rate >= 22050)
227                                 table = exponent_band_22050[a];
228                 }
229                 if (table) {
230                         n = *table++;
231                         for (i = 0; i < n; i++)
232                                 pwd->exponent_bands[k][i] = table[i];
233                         pwd->exponent_sizes[k] = n;
234                 } else {
235                         j = 0;
236                         lpos = 0;
237                         for (i = 0; i < 25; i++) {
238                                 a = wma_critical_freqs[i];
239                                 b = ahi->sample_rate;
240                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
241                                 pos <<= 2;
242                                 if (pos > block_len)
243                                         pos = block_len;
244                                 if (pos > lpos)
245                                         pwd->exponent_bands[k][j++] = pos - lpos;
246                                 if (pos >= block_len)
247                                         break;
248                                 lpos = pos;
249                         }
250                         pwd->exponent_sizes[k] = j;
251                 }
252
253                 /* max number of coefs */
254                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
255                 /* high freq computation */
256                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
257                         / ahi->sample_rate + 0.5);
258                 n = pwd->exponent_sizes[k];
259                 j = 0;
260                 pos = 0;
261                 for (i = 0; i < n; i++) {
262                         int start, end;
263                         start = pos;
264                         pos += pwd->exponent_bands[k][i];
265                         end = pos;
266                         if (start < pwd->high_band_start[k])
267                                 start = pwd->high_band_start[k];
268                         if (end > pwd->coefs_end[k])
269                                 end = pwd->coefs_end[k];
270                         if (end > start)
271                                 pwd->exponent_high_bands[k][j++] = end - start;
272                 }
273                 pwd->exponent_high_sizes[k] = j;
274         }
275 }
276
277 static int wma_init(struct private_wmadec_data *pwd)
278 {
279         int i;
280         float bps1, high_freq;
281         volatile float bps;
282         int sample_rate1;
283         int coef_vlc_table;
284         struct asf_header_info *ahi = &pwd->ahi;
285         int flags2 = ahi->flags2;
286
287         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
288                 || ahi->channels <= 0 || ahi->channels > 8
289                 || ahi->bit_rate <= 0)
290                 return -E_WMA_BAD_PARAMS;
291
292         /* compute MDCT block size */
293         if (ahi->sample_rate <= 16000) {
294                 pwd->frame_len_bits = 9;
295         } else if (ahi->sample_rate <= 22050) {
296                 pwd->frame_len_bits = 10;
297         } else {
298                 pwd->frame_len_bits = 11;
299         }
300         pwd->frame_len = 1 << pwd->frame_len_bits;
301         if (pwd->use_variable_block_len) {
302                 int nb_max, nb;
303                 nb = ((flags2 >> 3) & 3) + 1;
304                 if ((ahi->bit_rate / ahi->channels) >= 32000)
305                         nb += 2;
306                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
307                 if (nb > nb_max)
308                         nb = nb_max;
309                 pwd->nb_block_sizes = nb + 1;
310         } else
311                 pwd->nb_block_sizes = 1;
312
313         /* init rate dependent parameters */
314         pwd->use_noise_coding = 1;
315         high_freq = ahi->sample_rate * 0.5;
316
317         /* wma2 rates are normalized */
318         sample_rate1 = ahi->sample_rate;
319         if (sample_rate1 >= 44100)
320                 sample_rate1 = 44100;
321         else if (sample_rate1 >= 22050)
322                 sample_rate1 = 22050;
323         else if (sample_rate1 >= 16000)
324                 sample_rate1 = 16000;
325         else if (sample_rate1 >= 11025)
326                 sample_rate1 = 11025;
327         else if (sample_rate1 >= 8000)
328                 sample_rate1 = 8000;
329
330         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
331         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
332         /*
333          * Compute high frequency value and choose if noise coding should be
334          * activated.
335          */
336         bps1 = bps;
337         if (ahi->channels == 2)
338                 bps1 = bps * 1.6;
339         if (sample_rate1 == 44100) {
340                 if (bps1 >= 0.61)
341                         pwd->use_noise_coding = 0;
342                 else
343                         high_freq = high_freq * 0.4;
344         } else if (sample_rate1 == 22050) {
345                 if (bps1 >= 1.16)
346                         pwd->use_noise_coding = 0;
347                 else if (bps1 >= 0.72)
348                         high_freq = high_freq * 0.7;
349                 else
350                         high_freq = high_freq * 0.6;
351         } else if (sample_rate1 == 16000) {
352                 if (bps > 0.5)
353                         high_freq = high_freq * 0.5;
354                 else
355                         high_freq = high_freq * 0.3;
356         } else if (sample_rate1 == 11025) {
357                 high_freq = high_freq * 0.7;
358         } else if (sample_rate1 == 8000) {
359                 if (bps <= 0.625) {
360                         high_freq = high_freq * 0.5;
361                 } else if (bps > 0.75) {
362                         pwd->use_noise_coding = 0;
363                 } else {
364                         high_freq = high_freq * 0.65;
365                 }
366         } else {
367                 if (bps >= 0.8) {
368                         high_freq = high_freq * 0.75;
369                 } else if (bps >= 0.6) {
370                         high_freq = high_freq * 0.6;
371                 } else {
372                         high_freq = high_freq * 0.5;
373                 }
374         }
375         PARA_INFO_LOG("channels=%d sample_rate=%d "
376                 "bitrate=%d block_align=%d\n",
377                 ahi->channels, ahi->sample_rate,
378                 ahi->bit_rate, ahi->block_align);
379         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
380                 "high_freq=%f bitoffset=%d\n",
381                 pwd->frame_len, bps, bps1,
382                 high_freq, pwd->byte_offset_bits);
383         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
384                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
385
386         compute_scale_factor_band_sizes(pwd, high_freq);
387         /* init MDCT windows : simple sinus window */
388         for (i = 0; i < pwd->nb_block_sizes; i++) {
389                 int n;
390                 n = 1 << (pwd->frame_len_bits - i);
391                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
392                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
393         }
394
395         pwd->reset_block_lengths = 1;
396
397         if (pwd->use_noise_coding) {
398                 /* init the noise generator */
399                 if (pwd->use_exp_vlc)
400                         pwd->noise_mult = 0.02;
401                 else
402                         pwd->noise_mult = 0.04;
403
404                 {
405                         unsigned int seed;
406                         float norm;
407                         seed = 1;
408                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
409                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
410                                 seed = seed * 314159 + 1;
411                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
412                         }
413                 }
414         }
415
416         /* choose the VLC tables for the coefficients */
417         coef_vlc_table = 2;
418         if (ahi->sample_rate >= 32000) {
419                 if (bps1 < 0.72)
420                         coef_vlc_table = 0;
421                 else if (bps1 < 1.16)
422                         coef_vlc_table = 1;
423         }
424         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
425         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
426         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
427                 pwd->coef_vlcs[0]);
428         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
429                 pwd->coef_vlcs[1]);
430         return 0;
431 }
432
433 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
434 {
435         float wdel, a, b;
436         int i, e, m;
437
438         wdel = M_PI / frame_len;
439         for (i = 0; i < frame_len; i++)
440                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
441
442         /* tables for x^-0.25 computation */
443         for (i = 0; i < 256; i++) {
444                 e = i - 126;
445                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
446         }
447
448         /* These two tables are needed to avoid two operations in pow_m1_4. */
449         b = 1.0;
450         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
451                 m = (1 << LSP_POW_BITS) + i;
452                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
453                 a = pow(a, -0.25);
454                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
455                 pwd->lsp_pow_m_table2[i] = b - a;
456                 b = a;
457         }
458 }
459
460 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
461 {
462         struct private_wmadec_data *pwd;
463         int ret, i;
464
465         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
466         pwd = para_calloc(sizeof(*pwd));
467         ret = read_asf_header(initial_buf, len, &pwd->ahi);
468         if (ret <= 0) {
469                 free(pwd);
470                 return ret;
471         }
472
473         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
474         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
475         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
476
477         ret = wma_init(pwd);
478         if (ret < 0)
479                 return ret;
480         /* init MDCT */
481         for (i = 0; i < pwd->nb_block_sizes; i++) {
482                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
483                 if (ret < 0)
484                         return ret;
485         }
486         if (pwd->use_noise_coding) {
487                 PARA_INFO_LOG("using noise coding\n");
488                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
489                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
490                         wma_hgain_huffcodes, 2);
491         }
492
493         if (pwd->use_exp_vlc) {
494                 PARA_INFO_LOG("using exp_vlc\n");
495                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
496                 sizeof(wma_scale_huffbits), wma_scale_huffbits,
497                 wma_scale_huffcodes, 4);
498         } else {
499                 PARA_INFO_LOG("using curve\n");
500                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
501         }
502         *result = pwd;
503         return pwd->ahi.header_len;
504 }
505
506 /**
507  * compute x^-0.25 with an exponent and mantissa table. We use linear
508  * interpolation to reduce the mantissa table size at a small speed
509  * expense (linear interpolation approximately doubles the number of
510  * bits of precision).
511  */
512 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
513 {
514         union {
515                 float f;
516                 unsigned int v;
517         } u, t;
518         unsigned int e, m;
519         float a, b;
520
521         u.f = x;
522         e = u.v >> 23;
523         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
524         /* build interpolation scale: 1 <= t < 2. */
525         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
526         a = pwd->lsp_pow_m_table1[m];
527         b = pwd->lsp_pow_m_table2[m];
528         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
529 }
530
531 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
532                 float *out, float *val_max_ptr, int n, float *lsp)
533 {
534         int i, j;
535         float p, q, w, v, val_max;
536
537         val_max = 0;
538         for (i = 0; i < n; i++) {
539                 p = 0.5f;
540                 q = 0.5f;
541                 w = pwd->lsp_cos_table[i];
542                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
543                         q *= w - lsp[j - 1];
544                         p *= w - lsp[j];
545                 }
546                 p *= p * (2.0f - w);
547                 q *= q * (2.0f + w);
548                 v = p + q;
549                 v = pow_m1_4(pwd, v);
550                 if (v > val_max)
551                         val_max = v;
552                 out[i] = v;
553         }
554         *val_max_ptr = val_max;
555 }
556
557 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
558 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
559 {
560         float lsp_coefs[NB_LSP_COEFS];
561         int val, i;
562
563         for (i = 0; i < NB_LSP_COEFS; i++) {
564                 if (i == 0 || i >= 8)
565                         val = get_bits(&pwd->gb, 3);
566                 else
567                         val = get_bits(&pwd->gb, 4);
568                 lsp_coefs[i] = wma_lsp_codebook[i][val];
569         }
570
571         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
572                 pwd->block_len, lsp_coefs);
573 }
574
575 /* Decode exponents coded with VLC codes. */
576 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
577 {
578         int last_exp, n, code;
579         const uint16_t *ptr, *band_ptr;
580         float v, *q, max_scale, *q_end;
581
582         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
583         ptr = band_ptr;
584         q = pwd->exponents[ch];
585         q_end = q + pwd->block_len;
586         max_scale = 0;
587         last_exp = 36;
588
589         while (q < q_end) {
590                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
591                 if (code < 0)
592                         return code;
593                 /* NOTE: this offset is the same as MPEG4 AAC ! */
594                 last_exp += code - 60;
595                 /* XXX: use a table */
596                 v = pow(10, last_exp * (1.0 / 16.0));
597                 if (v > max_scale)
598                         max_scale = v;
599                 n = *ptr++;
600                 do {
601                         *q++ = v;
602                 } while (--n);
603         }
604         pwd->max_exponent[ch] = max_scale;
605         return 0;
606 }
607
608 /* compute src0 * src1 + src2 */
609 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
610                 const float *src2, int len)
611 {
612         int i;
613
614         for (i = 0; i < len; i++)
615                 dst[i] = src0[i] * src1[i] + src2[i];
616 }
617
618 static inline void vector_mult_reverse(float *dst, const float *src0,
619                 const float *src1, int len)
620 {
621         int i;
622
623         src1 += len - 1;
624         for (i = 0; i < len; i++)
625                 dst[i] = src0[i] * src1[-i];
626 }
627
628 /**
629  * Apply MDCT window and add into output.
630  *
631  * We ensure that when the windows overlap their squared sum
632  * is always 1 (MDCT reconstruction rule).
633  */
634 static void wma_window(struct private_wmadec_data *pwd, float *out)
635 {
636         float *in = pwd->output;
637         int block_len, bsize, n;
638
639         /* left part */
640         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
641                 block_len = pwd->block_len;
642                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
643                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
644         } else {
645                 block_len = 1 << pwd->prev_block_len_bits;
646                 n = (pwd->block_len - block_len) / 2;
647                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
648                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
649                         block_len);
650                 memcpy(out + n + block_len, in + n + block_len,
651                         n * sizeof(float));
652         }
653         out += pwd->block_len;
654         in += pwd->block_len;
655         /* right part */
656         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
657                 block_len = pwd->block_len;
658                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
659                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
660         } else {
661                 block_len = 1 << pwd->next_block_len_bits;
662                 n = (pwd->block_len - block_len) / 2;
663                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
664                 memcpy(out, in, n * sizeof(float));
665                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
666                         block_len);
667                 memset(out + n + block_len, 0, n * sizeof(float));
668         }
669 }
670
671 static int wma_total_gain_to_bits(int total_gain)
672 {
673         if (total_gain < 15)
674                 return 13;
675         else if (total_gain < 32)
676                 return 12;
677         else if (total_gain < 40)
678                 return 11;
679         else if (total_gain < 45)
680                 return 10;
681         else
682                 return 9;
683 }
684
685 static int compute_high_band_values(struct private_wmadec_data *pwd,
686                 int bsize, int nb_coefs[MAX_CHANNELS])
687 {
688         int ch;
689
690         if (!pwd->use_noise_coding)
691                 return 0;
692         for (ch = 0; ch < pwd->ahi.channels; ch++) {
693                 int i, m, a;
694                 if (!pwd->channel_coded[ch])
695                         continue;
696                 m = pwd->exponent_high_sizes[bsize];
697                 for (i = 0; i < m; i++) {
698                         a = get_bit(&pwd->gb);
699                         pwd->high_band_coded[ch][i] = a;
700                         if (!a)
701                                 continue;
702                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
703                 }
704         }
705         for (ch = 0; ch < pwd->ahi.channels; ch++) {
706                 int i, n, val;
707                 if (!pwd->channel_coded[ch])
708                         continue;
709                 n = pwd->exponent_high_sizes[bsize];
710                 val = (int)0x80000000;
711                 for (i = 0; i < n; i++) {
712                         if (!pwd->high_band_coded[ch][i])
713                                 continue;
714                         if (val == (int)0x80000000)
715                                 val = get_bits(&pwd->gb, 7) - 19;
716                         else {
717                                 int code = get_vlc(&pwd->gb,
718                                         pwd->hgain_vlc.table, HGAINVLCBITS,
719                                         HGAINMAX);
720                                 if (code < 0)
721                                         return code;
722                                 val += code - 18;
723                         }
724                         pwd->high_band_values[ch][i] = val;
725                 }
726         }
727         return 1;
728 }
729
730 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
731                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
732 {
733         int ch;
734         float mdct_norm = 1.0 / (pwd->block_len / 2);
735
736         for (ch = 0; ch < pwd->ahi.channels; ch++) {
737                 int16_t *coefs1;
738                 float *coefs, *exponents, mult, mult1, noise;
739                 int i, j, n, n1, last_high_band, esize;
740                 float exp_power[HIGH_BAND_MAX_SIZE];
741
742                 if (!pwd->channel_coded[ch])
743                         continue;
744                 coefs1 = pwd->coefs1[ch];
745                 exponents = pwd->exponents[ch];
746                 esize = pwd->exponents_bsize[ch];
747                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
748                 mult *= mdct_norm;
749                 coefs = pwd->coefs[ch];
750                 if (!pwd->use_noise_coding) {
751                         /* XXX: optimize more */
752                         n = nb_coefs[ch];
753                         for (i = 0; i < n; i++)
754                                 *coefs++ = coefs1[i] *
755                                         exponents[i << bsize >> esize] * mult;
756                         n = pwd->block_len - pwd->coefs_end[bsize];
757                         for (i = 0; i < n; i++)
758                                 *coefs++ = 0.0;
759                         continue;
760                 }
761                 mult1 = mult;
762                 n1 = pwd->exponent_high_sizes[bsize];
763                 /* compute power of high bands */
764                 exponents = pwd->exponents[ch] +
765                         (pwd->high_band_start[bsize] << bsize);
766                 last_high_band = 0; /* avoid warning */
767                 for (j = 0; j < n1; j++) {
768                         n = pwd->exponent_high_bands[
769                                 pwd->frame_len_bits - pwd->block_len_bits][j];
770                         if (pwd->high_band_coded[ch][j]) {
771                                 float e2, val;
772                                 e2 = 0;
773                                 for (i = 0; i < n; i++) {
774                                         val = exponents[i << bsize >> esize];
775                                         e2 += val * val;
776                                 }
777                                 exp_power[j] = e2 / n;
778                                 last_high_band = j;
779                         }
780                         exponents += n << bsize;
781                 }
782                 /* main freqs and high freqs */
783                 exponents = pwd->exponents[ch];
784                 for (j = -1; j < n1; j++) {
785                         if (j < 0)
786                                 n = pwd->high_band_start[bsize];
787                         else
788                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
789                                         - pwd->block_len_bits][j];
790                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
791                                 /* use noise with specified power */
792                                 mult1 = sqrt(exp_power[j]
793                                         / exp_power[last_high_band]);
794                                 /* XXX: use a table */
795                                 mult1 = mult1 * pow(10,
796                                         pwd->high_band_values[ch][j] * 0.05);
797                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
798                                 mult1 *= mdct_norm;
799                                 for (i = 0; i < n; i++) {
800                                         noise = pwd->noise_table[pwd->noise_index];
801                                         pwd->noise_index = (pwd->noise_index + 1)
802                                                 & (NOISE_TAB_SIZE - 1);
803                                         *coefs++ = noise * exponents[
804                                                 i << bsize >> esize] * mult1;
805                                 }
806                                 exponents += n << bsize;
807                         } else {
808                                 /* coded values + small noise */
809                                 for (i = 0; i < n; i++) {
810                                         noise = pwd->noise_table[pwd->noise_index];
811                                         pwd->noise_index = (pwd->noise_index + 1)
812                                                 & (NOISE_TAB_SIZE - 1);
813                                         *coefs++ = ((*coefs1++) + noise) *
814                                                 exponents[i << bsize >> esize]
815                                                 * mult;
816                                 }
817                                 exponents += n << bsize;
818                         }
819                 }
820                 /* very high freqs: noise */
821                 n = pwd->block_len - pwd->coefs_end[bsize];
822                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
823                 for (i = 0; i < n; i++) {
824                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
825                         pwd->noise_index = (pwd->noise_index + 1)
826                                 & (NOISE_TAB_SIZE - 1);
827                 }
828         }
829 }
830
831 /**
832  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
833  * errors.
834  */
835 static int wma_decode_block(struct private_wmadec_data *pwd)
836 {
837         int ret, n, v, ch, code, bsize;
838         int coef_nb_bits, total_gain;
839         int nb_coefs[MAX_CHANNELS];
840
841         /* compute current block length */
842         if (pwd->use_variable_block_len) {
843                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
844
845                 if (pwd->reset_block_lengths) {
846                         pwd->reset_block_lengths = 0;
847                         v = get_bits(&pwd->gb, n);
848                         if (v >= pwd->nb_block_sizes)
849                                 return -E_WMA_BLOCK_SIZE;
850                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
851                         v = get_bits(&pwd->gb, n);
852                         if (v >= pwd->nb_block_sizes)
853                                 return -E_WMA_BLOCK_SIZE;
854                         pwd->block_len_bits = pwd->frame_len_bits - v;
855                 } else {
856                         /* update block lengths */
857                         pwd->prev_block_len_bits = pwd->block_len_bits;
858                         pwd->block_len_bits = pwd->next_block_len_bits;
859                 }
860                 v = get_bits(&pwd->gb, n);
861                 if (v >= pwd->nb_block_sizes)
862                         return -E_WMA_BLOCK_SIZE;
863                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
864         } else {
865                 /* fixed block len */
866                 pwd->next_block_len_bits = pwd->frame_len_bits;
867                 pwd->prev_block_len_bits = pwd->frame_len_bits;
868                 pwd->block_len_bits = pwd->frame_len_bits;
869         }
870
871         /* now check if the block length is coherent with the frame length */
872         pwd->block_len = 1 << pwd->block_len_bits;
873         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
874                 return -E_INCOHERENT_BLOCK_LEN;
875
876         if (pwd->ahi.channels == 2)
877                 pwd->ms_stereo = get_bit(&pwd->gb);
878         v = 0;
879         for (ch = 0; ch < pwd->ahi.channels; ch++) {
880                 int a = get_bit(&pwd->gb);
881                 pwd->channel_coded[ch] = a;
882                 v |= a;
883         }
884
885         bsize = pwd->frame_len_bits - pwd->block_len_bits;
886
887         /* if no channel coded, no need to go further */
888         /* XXX: fix potential framing problems */
889         if (!v)
890                 goto next;
891
892         /*
893          * Read total gain and extract corresponding number of bits for coef
894          * escape coding.
895          */
896         total_gain = 1;
897         for (;;) {
898                 int a = get_bits(&pwd->gb, 7);
899                 total_gain += a;
900                 if (a != 127)
901                         break;
902         }
903
904         coef_nb_bits = wma_total_gain_to_bits(total_gain);
905
906         /* compute number of coefficients */
907         n = pwd->coefs_end[bsize];
908         for (ch = 0; ch < pwd->ahi.channels; ch++)
909                 nb_coefs[ch] = n;
910
911         ret = compute_high_band_values(pwd, bsize, nb_coefs);
912         if (ret < 0)
913                 return ret;
914
915         /* exponents can be reused in short blocks. */
916         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
917                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
918                         if (pwd->channel_coded[ch]) {
919                                 if (pwd->use_exp_vlc) {
920                                         ret = decode_exp_vlc(pwd, ch);
921                                         if (ret < 0)
922                                                 return ret;
923                                 } else
924                                         decode_exp_lsp(pwd, ch);
925                                 pwd->exponents_bsize[ch] = bsize;
926                         }
927                 }
928         }
929
930         /* parse spectral coefficients : just RLE encoding */
931         for (ch = 0; ch < pwd->ahi.channels; ch++) {
932                 struct vlc *coef_vlc;
933                 int level, run, tindex;
934                 int16_t *ptr, *eptr;
935                 const uint16_t *level_table, *run_table;
936
937                 if (!pwd->channel_coded[ch])
938                         continue;
939                 /*
940                  * special VLC tables are used for ms stereo because there is
941                  * potentially less energy there
942                  */
943                 tindex = (ch == 1 && pwd->ms_stereo);
944                 coef_vlc = &pwd->coef_vlc[tindex];
945                 run_table = pwd->run_table[tindex];
946                 level_table = pwd->level_table[tindex];
947                 /* XXX: optimize */
948                 ptr = &pwd->coefs1[ch][0];
949                 eptr = ptr + nb_coefs[ch];
950                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
951                 for (;;) {
952                         code = get_vlc(&pwd->gb, coef_vlc->table,
953                                 VLCBITS, VLCMAX);
954                         if (code < 0)
955                                 return code;
956                         if (code == 1) /* EOB */
957                                 break;
958                         if (code == 0) { /* escape */
959                                 level = get_bits(&pwd->gb, coef_nb_bits);
960                                 /* reading block_len_bits would be better */
961                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
962                         } else { /* normal code */
963                                 run = run_table[code];
964                                 level = level_table[code];
965                         }
966                         if (!get_bit(&pwd->gb))
967                                 level = -level;
968                         ptr += run;
969                         if (ptr >= eptr) {
970                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
971                                 break;
972                         }
973                         *ptr++ = level;
974                         if (ptr >= eptr) /* EOB can be omitted */
975                                 break;
976                 }
977         }
978         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
979         if (pwd->ms_stereo && pwd->channel_coded[1]) {
980                 float a, b;
981                 int i;
982                 /*
983                  * Nominal case for ms stereo: we do it before mdct.
984                  *
985                  * No need to optimize this case because it should almost never
986                  * happen.
987                  */
988                 if (!pwd->channel_coded[0]) {
989                         PARA_NOTICE_LOG("rare ms-stereo\n");
990                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
991                         pwd->channel_coded[0] = 1;
992                 }
993                 for (i = 0; i < pwd->block_len; i++) {
994                         a = pwd->coefs[0][i];
995                         b = pwd->coefs[1][i];
996                         pwd->coefs[0][i] = a + b;
997                         pwd->coefs[1][i] = a - b;
998                 }
999         }
1000 next:
1001         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1002                 int n4, index;
1003
1004                 n = pwd->block_len;
1005                 n4 = pwd->block_len / 2;
1006                 if (pwd->channel_coded[ch])
1007                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1008                 else if (!(pwd->ms_stereo && ch == 1))
1009                         memset(pwd->output, 0, sizeof(pwd->output));
1010
1011                 /* multiply by the window and add in the frame */
1012                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1013                 wma_window(pwd, &pwd->frame_out[ch][index]);
1014         }
1015
1016         /* update block number */
1017         pwd->block_pos += pwd->block_len;
1018         if (pwd->block_pos >= pwd->frame_len)
1019                 return 1;
1020         else
1021                 return 0;
1022 }
1023
1024 /*
1025  * Clip a signed integer value into the -32768,32767 range.
1026  *
1027  * \param a The value to clip.
1028  *
1029  * \return The clipped value.
1030  */
1031 static inline int16_t av_clip_int16(int a)
1032 {
1033         if ((a + 32768) & ~65535)
1034                 return (a >> 31) ^ 32767;
1035         else
1036                 return a;
1037 }
1038
1039 /* Decode a frame of frame_len samples. */
1040 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1041 {
1042         int ret, i, n, ch, incr;
1043         int16_t *ptr;
1044         float *iptr;
1045
1046         /* read each block */
1047         pwd->block_pos = 0;
1048         for (;;) {
1049                 ret = wma_decode_block(pwd);
1050                 if (ret < 0)
1051                         return ret;
1052                 if (ret)
1053                         break;
1054         }
1055
1056         /* convert frame to integer */
1057         n = pwd->frame_len;
1058         incr = pwd->ahi.channels;
1059         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1060                 ptr = samples + ch;
1061                 iptr = pwd->frame_out[ch];
1062
1063                 for (i = 0; i < n; i++) {
1064                         *ptr = av_clip_int16(lrintf(*iptr++));
1065                         ptr += incr;
1066                 }
1067                 /* prepare for next block */
1068                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1069                         pwd->frame_len * sizeof(float));
1070         }
1071         return 0;
1072 }
1073
1074 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1075                 int *data_size, const uint8_t *buf, int buf_size)
1076 {
1077         int ret;
1078         int16_t *samples;
1079
1080         if (buf_size == 0) {
1081                 pwd->last_superframe_len = 0;
1082                 return 0;
1083         }
1084         if (buf_size < pwd->ahi.block_align)
1085                 return 0;
1086         buf_size = pwd->ahi.block_align;
1087         samples = data;
1088         init_get_bits(&pwd->gb, buf, buf_size);
1089         if (pwd->use_bit_reservoir) {
1090                 int i, nb_frames, bit_offset, pos, len;
1091                 uint8_t *q;
1092
1093                 /* read super frame header */
1094                 skip_bits(&pwd->gb, 4); /* super frame index */
1095                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1096                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1097                 ret = -E_WMA_OUTPUT_SPACE;
1098                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1099                                 * sizeof(int16_t) > *data_size)
1100                         goto fail;
1101
1102                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1103
1104                 if (pwd->last_superframe_len > 0) {
1105                         /* add bit_offset bits to last frame */
1106                         ret = -E_WMA_BAD_SUPERFRAME;
1107                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1108                                         MAX_CODED_SUPERFRAME_SIZE)
1109                                 goto fail;
1110                         q = pwd->last_superframe + pwd->last_superframe_len;
1111                         len = bit_offset;
1112                         while (len > 7) {
1113                                 *q++ = get_bits(&pwd->gb, 8);
1114                                 len -= 8;
1115                         }
1116                         if (len > 0)
1117                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1118
1119                         /* XXX: bit_offset bits into last frame */
1120                         init_get_bits(&pwd->gb, pwd->last_superframe,
1121                                 MAX_CODED_SUPERFRAME_SIZE);
1122                         /* skip unused bits */
1123                         if (pwd->last_bitoffset > 0)
1124                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1125                         /*
1126                          * This frame is stored in the last superframe and in
1127                          * the current one.
1128                          */
1129                         ret = wma_decode_frame(pwd, samples);
1130                         if (ret < 0)
1131                                 goto fail;
1132                         samples += pwd->ahi.channels * pwd->frame_len;
1133                 }
1134
1135                 /* read each frame starting from bit_offset */
1136                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1137                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1138                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1139                 len = pos & 7;
1140                 if (len > 0)
1141                         skip_bits(&pwd->gb, len);
1142
1143                 pwd->reset_block_lengths = 1;
1144                 for (i = 0; i < nb_frames; i++) {
1145                         ret = wma_decode_frame(pwd, samples);
1146                         if (ret < 0)
1147                                 goto fail;
1148                         samples += pwd->ahi.channels * pwd->frame_len;
1149                 }
1150
1151                 /* we copy the end of the frame in the last frame buffer */
1152                 pos = get_bits_count(&pwd->gb) +
1153                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1154                 pwd->last_bitoffset = pos & 7;
1155                 pos >>= 3;
1156                 len = buf_size - pos;
1157                 ret = -E_WMA_BAD_SUPERFRAME;
1158                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1159                         goto fail;
1160                 pwd->last_superframe_len = len;
1161                 memcpy(pwd->last_superframe, buf + pos, len);
1162         } else {
1163                 PARA_DEBUG_LOG("not using bit reservoir\n");
1164                 ret = -E_WMA_OUTPUT_SPACE;
1165                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1166                         goto fail;
1167                 /* single frame decode */
1168                 ret = wma_decode_frame(pwd, samples);
1169                 if (ret < 0)
1170                         goto fail;
1171                 samples += pwd->ahi.channels * pwd->frame_len;
1172         }
1173         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %zd, eaten: %d\n",
1174                 pwd->frame_len, pwd->block_len,
1175                 (int8_t *) samples - (int8_t *) data, pwd->ahi.block_align);
1176         *data_size = (int8_t *)samples - (int8_t *)data;
1177         return pwd->ahi.block_align;
1178 fail:
1179         /* reset the bit reservoir on errors */
1180         pwd->last_superframe_len = 0;
1181         return ret;
1182 }
1183
1184 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1185                 struct filter_node *fn)
1186 {
1187         int ret, converted = 0;
1188         struct private_wmadec_data *pwd = fn->private_data;
1189
1190         if (len <= WMA_FRAME_SKIP)
1191                 return 0;
1192         if (!pwd) {
1193                 ret = wma_decode_init(inbuffer, len, &pwd);
1194                 if (ret <= 0)
1195                         return ret;
1196                 fn->private_data = pwd;
1197                 fn->fc->channels = pwd->ahi.channels;
1198                 fn->fc->samplerate = pwd->ahi.sample_rate;
1199                 return pwd->ahi.header_len;
1200         }
1201         for (;;) {
1202                 int out_size;
1203                 if (converted + WMA_FRAME_SKIP + pwd->ahi.block_align > len)
1204                         break;
1205                 out_size = fn->bufsize - fn->loaded;
1206                 if (out_size < 128 * 1024)
1207                         break;
1208                 ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1209                         &out_size, (uint8_t *)inbuffer + converted + WMA_FRAME_SKIP,
1210                         len - WMA_FRAME_SKIP);
1211                 if (ret < 0)
1212                         return ret;
1213                 fn->loaded += out_size;
1214                 converted += ret + WMA_FRAME_SKIP;
1215         }
1216         return converted;
1217 }
1218
1219 static void wmadec_close(struct filter_node *fn)
1220 {
1221         struct private_wmadec_data *pwd = fn->private_data;
1222
1223         if (!pwd)
1224                 return;
1225         wmadec_cleanup(pwd);
1226         free(fn->buf);
1227         fn->buf = NULL;
1228         free(fn->private_data);
1229         fn->private_data = NULL;
1230 }
1231
1232 static void wmadec_open(struct filter_node *fn)
1233 {
1234         fn->bufsize = 1024 * 1024;
1235         fn->buf = para_malloc(fn->bufsize);
1236         fn->private_data = NULL;
1237         fn->loaded = 0;
1238 }
1239
1240 /**
1241  * The init function of the wma decoder.
1242  *
1243  * \param f Its fields are filled in by the function.
1244  */
1245 void wmadec_filter_init(struct filter *f)
1246 {
1247         f->open = wmadec_open;
1248         f->close = wmadec_close;
1249         f->convert = wmadec_convert;
1250 }