2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
27 #include <sys/select.h>
36 #include "bitstream.h"
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
55 #define MAX_CHANNELS 2
57 #define NOISE_TAB_SIZE 8192
59 #define LSP_POW_BITS 7
61 struct private_wmadec_data
{
62 struct asf_header_info ahi
;
63 struct getbit_context gb
;
64 /** Whether to use the bit reservoir. */
65 int use_bit_reservoir
;
66 /** Whether to use variable block length. */
67 int use_variable_block_len
;
68 /** Whether to use exponent coding. */
70 /** Whether perceptual noise is added. */
74 int exponent_sizes
[BLOCK_NB_SIZES
];
75 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
76 /** The index of the first coef in high band. */
77 int high_band_start
[BLOCK_NB_SIZES
];
78 int coefs_end
[BLOCK_NB_SIZES
]; ///< max number of coded coefficients
79 int exponent_high_sizes
[BLOCK_NB_SIZES
];
80 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
83 /* coded values in high bands */
84 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
85 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
87 /* there are two possible tables for spectral coefficients */
88 struct vlc coef_vlc
[2];
89 uint16_t *run_table
[2];
90 uint16_t *level_table
[2];
91 const struct coef_vlc_table
*coef_vlcs
[2];
93 int frame_len
; ///< frame length in samples
94 int frame_len_bits
; ///< frame_len = 1 << frame_len_bits
95 /** Number of block sizes. */
98 int reset_block_lengths
;
99 int block_len_bits
; ///< log2 of current block length
100 int next_block_len_bits
; ///< log2 of next block length
101 int prev_block_len_bits
; ///< log2 of prev block length
102 int block_len
; ///< block length in samples
103 int block_pos
; ///< current position in frame
104 uint8_t ms_stereo
; ///< true if mid/side stereo mode
105 uint8_t channel_coded
[MAX_CHANNELS
]; ///< true if channel is coded
106 int exponents_bsize
[MAX_CHANNELS
]; ///< log2 ratio frame/exp. length
107 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
108 float max_exponent
[MAX_CHANNELS
];
109 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
110 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
111 float output
[BLOCK_MAX_SIZE
* 2];
112 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
113 float *windows
[BLOCK_NB_SIZES
];
114 /* output buffer for one frame and the last for IMDCT windowing */
115 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
116 /* last frame info */
117 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
119 int last_superframe_len
;
120 float noise_table
[NOISE_TAB_SIZE
];
122 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
123 /* lsp_to_curve tables */
124 float lsp_cos_table
[BLOCK_MAX_SIZE
];
125 float lsp_pow_e_table
[256];
126 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
127 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
131 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
133 #define HGAINVLCBITS 9
134 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
137 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
139 #define SINE_WINDOW(x) float sine_ ## x[x] __aligned(16)
148 static float *sine_windows
[6] = {
149 sine_128
, sine_256
, sine_512
, sine_1024
, sine_2048
, sine_4096
152 /* Generate a sine window. */
153 static void sine_window_init(float *window
, int n
)
157 for (i
= 0; i
< n
; i
++)
158 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
161 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
165 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
166 imdct_end(pwd
->mdct_ctx
[i
]);
167 if (pwd
->use_exp_vlc
)
168 free_vlc(&pwd
->exp_vlc
);
169 if (pwd
->use_noise_coding
)
170 free_vlc(&pwd
->hgain_vlc
);
171 for (i
= 0; i
< 2; i
++) {
172 free_vlc(&pwd
->coef_vlc
[i
]);
173 free(pwd
->run_table
[i
]);
174 free(pwd
->level_table
[i
]);
178 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
179 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
181 int n
= vlc_table
->n
;
182 const uint8_t *table_bits
= vlc_table
->huffbits
;
183 const uint32_t *table_codes
= vlc_table
->huffcodes
;
184 const uint16_t *levels_table
= vlc_table
->levels
;
185 uint16_t *run_table
, *level_table
;
186 int i
, l
, j
, k
, level
;
188 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
190 run_table
= para_malloc(n
* sizeof(uint16_t));
191 level_table
= para_malloc(n
* sizeof(uint16_t));
196 l
= levels_table
[k
++];
197 for (j
= 0; j
< l
; j
++) {
199 level_table
[i
] = level
;
204 *prun_table
= run_table
;
205 *plevel_table
= level_table
;
208 /* compute the scale factor band sizes for each MDCT block size */
209 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
212 struct asf_header_info
*ahi
= &pwd
->ahi
;
213 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
214 const uint8_t *table
;
216 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
217 block_len
= pwd
->frame_len
>> k
;
220 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
222 if (ahi
->sample_rate
>= 44100)
223 table
= exponent_band_44100
[a
];
224 else if (ahi
->sample_rate
>= 32000)
225 table
= exponent_band_32000
[a
];
226 else if (ahi
->sample_rate
>= 22050)
227 table
= exponent_band_22050
[a
];
231 for (i
= 0; i
< n
; i
++)
232 pwd
->exponent_bands
[k
][i
] = table
[i
];
233 pwd
->exponent_sizes
[k
] = n
;
237 for (i
= 0; i
< 25; i
++) {
238 a
= wma_critical_freqs
[i
];
239 b
= ahi
->sample_rate
;
240 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
245 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
246 if (pos
>= block_len
)
250 pwd
->exponent_sizes
[k
] = j
;
253 /* max number of coefs */
254 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
255 /* high freq computation */
256 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
257 / ahi
->sample_rate
+ 0.5);
258 n
= pwd
->exponent_sizes
[k
];
261 for (i
= 0; i
< n
; i
++) {
264 pos
+= pwd
->exponent_bands
[k
][i
];
266 if (start
< pwd
->high_band_start
[k
])
267 start
= pwd
->high_band_start
[k
];
268 if (end
> pwd
->coefs_end
[k
])
269 end
= pwd
->coefs_end
[k
];
271 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
273 pwd
->exponent_high_sizes
[k
] = j
;
277 static int wma_init(struct private_wmadec_data
*pwd
)
280 float bps1
, high_freq
;
284 struct asf_header_info
*ahi
= &pwd
->ahi
;
285 int flags2
= ahi
->flags2
;
287 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
288 || ahi
->channels
<= 0 || ahi
->channels
> 8
289 || ahi
->bit_rate
<= 0)
290 return -E_WMA_BAD_PARAMS
;
292 /* compute MDCT block size */
293 if (ahi
->sample_rate
<= 16000) {
294 pwd
->frame_len_bits
= 9;
295 } else if (ahi
->sample_rate
<= 22050) {
296 pwd
->frame_len_bits
= 10;
298 pwd
->frame_len_bits
= 11;
300 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
301 if (pwd
->use_variable_block_len
) {
303 nb
= ((flags2
>> 3) & 3) + 1;
304 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
306 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
309 pwd
->nb_block_sizes
= nb
+ 1;
311 pwd
->nb_block_sizes
= 1;
313 /* init rate dependent parameters */
314 pwd
->use_noise_coding
= 1;
315 high_freq
= ahi
->sample_rate
* 0.5;
317 /* wma2 rates are normalized */
318 sample_rate1
= ahi
->sample_rate
;
319 if (sample_rate1
>= 44100)
320 sample_rate1
= 44100;
321 else if (sample_rate1
>= 22050)
322 sample_rate1
= 22050;
323 else if (sample_rate1
>= 16000)
324 sample_rate1
= 16000;
325 else if (sample_rate1
>= 11025)
326 sample_rate1
= 11025;
327 else if (sample_rate1
>= 8000)
330 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
331 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
333 * Compute high frequency value and choose if noise coding should be
337 if (ahi
->channels
== 2)
339 if (sample_rate1
== 44100) {
341 pwd
->use_noise_coding
= 0;
343 high_freq
= high_freq
* 0.4;
344 } else if (sample_rate1
== 22050) {
346 pwd
->use_noise_coding
= 0;
347 else if (bps1
>= 0.72)
348 high_freq
= high_freq
* 0.7;
350 high_freq
= high_freq
* 0.6;
351 } else if (sample_rate1
== 16000) {
353 high_freq
= high_freq
* 0.5;
355 high_freq
= high_freq
* 0.3;
356 } else if (sample_rate1
== 11025) {
357 high_freq
= high_freq
* 0.7;
358 } else if (sample_rate1
== 8000) {
360 high_freq
= high_freq
* 0.5;
361 } else if (bps
> 0.75) {
362 pwd
->use_noise_coding
= 0;
364 high_freq
= high_freq
* 0.65;
368 high_freq
= high_freq
* 0.75;
369 } else if (bps
>= 0.6) {
370 high_freq
= high_freq
* 0.6;
372 high_freq
= high_freq
* 0.5;
375 PARA_INFO_LOG("channels=%d sample_rate=%d "
376 "bitrate=%d block_align=%d\n",
377 ahi
->channels
, ahi
->sample_rate
,
378 ahi
->bit_rate
, ahi
->block_align
);
379 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
380 "high_freq=%f bitoffset=%d\n",
381 pwd
->frame_len
, bps
, bps1
,
382 high_freq
, pwd
->byte_offset_bits
);
383 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
384 pwd
->use_noise_coding
, pwd
->use_exp_vlc
, pwd
->nb_block_sizes
);
386 compute_scale_factor_band_sizes(pwd
, high_freq
);
387 /* init MDCT windows : simple sinus window */
388 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
390 n
= 1 << (pwd
->frame_len_bits
- i
);
391 sine_window_init(sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
392 pwd
->windows
[i
] = sine_windows
[pwd
->frame_len_bits
- i
- 7];
395 pwd
->reset_block_lengths
= 1;
397 if (pwd
->use_noise_coding
) {
398 /* init the noise generator */
399 if (pwd
->use_exp_vlc
)
400 pwd
->noise_mult
= 0.02;
402 pwd
->noise_mult
= 0.04;
408 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
409 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
410 seed
= seed
* 314159 + 1;
411 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
416 /* choose the VLC tables for the coefficients */
418 if (ahi
->sample_rate
>= 32000) {
421 else if (bps1
< 1.16)
424 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
425 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
426 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
428 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
433 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
438 wdel
= M_PI
/ frame_len
;
439 for (i
= 0; i
< frame_len
; i
++)
440 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
442 /* tables for x^-0.25 computation */
443 for (i
= 0; i
< 256; i
++) {
445 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
448 /* These two tables are needed to avoid two operations in pow_m1_4. */
450 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
451 m
= (1 << LSP_POW_BITS
) + i
;
452 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
454 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
455 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
460 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
462 struct private_wmadec_data
*pwd
;
465 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
466 pwd
= para_calloc(sizeof(*pwd
));
467 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
473 pwd
->use_exp_vlc
= pwd
->ahi
.flags2
& 0x0001;
474 pwd
->use_bit_reservoir
= pwd
->ahi
.flags2
& 0x0002;
475 pwd
->use_variable_block_len
= pwd
->ahi
.flags2
& 0x0004;
481 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
482 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
486 if (pwd
->use_noise_coding
) {
487 PARA_INFO_LOG("using noise coding\n");
488 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
489 sizeof(wma_hgain_huffbits
), wma_hgain_huffbits
,
490 wma_hgain_huffcodes
, 2);
493 if (pwd
->use_exp_vlc
) {
494 PARA_INFO_LOG("using exp_vlc\n");
495 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
,
496 sizeof(wma_scale_huffbits
), wma_scale_huffbits
,
497 wma_scale_huffcodes
, 4);
499 PARA_INFO_LOG("using curve\n");
500 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
503 return pwd
->ahi
.header_len
;
507 * compute x^-0.25 with an exponent and mantissa table. We use linear
508 * interpolation to reduce the mantissa table size at a small speed
509 * expense (linear interpolation approximately doubles the number of
510 * bits of precision).
512 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
523 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
524 /* build interpolation scale: 1 <= t < 2. */
525 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
526 a
= pwd
->lsp_pow_m_table1
[m
];
527 b
= pwd
->lsp_pow_m_table2
[m
];
528 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
531 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
532 float *out
, float *val_max_ptr
, int n
, float *lsp
)
535 float p
, q
, w
, v
, val_max
;
538 for (i
= 0; i
< n
; i
++) {
541 w
= pwd
->lsp_cos_table
[i
];
542 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
549 v
= pow_m1_4(pwd
, v
);
554 *val_max_ptr
= val_max
;
557 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
558 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
560 float lsp_coefs
[NB_LSP_COEFS
];
563 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
564 if (i
== 0 || i
>= 8)
565 val
= get_bits(&pwd
->gb
, 3);
567 val
= get_bits(&pwd
->gb
, 4);
568 lsp_coefs
[i
] = wma_lsp_codebook
[i
][val
];
571 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
572 pwd
->block_len
, lsp_coefs
);
575 /* Decode exponents coded with VLC codes. */
576 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
578 int last_exp
, n
, code
;
579 const uint16_t *ptr
, *band_ptr
;
580 float v
, *q
, max_scale
, *q_end
;
582 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
584 q
= pwd
->exponents
[ch
];
585 q_end
= q
+ pwd
->block_len
;
590 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
593 /* NOTE: this offset is the same as MPEG4 AAC ! */
594 last_exp
+= code
- 60;
595 /* XXX: use a table */
596 v
= pow(10, last_exp
* (1.0 / 16.0));
604 pwd
->max_exponent
[ch
] = max_scale
;
608 /* compute src0 * src1 + src2 */
609 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
610 const float *src2
, int len
)
614 for (i
= 0; i
< len
; i
++)
615 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
618 static inline void vector_mult_reverse(float *dst
, const float *src0
,
619 const float *src1
, int len
)
624 for (i
= 0; i
< len
; i
++)
625 dst
[i
] = src0
[i
] * src1
[-i
];
629 * Apply MDCT window and add into output.
631 * We ensure that when the windows overlap their squared sum
632 * is always 1 (MDCT reconstruction rule).
634 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
636 float *in
= pwd
->output
;
637 int block_len
, bsize
, n
;
640 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
641 block_len
= pwd
->block_len
;
642 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
643 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
645 block_len
= 1 << pwd
->prev_block_len_bits
;
646 n
= (pwd
->block_len
- block_len
) / 2;
647 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
648 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
650 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
653 out
+= pwd
->block_len
;
654 in
+= pwd
->block_len
;
656 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
657 block_len
= pwd
->block_len
;
658 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
659 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
661 block_len
= 1 << pwd
->next_block_len_bits
;
662 n
= (pwd
->block_len
- block_len
) / 2;
663 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
664 memcpy(out
, in
, n
* sizeof(float));
665 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
667 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
671 static int wma_total_gain_to_bits(int total_gain
)
675 else if (total_gain
< 32)
677 else if (total_gain
< 40)
679 else if (total_gain
< 45)
685 static int compute_high_band_values(struct private_wmadec_data
*pwd
,
686 int bsize
, int nb_coefs
[MAX_CHANNELS
])
690 if (!pwd
->use_noise_coding
)
692 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
694 if (!pwd
->channel_coded
[ch
])
696 m
= pwd
->exponent_high_sizes
[bsize
];
697 for (i
= 0; i
< m
; i
++) {
698 a
= get_bit(&pwd
->gb
);
699 pwd
->high_band_coded
[ch
][i
] = a
;
702 nb_coefs
[ch
] -= pwd
->exponent_high_bands
[bsize
][i
];
705 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
707 if (!pwd
->channel_coded
[ch
])
709 n
= pwd
->exponent_high_sizes
[bsize
];
710 val
= (int)0x80000000;
711 for (i
= 0; i
< n
; i
++) {
712 if (!pwd
->high_band_coded
[ch
][i
])
714 if (val
== (int)0x80000000)
715 val
= get_bits(&pwd
->gb
, 7) - 19;
717 int code
= get_vlc(&pwd
->gb
,
718 pwd
->hgain_vlc
.table
, HGAINVLCBITS
,
724 pwd
->high_band_values
[ch
][i
] = val
;
730 static void compute_mdct_coefficients(struct private_wmadec_data
*pwd
,
731 int bsize
, int total_gain
, int nb_coefs
[MAX_CHANNELS
])
734 float mdct_norm
= 1.0 / (pwd
->block_len
/ 2);
736 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
738 float *coefs
, *exponents
, mult
, mult1
, noise
;
739 int i
, j
, n
, n1
, last_high_band
, esize
;
740 float exp_power
[HIGH_BAND_MAX_SIZE
];
742 if (!pwd
->channel_coded
[ch
])
744 coefs1
= pwd
->coefs1
[ch
];
745 exponents
= pwd
->exponents
[ch
];
746 esize
= pwd
->exponents_bsize
[ch
];
747 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
749 coefs
= pwd
->coefs
[ch
];
750 if (!pwd
->use_noise_coding
) {
751 /* XXX: optimize more */
753 for (i
= 0; i
< n
; i
++)
754 *coefs
++ = coefs1
[i
] *
755 exponents
[i
<< bsize
>> esize
] * mult
;
756 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
757 for (i
= 0; i
< n
; i
++)
762 n1
= pwd
->exponent_high_sizes
[bsize
];
763 /* compute power of high bands */
764 exponents
= pwd
->exponents
[ch
] +
765 (pwd
->high_band_start
[bsize
] << bsize
);
766 last_high_band
= 0; /* avoid warning */
767 for (j
= 0; j
< n1
; j
++) {
768 n
= pwd
->exponent_high_bands
[
769 pwd
->frame_len_bits
- pwd
->block_len_bits
][j
];
770 if (pwd
->high_band_coded
[ch
][j
]) {
773 for (i
= 0; i
< n
; i
++) {
774 val
= exponents
[i
<< bsize
>> esize
];
777 exp_power
[j
] = e2
/ n
;
780 exponents
+= n
<< bsize
;
782 /* main freqs and high freqs */
783 exponents
= pwd
->exponents
[ch
];
784 for (j
= -1; j
< n1
; j
++) {
786 n
= pwd
->high_band_start
[bsize
];
788 n
= pwd
->exponent_high_bands
[pwd
->frame_len_bits
789 - pwd
->block_len_bits
][j
];
790 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
791 /* use noise with specified power */
792 mult1
= sqrt(exp_power
[j
]
793 / exp_power
[last_high_band
]);
794 /* XXX: use a table */
795 mult1
= mult1
* pow(10,
796 pwd
->high_band_values
[ch
][j
] * 0.05);
797 mult1
/= (pwd
->max_exponent
[ch
] * pwd
->noise_mult
);
799 for (i
= 0; i
< n
; i
++) {
800 noise
= pwd
->noise_table
[pwd
->noise_index
];
801 pwd
->noise_index
= (pwd
->noise_index
+ 1)
802 & (NOISE_TAB_SIZE
- 1);
803 *coefs
++ = noise
* exponents
[
804 i
<< bsize
>> esize
] * mult1
;
806 exponents
+= n
<< bsize
;
808 /* coded values + small noise */
809 for (i
= 0; i
< n
; i
++) {
810 noise
= pwd
->noise_table
[pwd
->noise_index
];
811 pwd
->noise_index
= (pwd
->noise_index
+ 1)
812 & (NOISE_TAB_SIZE
- 1);
813 *coefs
++ = ((*coefs1
++) + noise
) *
814 exponents
[i
<< bsize
>> esize
]
817 exponents
+= n
<< bsize
;
820 /* very high freqs: noise */
821 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
822 mult1
= mult
* exponents
[((-1 << bsize
)) >> esize
];
823 for (i
= 0; i
< n
; i
++) {
824 *coefs
++ = pwd
->noise_table
[pwd
->noise_index
] * mult1
;
825 pwd
->noise_index
= (pwd
->noise_index
+ 1)
826 & (NOISE_TAB_SIZE
- 1);
832 * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
835 static int wma_decode_block(struct private_wmadec_data
*pwd
)
837 int ret
, n
, v
, ch
, code
, bsize
;
838 int coef_nb_bits
, total_gain
;
839 int nb_coefs
[MAX_CHANNELS
];
841 /* compute current block length */
842 if (pwd
->use_variable_block_len
) {
843 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
845 if (pwd
->reset_block_lengths
) {
846 pwd
->reset_block_lengths
= 0;
847 v
= get_bits(&pwd
->gb
, n
);
848 if (v
>= pwd
->nb_block_sizes
)
849 return -E_WMA_BLOCK_SIZE
;
850 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
851 v
= get_bits(&pwd
->gb
, n
);
852 if (v
>= pwd
->nb_block_sizes
)
853 return -E_WMA_BLOCK_SIZE
;
854 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
856 /* update block lengths */
857 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
858 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
860 v
= get_bits(&pwd
->gb
, n
);
861 if (v
>= pwd
->nb_block_sizes
)
862 return -E_WMA_BLOCK_SIZE
;
863 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
865 /* fixed block len */
866 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
867 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
868 pwd
->block_len_bits
= pwd
->frame_len_bits
;
871 /* now check if the block length is coherent with the frame length */
872 pwd
->block_len
= 1 << pwd
->block_len_bits
;
873 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
874 return -E_INCOHERENT_BLOCK_LEN
;
876 if (pwd
->ahi
.channels
== 2)
877 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
879 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
880 int a
= get_bit(&pwd
->gb
);
881 pwd
->channel_coded
[ch
] = a
;
885 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
887 /* if no channel coded, no need to go further */
888 /* XXX: fix potential framing problems */
893 * Read total gain and extract corresponding number of bits for coef
898 int a
= get_bits(&pwd
->gb
, 7);
904 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
906 /* compute number of coefficients */
907 n
= pwd
->coefs_end
[bsize
];
908 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
911 ret
= compute_high_band_values(pwd
, bsize
, nb_coefs
);
915 /* exponents can be reused in short blocks. */
916 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
917 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
918 if (pwd
->channel_coded
[ch
]) {
919 if (pwd
->use_exp_vlc
) {
920 ret
= decode_exp_vlc(pwd
, ch
);
924 decode_exp_lsp(pwd
, ch
);
925 pwd
->exponents_bsize
[ch
] = bsize
;
930 /* parse spectral coefficients : just RLE encoding */
931 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
932 struct vlc
*coef_vlc
;
933 int level
, run
, tindex
;
935 const uint16_t *level_table
, *run_table
;
937 if (!pwd
->channel_coded
[ch
])
940 * special VLC tables are used for ms stereo because there is
941 * potentially less energy there
943 tindex
= (ch
== 1 && pwd
->ms_stereo
);
944 coef_vlc
= &pwd
->coef_vlc
[tindex
];
945 run_table
= pwd
->run_table
[tindex
];
946 level_table
= pwd
->level_table
[tindex
];
948 ptr
= &pwd
->coefs1
[ch
][0];
949 eptr
= ptr
+ nb_coefs
[ch
];
950 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
952 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
,
956 if (code
== 1) /* EOB */
958 if (code
== 0) { /* escape */
959 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
960 /* reading block_len_bits would be better */
961 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
962 } else { /* normal code */
963 run
= run_table
[code
];
964 level
= level_table
[code
];
966 if (!get_bit(&pwd
->gb
))
970 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
974 if (ptr
>= eptr
) /* EOB can be omitted */
978 compute_mdct_coefficients(pwd
, bsize
, total_gain
, nb_coefs
);
979 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
983 * Nominal case for ms stereo: we do it before mdct.
985 * No need to optimize this case because it should almost never
988 if (!pwd
->channel_coded
[0]) {
989 PARA_NOTICE_LOG("rare ms-stereo\n");
990 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
991 pwd
->channel_coded
[0] = 1;
993 for (i
= 0; i
< pwd
->block_len
; i
++) {
994 a
= pwd
->coefs
[0][i
];
995 b
= pwd
->coefs
[1][i
];
996 pwd
->coefs
[0][i
] = a
+ b
;
997 pwd
->coefs
[1][i
] = a
- b
;
1001 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1005 n4
= pwd
->block_len
/ 2;
1006 if (pwd
->channel_coded
[ch
])
1007 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1008 else if (!(pwd
->ms_stereo
&& ch
== 1))
1009 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1011 /* multiply by the window and add in the frame */
1012 index
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1013 wma_window(pwd
, &pwd
->frame_out
[ch
][index
]);
1016 /* update block number */
1017 pwd
->block_pos
+= pwd
->block_len
;
1018 if (pwd
->block_pos
>= pwd
->frame_len
)
1025 * Clip a signed integer value into the -32768,32767 range.
1027 * \param a The value to clip.
1029 * \return The clipped value.
1031 static inline int16_t av_clip_int16(int a
)
1033 if ((a
+ 32768) & ~65535)
1034 return (a
>> 31) ^ 32767;
1039 /* Decode a frame of frame_len samples. */
1040 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1042 int ret
, i
, n
, ch
, incr
;
1046 /* read each block */
1049 ret
= wma_decode_block(pwd
);
1056 /* convert frame to integer */
1058 incr
= pwd
->ahi
.channels
;
1059 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1061 iptr
= pwd
->frame_out
[ch
];
1063 for (i
= 0; i
< n
; i
++) {
1064 *ptr
= av_clip_int16(lrintf(*iptr
++));
1067 /* prepare for next block */
1068 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1069 pwd
->frame_len
* sizeof(float));
1074 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1075 int *data_size
, const uint8_t *buf
, int buf_size
)
1080 if (buf_size
== 0) {
1081 pwd
->last_superframe_len
= 0;
1084 if (buf_size
< pwd
->ahi
.block_align
)
1086 buf_size
= pwd
->ahi
.block_align
;
1088 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1089 if (pwd
->use_bit_reservoir
) {
1090 int i
, nb_frames
, bit_offset
, pos
, len
;
1093 /* read super frame header */
1094 skip_bits(&pwd
->gb
, 4); /* super frame index */
1095 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1096 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1097 ret
= -E_WMA_OUTPUT_SPACE
;
1098 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1099 * sizeof(int16_t) > *data_size
)
1102 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1104 if (pwd
->last_superframe_len
> 0) {
1105 /* add bit_offset bits to last frame */
1106 ret
= -E_WMA_BAD_SUPERFRAME
;
1107 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1108 MAX_CODED_SUPERFRAME_SIZE
)
1110 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1113 *q
++ = get_bits(&pwd
->gb
, 8);
1117 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1119 /* XXX: bit_offset bits into last frame */
1120 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1121 MAX_CODED_SUPERFRAME_SIZE
);
1122 /* skip unused bits */
1123 if (pwd
->last_bitoffset
> 0)
1124 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1126 * This frame is stored in the last superframe and in
1129 ret
= wma_decode_frame(pwd
, samples
);
1132 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1135 /* read each frame starting from bit_offset */
1136 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1137 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1138 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1141 skip_bits(&pwd
->gb
, len
);
1143 pwd
->reset_block_lengths
= 1;
1144 for (i
= 0; i
< nb_frames
; i
++) {
1145 ret
= wma_decode_frame(pwd
, samples
);
1148 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1151 /* we copy the end of the frame in the last frame buffer */
1152 pos
= get_bits_count(&pwd
->gb
) +
1153 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1154 pwd
->last_bitoffset
= pos
& 7;
1156 len
= buf_size
- pos
;
1157 ret
= -E_WMA_BAD_SUPERFRAME
;
1158 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1160 pwd
->last_superframe_len
= len
;
1161 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1163 PARA_DEBUG_LOG("not using bit reservoir\n");
1164 ret
= -E_WMA_OUTPUT_SPACE
;
1165 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1167 /* single frame decode */
1168 ret
= wma_decode_frame(pwd
, samples
);
1171 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1173 PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %zd, eaten: %d\n",
1174 pwd
->frame_len
, pwd
->block_len
,
1175 (int8_t *) samples
- (int8_t *) data
, pwd
->ahi
.block_align
);
1176 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1177 return pwd
->ahi
.block_align
;
1179 /* reset the bit reservoir on errors */
1180 pwd
->last_superframe_len
= 0;
1184 static ssize_t
wmadec_convert(char *inbuffer
, size_t len
,
1185 struct filter_node
*fn
)
1187 int ret
, converted
= 0;
1188 struct private_wmadec_data
*pwd
= fn
->private_data
;
1190 if (len
<= WMA_FRAME_SKIP
)
1193 ret
= wma_decode_init(inbuffer
, len
, &pwd
);
1196 fn
->private_data
= pwd
;
1197 fn
->fc
->channels
= pwd
->ahi
.channels
;
1198 fn
->fc
->samplerate
= pwd
->ahi
.sample_rate
;
1199 return pwd
->ahi
.header_len
;
1203 if (converted
+ WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
> len
)
1205 out_size
= fn
->bufsize
- fn
->loaded
;
1206 if (out_size
< 128 * 1024)
1208 ret
= wma_decode_superframe(pwd
, fn
->buf
+ fn
->loaded
,
1209 &out_size
, (uint8_t *)inbuffer
+ converted
+ WMA_FRAME_SKIP
,
1210 len
- WMA_FRAME_SKIP
);
1213 fn
->loaded
+= out_size
;
1214 converted
+= ret
+ WMA_FRAME_SKIP
;
1219 static void wmadec_close(struct filter_node
*fn
)
1221 struct private_wmadec_data
*pwd
= fn
->private_data
;
1225 wmadec_cleanup(pwd
);
1228 free(fn
->private_data
);
1229 fn
->private_data
= NULL
;
1232 static void wmadec_open(struct filter_node
*fn
)
1234 fn
->bufsize
= 1024 * 1024;
1235 fn
->buf
= para_malloc(fn
->bufsize
);
1236 fn
->private_data
= NULL
;
1241 * The init function of the wma decoder.
1243 * \param f Its fields are filled in by the function.
1245 void wmadec_filter_init(struct filter
*f
)
1247 f
->open
= wmadec_open
;
1248 f
->close
= wmadec_close
;
1249 f
->convert
= wmadec_convert
;