stdout.c: Add a flag to activate buffer tree API.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27 #include <sys/select.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "imdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         /** Information contained in the audio file header. */
63         struct asf_header_info ahi;
64         struct getbit_context gb;
65         /** Whether to use the bit reservoir. */
66         int use_bit_reservoir;
67         /** Whether to use variable block length. */
68         int use_variable_block_len;
69         /** Whether to use exponent coding. */
70         int use_exp_vlc;
71         /** Whether perceptual noise is added. */
72         int use_noise_coding;
73         int byte_offset_bits;
74         struct vlc exp_vlc;
75         int exponent_sizes[BLOCK_NB_SIZES];
76         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
77         /** The index of the first coef in high band. */
78         int high_band_start[BLOCK_NB_SIZES];
79         /** Maximal number of coded coefficients. */
80         int coefs_end[BLOCK_NB_SIZES];
81         int exponent_high_sizes[BLOCK_NB_SIZES];
82         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
83         struct vlc hgain_vlc;
84
85         /* coded values in high bands */
86         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
87         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
88
89         /* there are two possible tables for spectral coefficients */
90         struct vlc coef_vlc[2];
91         uint16_t *run_table[2];
92         uint16_t *level_table[2];
93         const struct coef_vlc_table *coef_vlcs[2];
94         /** Frame length in samples. */
95         int frame_len;
96         /** log2 of frame_len. */
97         int frame_len_bits;
98         /** Number of block sizes. */
99         int nb_block_sizes;
100         /* block info */
101         int reset_block_lengths;
102         /** log2 of current block length. */
103         int block_len_bits;
104         /** log2 of next block length. */
105         int next_block_len_bits;
106         /** log2 of previous block length. */
107         int prev_block_len_bits;
108         /** Block length in samples. */
109         int block_len;
110         /** Current position in frame. */
111         int block_pos;
112         /** True if mid/side stereo mode. */
113         uint8_t ms_stereo;
114         /** True if channel is coded. */
115         uint8_t channel_coded[MAX_CHANNELS];
116         /** log2 ratio frame/exp. length. */
117         int exponents_bsize[MAX_CHANNELS];
118
119         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
120         float max_exponent[MAX_CHANNELS];
121         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
122         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
123         float output[BLOCK_MAX_SIZE * 2];
124         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
125         float *windows[BLOCK_NB_SIZES];
126         /** Output buffer for one frame and the last for IMDCT windowing. */
127         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
128         /** Last frame info. */
129         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
130         int last_bitoffset;
131         int last_superframe_len;
132         float noise_table[NOISE_TAB_SIZE];
133         int noise_index;
134         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
135         /* lsp_to_curve tables */
136         float lsp_cos_table[BLOCK_MAX_SIZE];
137         float lsp_pow_e_table[256];
138         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
139         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
140 };
141
142 #define EXPVLCBITS 8
143 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
144
145 #define HGAINVLCBITS 9
146 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
147
148 #define VLCBITS 9
149 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
150
151 #define SINE_WINDOW(x) float sine_ ## x[x] __a_aligned(16)
152
153 SINE_WINDOW(128);
154 SINE_WINDOW(256);
155 SINE_WINDOW(512);
156 SINE_WINDOW(1024);
157 SINE_WINDOW(2048);
158 SINE_WINDOW(4096);
159
160 static float *sine_windows[6] = {
161         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
162 };
163
164 /* Generate a sine window. */
165 static void sine_window_init(float *window, int n)
166 {
167         int i;
168
169         for (i = 0; i < n; i++)
170                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
171 }
172
173 static void wmadec_cleanup(struct private_wmadec_data *pwd)
174 {
175         int i;
176
177         for (i = 0; i < pwd->nb_block_sizes; i++)
178                 imdct_end(pwd->mdct_ctx[i]);
179         if (pwd->use_exp_vlc)
180                 free_vlc(&pwd->exp_vlc);
181         if (pwd->use_noise_coding)
182                 free_vlc(&pwd->hgain_vlc);
183         for (i = 0; i < 2; i++) {
184                 free_vlc(&pwd->coef_vlc[i]);
185                 free(pwd->run_table[i]);
186                 free(pwd->level_table[i]);
187         }
188 }
189
190 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
191                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
192 {
193         int n = vlc_table->n;
194         const uint8_t *table_bits = vlc_table->huffbits;
195         const uint32_t *table_codes = vlc_table->huffcodes;
196         const uint16_t *levels_table = vlc_table->levels;
197         uint16_t *run_table, *level_table;
198         int i, l, j, k, level;
199
200         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
201
202         run_table = para_malloc(n * sizeof(uint16_t));
203         level_table = para_malloc(n * sizeof(uint16_t));
204         i = 2;
205         level = 1;
206         k = 0;
207         while (i < n) {
208                 l = levels_table[k++];
209                 for (j = 0; j < l; j++) {
210                         run_table[i] = j;
211                         level_table[i] = level;
212                         i++;
213                 }
214                 level++;
215         }
216         *prun_table = run_table;
217         *plevel_table = level_table;
218 }
219
220 /* compute the scale factor band sizes for each MDCT block size */
221 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
222         float high_freq)
223 {
224         struct asf_header_info *ahi = &pwd->ahi;
225         int a, b, pos, lpos, k, block_len, i, j, n;
226         const uint8_t *table;
227
228         for (k = 0; k < pwd->nb_block_sizes; k++) {
229                 block_len = pwd->frame_len >> k;
230
231                 table = NULL;
232                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
233                 if (a < 3) {
234                         if (ahi->sample_rate >= 44100)
235                                 table = exponent_band_44100[a];
236                         else if (ahi->sample_rate >= 32000)
237                                 table = exponent_band_32000[a];
238                         else if (ahi->sample_rate >= 22050)
239                                 table = exponent_band_22050[a];
240                 }
241                 if (table) {
242                         n = *table++;
243                         for (i = 0; i < n; i++)
244                                 pwd->exponent_bands[k][i] = table[i];
245                         pwd->exponent_sizes[k] = n;
246                 } else {
247                         j = 0;
248                         lpos = 0;
249                         for (i = 0; i < 25; i++) {
250                                 a = wma_critical_freqs[i];
251                                 b = ahi->sample_rate;
252                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
253                                 pos <<= 2;
254                                 if (pos > block_len)
255                                         pos = block_len;
256                                 if (pos > lpos)
257                                         pwd->exponent_bands[k][j++] = pos - lpos;
258                                 if (pos >= block_len)
259                                         break;
260                                 lpos = pos;
261                         }
262                         pwd->exponent_sizes[k] = j;
263                 }
264
265                 /* max number of coefs */
266                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
267                 /* high freq computation */
268                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
269                         / ahi->sample_rate + 0.5);
270                 n = pwd->exponent_sizes[k];
271                 j = 0;
272                 pos = 0;
273                 for (i = 0; i < n; i++) {
274                         int start, end;
275                         start = pos;
276                         pos += pwd->exponent_bands[k][i];
277                         end = pos;
278                         if (start < pwd->high_band_start[k])
279                                 start = pwd->high_band_start[k];
280                         if (end > pwd->coefs_end[k])
281                                 end = pwd->coefs_end[k];
282                         if (end > start)
283                                 pwd->exponent_high_bands[k][j++] = end - start;
284                 }
285                 pwd->exponent_high_sizes[k] = j;
286         }
287 }
288
289 static int wma_init(struct private_wmadec_data *pwd)
290 {
291         int i;
292         float bps1, high_freq;
293         volatile float bps;
294         int sample_rate1;
295         int coef_vlc_table;
296         struct asf_header_info *ahi = &pwd->ahi;
297         int flags2 = ahi->flags2;
298
299         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
300                 || ahi->channels <= 0 || ahi->channels > 8
301                 || ahi->bit_rate <= 0)
302                 return -E_WMA_BAD_PARAMS;
303
304         /* compute MDCT block size */
305         if (ahi->sample_rate <= 16000)
306                 pwd->frame_len_bits = 9;
307         else if (ahi->sample_rate <= 22050)
308                 pwd->frame_len_bits = 10;
309         else
310                 pwd->frame_len_bits = 11;
311         pwd->frame_len = 1 << pwd->frame_len_bits;
312         if (pwd->use_variable_block_len) {
313                 int nb_max, nb;
314                 nb = ((flags2 >> 3) & 3) + 1;
315                 if ((ahi->bit_rate / ahi->channels) >= 32000)
316                         nb += 2;
317                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
318                 if (nb > nb_max)
319                         nb = nb_max;
320                 pwd->nb_block_sizes = nb + 1;
321         } else
322                 pwd->nb_block_sizes = 1;
323
324         /* init rate dependent parameters */
325         pwd->use_noise_coding = 1;
326         high_freq = ahi->sample_rate * 0.5;
327
328         /* wma2 rates are normalized */
329         sample_rate1 = ahi->sample_rate;
330         if (sample_rate1 >= 44100)
331                 sample_rate1 = 44100;
332         else if (sample_rate1 >= 22050)
333                 sample_rate1 = 22050;
334         else if (sample_rate1 >= 16000)
335                 sample_rate1 = 16000;
336         else if (sample_rate1 >= 11025)
337                 sample_rate1 = 11025;
338         else if (sample_rate1 >= 8000)
339                 sample_rate1 = 8000;
340
341         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
342         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
343         /*
344          * Compute high frequency value and choose if noise coding should be
345          * activated.
346          */
347         bps1 = bps;
348         if (ahi->channels == 2)
349                 bps1 = bps * 1.6;
350         if (sample_rate1 == 44100) {
351                 if (bps1 >= 0.61)
352                         pwd->use_noise_coding = 0;
353                 else
354                         high_freq = high_freq * 0.4;
355         } else if (sample_rate1 == 22050) {
356                 if (bps1 >= 1.16)
357                         pwd->use_noise_coding = 0;
358                 else if (bps1 >= 0.72)
359                         high_freq = high_freq * 0.7;
360                 else
361                         high_freq = high_freq * 0.6;
362         } else if (sample_rate1 == 16000) {
363                 if (bps > 0.5)
364                         high_freq = high_freq * 0.5;
365                 else
366                         high_freq = high_freq * 0.3;
367         } else if (sample_rate1 == 11025)
368                 high_freq = high_freq * 0.7;
369         else if (sample_rate1 == 8000) {
370                 if (bps <= 0.625)
371                         high_freq = high_freq * 0.5;
372                 else if (bps > 0.75)
373                         pwd->use_noise_coding = 0;
374                 else
375                         high_freq = high_freq * 0.65;
376         } else {
377                 if (bps >= 0.8)
378                         high_freq = high_freq * 0.75;
379                 else if (bps >= 0.6)
380                         high_freq = high_freq * 0.6;
381                 else
382                         high_freq = high_freq * 0.5;
383         }
384         PARA_INFO_LOG("channels=%d sample_rate=%d "
385                 "bitrate=%d block_align=%d\n",
386                 ahi->channels, ahi->sample_rate,
387                 ahi->bit_rate, ahi->block_align);
388         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
389                 "high_freq=%f bitoffset=%d\n",
390                 pwd->frame_len, bps, bps1,
391                 high_freq, pwd->byte_offset_bits);
392         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
393                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
394
395         compute_scale_factor_band_sizes(pwd, high_freq);
396         /* init MDCT windows : simple sinus window */
397         for (i = 0; i < pwd->nb_block_sizes; i++) {
398                 int n;
399                 n = 1 << (pwd->frame_len_bits - i);
400                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
401                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
402         }
403
404         pwd->reset_block_lengths = 1;
405
406         if (pwd->use_noise_coding) {
407                 /* init the noise generator */
408                 if (pwd->use_exp_vlc)
409                         pwd->noise_mult = 0.02;
410                 else
411                         pwd->noise_mult = 0.04;
412
413                 {
414                         unsigned int seed;
415                         float norm;
416                         seed = 1;
417                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
418                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
419                                 seed = seed * 314159 + 1;
420                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
421                         }
422                 }
423         }
424
425         /* choose the VLC tables for the coefficients */
426         coef_vlc_table = 2;
427         if (ahi->sample_rate >= 32000) {
428                 if (bps1 < 0.72)
429                         coef_vlc_table = 0;
430                 else if (bps1 < 1.16)
431                         coef_vlc_table = 1;
432         }
433         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
434         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
435         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
436                 pwd->coef_vlcs[0]);
437         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
438                 pwd->coef_vlcs[1]);
439         return 0;
440 }
441
442 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
443 {
444         float wdel, a, b;
445         int i, e, m;
446
447         wdel = M_PI / frame_len;
448         for (i = 0; i < frame_len; i++)
449                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
450
451         /* tables for x^-0.25 computation */
452         for (i = 0; i < 256; i++) {
453                 e = i - 126;
454                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
455         }
456
457         /* These two tables are needed to avoid two operations in pow_m1_4. */
458         b = 1.0;
459         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
460                 m = (1 << LSP_POW_BITS) + i;
461                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
462                 a = pow(a, -0.25);
463                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
464                 pwd->lsp_pow_m_table2[i] = b - a;
465                 b = a;
466         }
467 }
468
469 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
470 {
471         struct private_wmadec_data *pwd;
472         int ret, i;
473
474         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
475         pwd = para_calloc(sizeof(*pwd));
476         ret = read_asf_header(initial_buf, len, &pwd->ahi);
477         if (ret <= 0) {
478                 free(pwd);
479                 return ret;
480         }
481
482         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
483         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
484         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
485
486         ret = wma_init(pwd);
487         if (ret < 0)
488                 return ret;
489         /* init MDCT */
490         for (i = 0; i < pwd->nb_block_sizes; i++) {
491                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
492                 if (ret < 0)
493                         return ret;
494         }
495         if (pwd->use_noise_coding) {
496                 PARA_INFO_LOG("using noise coding\n");
497                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
498                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
499                         wma_hgain_huffcodes, 2);
500         }
501
502         if (pwd->use_exp_vlc) {
503                 PARA_INFO_LOG("using exp_vlc\n");
504                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
505                 sizeof(wma_scale_huffbits), wma_scale_huffbits,
506                 wma_scale_huffcodes, 4);
507         } else {
508                 PARA_INFO_LOG("using curve\n");
509                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
510         }
511         *result = pwd;
512         return pwd->ahi.header_len;
513 }
514
515 /**
516  * compute x^-0.25 with an exponent and mantissa table. We use linear
517  * interpolation to reduce the mantissa table size at a small speed
518  * expense (linear interpolation approximately doubles the number of
519  * bits of precision).
520  */
521 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
522 {
523         union {
524                 float f;
525                 unsigned int v;
526         } u, t;
527         unsigned int e, m;
528         float a, b;
529
530         u.f = x;
531         e = u.v >> 23;
532         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
533         /* build interpolation scale: 1 <= t < 2. */
534         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
535         a = pwd->lsp_pow_m_table1[m];
536         b = pwd->lsp_pow_m_table2[m];
537         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
538 }
539
540 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
541                 float *out, float *val_max_ptr, int n, float *lsp)
542 {
543         int i, j;
544         float p, q, w, v, val_max;
545
546         val_max = 0;
547         for (i = 0; i < n; i++) {
548                 p = 0.5f;
549                 q = 0.5f;
550                 w = pwd->lsp_cos_table[i];
551                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
552                         q *= w - lsp[j - 1];
553                         p *= w - lsp[j];
554                 }
555                 p *= p * (2.0f - w);
556                 q *= q * (2.0f + w);
557                 v = p + q;
558                 v = pow_m1_4(pwd, v);
559                 if (v > val_max)
560                         val_max = v;
561                 out[i] = v;
562         }
563         *val_max_ptr = val_max;
564 }
565
566 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
567 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
568 {
569         float lsp_coefs[NB_LSP_COEFS];
570         int val, i;
571
572         for (i = 0; i < NB_LSP_COEFS; i++) {
573                 if (i == 0 || i >= 8)
574                         val = get_bits(&pwd->gb, 3);
575                 else
576                         val = get_bits(&pwd->gb, 4);
577                 lsp_coefs[i] = wma_lsp_codebook[i][val];
578         }
579
580         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
581                 pwd->block_len, lsp_coefs);
582 }
583
584 /* Decode exponents coded with VLC codes. */
585 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
586 {
587         int last_exp, n, code;
588         const uint16_t *ptr, *band_ptr;
589         float v, *q, max_scale, *q_end;
590
591         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
592         ptr = band_ptr;
593         q = pwd->exponents[ch];
594         q_end = q + pwd->block_len;
595         max_scale = 0;
596         last_exp = 36;
597
598         while (q < q_end) {
599                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
600                 if (code < 0)
601                         return code;
602                 /* NOTE: this offset is the same as MPEG4 AAC ! */
603                 last_exp += code - 60;
604                 /* XXX: use a table */
605                 v = pow(10, last_exp * (1.0 / 16.0));
606                 if (v > max_scale)
607                         max_scale = v;
608                 n = *ptr++;
609                 do {
610                         *q++ = v;
611                 } while (--n);
612         }
613         pwd->max_exponent[ch] = max_scale;
614         return 0;
615 }
616
617 /* compute src0 * src1 + src2 */
618 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
619                 const float *src2, int len)
620 {
621         int i;
622
623         for (i = 0; i < len; i++)
624                 dst[i] = src0[i] * src1[i] + src2[i];
625 }
626
627 static inline void vector_mult_reverse(float *dst, const float *src0,
628                 const float *src1, int len)
629 {
630         int i;
631
632         src1 += len - 1;
633         for (i = 0; i < len; i++)
634                 dst[i] = src0[i] * src1[-i];
635 }
636
637 /**
638  * Apply MDCT window and add into output.
639  *
640  * We ensure that when the windows overlap their squared sum
641  * is always 1 (MDCT reconstruction rule).
642  */
643 static void wma_window(struct private_wmadec_data *pwd, float *out)
644 {
645         float *in = pwd->output;
646         int block_len, bsize, n;
647
648         /* left part */
649         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
650                 block_len = pwd->block_len;
651                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
652                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
653         } else {
654                 block_len = 1 << pwd->prev_block_len_bits;
655                 n = (pwd->block_len - block_len) / 2;
656                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
657                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
658                         block_len);
659                 memcpy(out + n + block_len, in + n + block_len,
660                         n * sizeof(float));
661         }
662         out += pwd->block_len;
663         in += pwd->block_len;
664         /* right part */
665         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
666                 block_len = pwd->block_len;
667                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
668                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
669         } else {
670                 block_len = 1 << pwd->next_block_len_bits;
671                 n = (pwd->block_len - block_len) / 2;
672                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
673                 memcpy(out, in, n * sizeof(float));
674                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
675                         block_len);
676                 memset(out + n + block_len, 0, n * sizeof(float));
677         }
678 }
679
680 static int wma_total_gain_to_bits(int total_gain)
681 {
682         if (total_gain < 15)
683                 return 13;
684         else if (total_gain < 32)
685                 return 12;
686         else if (total_gain < 40)
687                 return 11;
688         else if (total_gain < 45)
689                 return 10;
690         else
691                 return 9;
692 }
693
694 static int compute_high_band_values(struct private_wmadec_data *pwd,
695                 int bsize, int nb_coefs[MAX_CHANNELS])
696 {
697         int ch;
698
699         if (!pwd->use_noise_coding)
700                 return 0;
701         for (ch = 0; ch < pwd->ahi.channels; ch++) {
702                 int i, m, a;
703                 if (!pwd->channel_coded[ch])
704                         continue;
705                 m = pwd->exponent_high_sizes[bsize];
706                 for (i = 0; i < m; i++) {
707                         a = get_bit(&pwd->gb);
708                         pwd->high_band_coded[ch][i] = a;
709                         if (!a)
710                                 continue;
711                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
712                 }
713         }
714         for (ch = 0; ch < pwd->ahi.channels; ch++) {
715                 int i, n, val;
716                 if (!pwd->channel_coded[ch])
717                         continue;
718                 n = pwd->exponent_high_sizes[bsize];
719                 val = (int)0x80000000;
720                 for (i = 0; i < n; i++) {
721                         if (!pwd->high_band_coded[ch][i])
722                                 continue;
723                         if (val == (int)0x80000000)
724                                 val = get_bits(&pwd->gb, 7) - 19;
725                         else {
726                                 int code = get_vlc(&pwd->gb,
727                                         pwd->hgain_vlc.table, HGAINVLCBITS,
728                                         HGAINMAX);
729                                 if (code < 0)
730                                         return code;
731                                 val += code - 18;
732                         }
733                         pwd->high_band_values[ch][i] = val;
734                 }
735         }
736         return 1;
737 }
738
739 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
740                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
741 {
742         int ch;
743         float mdct_norm = 1.0 / (pwd->block_len / 2);
744
745         for (ch = 0; ch < pwd->ahi.channels; ch++) {
746                 int16_t *coefs1;
747                 float *coefs, *exponents, mult, mult1, noise;
748                 int i, j, n, n1, last_high_band, esize;
749                 float exp_power[HIGH_BAND_MAX_SIZE];
750
751                 if (!pwd->channel_coded[ch])
752                         continue;
753                 coefs1 = pwd->coefs1[ch];
754                 exponents = pwd->exponents[ch];
755                 esize = pwd->exponents_bsize[ch];
756                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
757                 mult *= mdct_norm;
758                 coefs = pwd->coefs[ch];
759                 if (!pwd->use_noise_coding) {
760                         /* XXX: optimize more */
761                         n = nb_coefs[ch];
762                         for (i = 0; i < n; i++)
763                                 *coefs++ = coefs1[i] *
764                                         exponents[i << bsize >> esize] * mult;
765                         n = pwd->block_len - pwd->coefs_end[bsize];
766                         for (i = 0; i < n; i++)
767                                 *coefs++ = 0.0;
768                         continue;
769                 }
770                 mult1 = mult;
771                 n1 = pwd->exponent_high_sizes[bsize];
772                 /* compute power of high bands */
773                 exponents = pwd->exponents[ch] +
774                         (pwd->high_band_start[bsize] << bsize);
775                 last_high_band = 0; /* avoid warning */
776                 for (j = 0; j < n1; j++) {
777                         n = pwd->exponent_high_bands[
778                                 pwd->frame_len_bits - pwd->block_len_bits][j];
779                         if (pwd->high_band_coded[ch][j]) {
780                                 float e2, val;
781                                 e2 = 0;
782                                 for (i = 0; i < n; i++) {
783                                         val = exponents[i << bsize >> esize];
784                                         e2 += val * val;
785                                 }
786                                 exp_power[j] = e2 / n;
787                                 last_high_band = j;
788                         }
789                         exponents += n << bsize;
790                 }
791                 /* main freqs and high freqs */
792                 exponents = pwd->exponents[ch];
793                 for (j = -1; j < n1; j++) {
794                         if (j < 0)
795                                 n = pwd->high_band_start[bsize];
796                         else
797                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
798                                         - pwd->block_len_bits][j];
799                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
800                                 /* use noise with specified power */
801                                 mult1 = sqrt(exp_power[j]
802                                         / exp_power[last_high_band]);
803                                 /* XXX: use a table */
804                                 mult1 = mult1 * pow(10,
805                                         pwd->high_band_values[ch][j] * 0.05);
806                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
807                                 mult1 *= mdct_norm;
808                                 for (i = 0; i < n; i++) {
809                                         noise = pwd->noise_table[pwd->noise_index];
810                                         pwd->noise_index = (pwd->noise_index + 1)
811                                                 & (NOISE_TAB_SIZE - 1);
812                                         *coefs++ = noise * exponents[
813                                                 i << bsize >> esize] * mult1;
814                                 }
815                                 exponents += n << bsize;
816                         } else {
817                                 /* coded values + small noise */
818                                 for (i = 0; i < n; i++) {
819                                         noise = pwd->noise_table[pwd->noise_index];
820                                         pwd->noise_index = (pwd->noise_index + 1)
821                                                 & (NOISE_TAB_SIZE - 1);
822                                         *coefs++ = ((*coefs1++) + noise) *
823                                                 exponents[i << bsize >> esize]
824                                                 * mult;
825                                 }
826                                 exponents += n << bsize;
827                         }
828                 }
829                 /* very high freqs: noise */
830                 n = pwd->block_len - pwd->coefs_end[bsize];
831                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
832                 for (i = 0; i < n; i++) {
833                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
834                         pwd->noise_index = (pwd->noise_index + 1)
835                                 & (NOISE_TAB_SIZE - 1);
836                 }
837         }
838 }
839
840 /**
841  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
842  * errors.
843  */
844 static int wma_decode_block(struct private_wmadec_data *pwd)
845 {
846         int ret, n, v, ch, code, bsize;
847         int coef_nb_bits, total_gain;
848         int nb_coefs[MAX_CHANNELS];
849
850         /* compute current block length */
851         if (pwd->use_variable_block_len) {
852                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
853
854                 if (pwd->reset_block_lengths) {
855                         pwd->reset_block_lengths = 0;
856                         v = get_bits(&pwd->gb, n);
857                         if (v >= pwd->nb_block_sizes)
858                                 return -E_WMA_BLOCK_SIZE;
859                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
860                         v = get_bits(&pwd->gb, n);
861                         if (v >= pwd->nb_block_sizes)
862                                 return -E_WMA_BLOCK_SIZE;
863                         pwd->block_len_bits = pwd->frame_len_bits - v;
864                 } else {
865                         /* update block lengths */
866                         pwd->prev_block_len_bits = pwd->block_len_bits;
867                         pwd->block_len_bits = pwd->next_block_len_bits;
868                 }
869                 v = get_bits(&pwd->gb, n);
870                 if (v >= pwd->nb_block_sizes)
871                         return -E_WMA_BLOCK_SIZE;
872                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
873         } else {
874                 /* fixed block len */
875                 pwd->next_block_len_bits = pwd->frame_len_bits;
876                 pwd->prev_block_len_bits = pwd->frame_len_bits;
877                 pwd->block_len_bits = pwd->frame_len_bits;
878         }
879
880         /* now check if the block length is coherent with the frame length */
881         pwd->block_len = 1 << pwd->block_len_bits;
882         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
883                 return -E_INCOHERENT_BLOCK_LEN;
884
885         if (pwd->ahi.channels == 2)
886                 pwd->ms_stereo = get_bit(&pwd->gb);
887         v = 0;
888         for (ch = 0; ch < pwd->ahi.channels; ch++) {
889                 int a = get_bit(&pwd->gb);
890                 pwd->channel_coded[ch] = a;
891                 v |= a;
892         }
893
894         bsize = pwd->frame_len_bits - pwd->block_len_bits;
895
896         /* if no channel coded, no need to go further */
897         /* XXX: fix potential framing problems */
898         if (!v)
899                 goto next;
900
901         /*
902          * Read total gain and extract corresponding number of bits for coef
903          * escape coding.
904          */
905         total_gain = 1;
906         for (;;) {
907                 int a = get_bits(&pwd->gb, 7);
908                 total_gain += a;
909                 if (a != 127)
910                         break;
911         }
912
913         coef_nb_bits = wma_total_gain_to_bits(total_gain);
914
915         /* compute number of coefficients */
916         n = pwd->coefs_end[bsize];
917         for (ch = 0; ch < pwd->ahi.channels; ch++)
918                 nb_coefs[ch] = n;
919
920         ret = compute_high_band_values(pwd, bsize, nb_coefs);
921         if (ret < 0)
922                 return ret;
923
924         /* exponents can be reused in short blocks. */
925         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
926                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
927                         if (pwd->channel_coded[ch]) {
928                                 if (pwd->use_exp_vlc) {
929                                         ret = decode_exp_vlc(pwd, ch);
930                                         if (ret < 0)
931                                                 return ret;
932                                 } else
933                                         decode_exp_lsp(pwd, ch);
934                                 pwd->exponents_bsize[ch] = bsize;
935                         }
936                 }
937         }
938
939         /* parse spectral coefficients : just RLE encoding */
940         for (ch = 0; ch < pwd->ahi.channels; ch++) {
941                 struct vlc *coef_vlc;
942                 int level, run, tindex;
943                 int16_t *ptr, *eptr;
944                 const uint16_t *level_table, *run_table;
945
946                 if (!pwd->channel_coded[ch])
947                         continue;
948                 /*
949                  * special VLC tables are used for ms stereo because there is
950                  * potentially less energy there
951                  */
952                 tindex = (ch == 1 && pwd->ms_stereo);
953                 coef_vlc = &pwd->coef_vlc[tindex];
954                 run_table = pwd->run_table[tindex];
955                 level_table = pwd->level_table[tindex];
956                 /* XXX: optimize */
957                 ptr = &pwd->coefs1[ch][0];
958                 eptr = ptr + nb_coefs[ch];
959                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
960                 for (;;) {
961                         code = get_vlc(&pwd->gb, coef_vlc->table,
962                                 VLCBITS, VLCMAX);
963                         if (code < 0)
964                                 return code;
965                         if (code == 1) /* EOB */
966                                 break;
967                         if (code == 0) { /* escape */
968                                 level = get_bits(&pwd->gb, coef_nb_bits);
969                                 /* reading block_len_bits would be better */
970                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
971                         } else { /* normal code */
972                                 run = run_table[code];
973                                 level = level_table[code];
974                         }
975                         if (!get_bit(&pwd->gb))
976                                 level = -level;
977                         ptr += run;
978                         if (ptr >= eptr) {
979                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
980                                 break;
981                         }
982                         *ptr++ = level;
983                         if (ptr >= eptr) /* EOB can be omitted */
984                                 break;
985                 }
986         }
987         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
988         if (pwd->ms_stereo && pwd->channel_coded[1]) {
989                 float a, b;
990                 int i;
991                 /*
992                  * Nominal case for ms stereo: we do it before mdct.
993                  *
994                  * No need to optimize this case because it should almost never
995                  * happen.
996                  */
997                 if (!pwd->channel_coded[0]) {
998                         PARA_NOTICE_LOG("rare ms-stereo\n");
999                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
1000                         pwd->channel_coded[0] = 1;
1001                 }
1002                 for (i = 0; i < pwd->block_len; i++) {
1003                         a = pwd->coefs[0][i];
1004                         b = pwd->coefs[1][i];
1005                         pwd->coefs[0][i] = a + b;
1006                         pwd->coefs[1][i] = a - b;
1007                 }
1008         }
1009 next:
1010         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1011                 int n4, index;
1012
1013                 n = pwd->block_len;
1014                 n4 = pwd->block_len / 2;
1015                 if (pwd->channel_coded[ch])
1016                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1017                 else if (!(pwd->ms_stereo && ch == 1))
1018                         memset(pwd->output, 0, sizeof(pwd->output));
1019
1020                 /* multiply by the window and add in the frame */
1021                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1022                 wma_window(pwd, &pwd->frame_out[ch][index]);
1023         }
1024
1025         /* update block number */
1026         pwd->block_pos += pwd->block_len;
1027         if (pwd->block_pos >= pwd->frame_len)
1028                 return 1;
1029         else
1030                 return 0;
1031 }
1032
1033 /*
1034  * Clip a signed integer value into the -32768,32767 range.
1035  *
1036  * \param a The value to clip.
1037  *
1038  * \return The clipped value.
1039  */
1040 static inline int16_t av_clip_int16(int a)
1041 {
1042         if ((a + 32768) & ~65535)
1043                 return (a >> 31) ^ 32767;
1044         else
1045                 return a;
1046 }
1047
1048 /* Decode a frame of frame_len samples. */
1049 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1050 {
1051         int ret, i, n, ch, incr;
1052         int16_t *ptr;
1053         float *iptr;
1054
1055         /* read each block */
1056         pwd->block_pos = 0;
1057         for (;;) {
1058                 ret = wma_decode_block(pwd);
1059                 if (ret < 0)
1060                         return ret;
1061                 if (ret)
1062                         break;
1063         }
1064
1065         /* convert frame to integer */
1066         n = pwd->frame_len;
1067         incr = pwd->ahi.channels;
1068         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1069                 ptr = samples + ch;
1070                 iptr = pwd->frame_out[ch];
1071
1072                 for (i = 0; i < n; i++) {
1073                         *ptr = av_clip_int16(lrintf(*iptr++));
1074                         ptr += incr;
1075                 }
1076                 /* prepare for next block */
1077                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1078                         pwd->frame_len * sizeof(float));
1079         }
1080         return 0;
1081 }
1082
1083 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1084                 int *data_size, const uint8_t *buf, int buf_size)
1085 {
1086         int ret;
1087         int16_t *samples;
1088
1089         if (buf_size == 0) {
1090                 pwd->last_superframe_len = 0;
1091                 return 0;
1092         }
1093         if (buf_size < pwd->ahi.block_align)
1094                 return 0;
1095         buf_size = pwd->ahi.block_align;
1096         samples = data;
1097         init_get_bits(&pwd->gb, buf, buf_size);
1098         if (pwd->use_bit_reservoir) {
1099                 int i, nb_frames, bit_offset, pos, len;
1100                 uint8_t *q;
1101
1102                 /* read super frame header */
1103                 skip_bits(&pwd->gb, 4); /* super frame index */
1104                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1105                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1106                 ret = -E_WMA_OUTPUT_SPACE;
1107                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1108                                 * sizeof(int16_t) > *data_size)
1109                         goto fail;
1110
1111                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1112
1113                 if (pwd->last_superframe_len > 0) {
1114                         /* add bit_offset bits to last frame */
1115                         ret = -E_WMA_BAD_SUPERFRAME;
1116                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1117                                         MAX_CODED_SUPERFRAME_SIZE)
1118                                 goto fail;
1119                         q = pwd->last_superframe + pwd->last_superframe_len;
1120                         len = bit_offset;
1121                         while (len > 7) {
1122                                 *q++ = get_bits(&pwd->gb, 8);
1123                                 len -= 8;
1124                         }
1125                         if (len > 0)
1126                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1127
1128                         /* XXX: bit_offset bits into last frame */
1129                         init_get_bits(&pwd->gb, pwd->last_superframe,
1130                                 MAX_CODED_SUPERFRAME_SIZE);
1131                         /* skip unused bits */
1132                         if (pwd->last_bitoffset > 0)
1133                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1134                         /*
1135                          * This frame is stored in the last superframe and in
1136                          * the current one.
1137                          */
1138                         ret = wma_decode_frame(pwd, samples);
1139                         if (ret < 0)
1140                                 goto fail;
1141                         samples += pwd->ahi.channels * pwd->frame_len;
1142                 }
1143
1144                 /* read each frame starting from bit_offset */
1145                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1146                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1147                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1148                 len = pos & 7;
1149                 if (len > 0)
1150                         skip_bits(&pwd->gb, len);
1151
1152                 pwd->reset_block_lengths = 1;
1153                 for (i = 0; i < nb_frames; i++) {
1154                         ret = wma_decode_frame(pwd, samples);
1155                         if (ret < 0)
1156                                 goto fail;
1157                         samples += pwd->ahi.channels * pwd->frame_len;
1158                 }
1159
1160                 /* we copy the end of the frame in the last frame buffer */
1161                 pos = get_bits_count(&pwd->gb) +
1162                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1163                 pwd->last_bitoffset = pos & 7;
1164                 pos >>= 3;
1165                 len = buf_size - pos;
1166                 ret = -E_WMA_BAD_SUPERFRAME;
1167                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1168                         goto fail;
1169                 pwd->last_superframe_len = len;
1170                 memcpy(pwd->last_superframe, buf + pos, len);
1171         } else {
1172                 PARA_DEBUG_LOG("not using bit reservoir\n");
1173                 ret = -E_WMA_OUTPUT_SPACE;
1174                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1175                         goto fail;
1176                 /* single frame decode */
1177                 ret = wma_decode_frame(pwd, samples);
1178                 if (ret < 0)
1179                         goto fail;
1180                 samples += pwd->ahi.channels * pwd->frame_len;
1181         }
1182         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1183                 pwd->frame_len, pwd->block_len,
1184                 (int)((int8_t *)samples - (int8_t *)data), pwd->ahi.block_align);
1185         *data_size = (int8_t *)samples - (int8_t *)data;
1186         return pwd->ahi.block_align;
1187 fail:
1188         /* reset the bit reservoir on errors */
1189         pwd->last_superframe_len = 0;
1190         return ret;
1191 }
1192
1193 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1194                 struct filter_node *fn)
1195 {
1196         int ret, converted = 0;
1197         struct private_wmadec_data *pwd = fn->private_data;
1198
1199         if (len <= WMA_FRAME_SKIP)
1200                 return 0;
1201         if (!pwd) {
1202                 ret = wma_decode_init(inbuffer, len, &pwd);
1203                 if (ret <= 0)
1204                         return ret;
1205                 fn->private_data = pwd;
1206                 fn->fc->channels = pwd->ahi.channels;
1207                 fn->fc->samplerate = pwd->ahi.sample_rate;
1208                 return pwd->ahi.header_len;
1209         }
1210         for (;;) {
1211                 int out_size;
1212                 if (converted + WMA_FRAME_SKIP + pwd->ahi.block_align > len)
1213                         break;
1214                 out_size = fn->bufsize - fn->loaded;
1215                 if (out_size < 128 * 1024)
1216                         break;
1217                 ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1218                         &out_size, (uint8_t *)inbuffer + converted + WMA_FRAME_SKIP,
1219                         len - WMA_FRAME_SKIP);
1220                 if (ret < 0)
1221                         return ret;
1222                 fn->loaded += out_size;
1223                 converted += ret + WMA_FRAME_SKIP;
1224         }
1225         return converted;
1226 }
1227
1228 static void wmadec_close(struct filter_node *fn)
1229 {
1230         struct private_wmadec_data *pwd = fn->private_data;
1231
1232         if (!pwd)
1233                 return;
1234         wmadec_cleanup(pwd);
1235         free(fn->buf);
1236         fn->buf = NULL;
1237         free(fn->private_data);
1238         fn->private_data = NULL;
1239 }
1240
1241 static void wmadec_open(struct filter_node *fn)
1242 {
1243         fn->bufsize = 1024 * 1024;
1244         fn->buf = para_malloc(fn->bufsize);
1245         fn->private_data = NULL;
1246         fn->loaded = 0;
1247 }
1248
1249 /**
1250  * The init function of the wma decoder.
1251  *
1252  * \param f Its fields are filled in by the function.
1253  */
1254 void wmadec_filter_init(struct filter *f)
1255 {
1256         f->open = wmadec_open;
1257         f->close = wmadec_close;
1258         f->convert = wmadec_convert;
1259 }