Merge branch 'refs/heads/t/portable_io'
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #include <math.h>
19 #include <regex.h>
20 #include <sys/select.h>
21
22 #include "para.h"
23 #include "error.h"
24 #include "list.h"
25 #include "string.h"
26 #include "sched.h"
27 #include "buffer_tree.h"
28 #include "filter.h"
29 #include "portable_io.h"
30 #include "bitstream.h"
31 #include "imdct.h"
32 #include "wma.h"
33 #include "wmadata.h"
34
35
36 /* size of blocks */
37 #define BLOCK_MIN_BITS 7
38 #define BLOCK_MAX_BITS 11
39 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
40
41 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
42
43 /* XXX: find exact max size */
44 #define HIGH_BAND_MAX_SIZE 16
45
46 /* XXX: is it a suitable value ? */
47 #define MAX_CODED_SUPERFRAME_SIZE 16384
48
49 #define MAX_CHANNELS 2
50
51 #define NOISE_TAB_SIZE 8192
52
53 #define LSP_POW_BITS 7
54
55 struct private_wmadec_data {
56         /** Information contained in the audio file header. */
57         struct asf_header_info ahi;
58         struct getbit_context gb;
59         /** Whether perceptual noise is added. */
60         int use_noise_coding;
61         /** Depends on number of the bits per second and the frame length. */
62         int byte_offset_bits;
63         /** Only used if ahi->use_exp_vlc is true. */
64         struct vlc exp_vlc;
65         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
66         /** The index of the first coef in high band. */
67         int high_band_start[BLOCK_NB_SIZES];
68         /** Maximal number of coded coefficients. */
69         int coefs_end[BLOCK_NB_SIZES];
70         int exponent_high_sizes[BLOCK_NB_SIZES];
71         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
72         struct vlc hgain_vlc;
73
74         /* coded values in high bands */
75         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
76         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
77
78         /* there are two possible tables for spectral coefficients */
79         struct vlc coef_vlc[2];
80         uint16_t *run_table[2];
81         uint16_t *level_table[2];
82         /** Frame length in samples. */
83         int frame_len;
84         /** log2 of frame_len. */
85         int frame_len_bits;
86         /** Number of block sizes, one if !ahi->use_variable_block_len. */
87         int nb_block_sizes;
88         /* Whether to update block lengths from getbit context. */
89         bool reset_block_lengths;
90         /** log2 of current block length. */
91         int block_len_bits;
92         /** log2 of next block length. */
93         int next_block_len_bits;
94         /** log2 of previous block length. */
95         int prev_block_len_bits;
96         /** Block length in samples. */
97         int block_len;
98         /** Current position in frame. */
99         int block_pos;
100         /** True if channel is coded. */
101         uint8_t channel_coded[MAX_CHANNELS];
102         /** log2 ratio frame/exp. length. */
103         int exponents_bsize[MAX_CHANNELS];
104
105         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
106         float max_exponent[MAX_CHANNELS];
107         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
108         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
109         float output[BLOCK_MAX_SIZE * 2];
110         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
111         float *windows[BLOCK_NB_SIZES];
112         /** Output buffer for one frame and the last for IMDCT windowing. */
113         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
114         /** Last frame info. */
115         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
116         int last_bitoffset;
117         int last_superframe_len;
118         float noise_table[NOISE_TAB_SIZE];
119         int noise_index;
120         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
121         /* lsp_to_curve tables */
122         float lsp_cos_table[BLOCK_MAX_SIZE];
123         float lsp_pow_e_table[256];
124         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
125         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
126 };
127
128 #define EXPVLCBITS 8
129 #define HGAINVLCBITS 9
130 #define VLCBITS 9
131
132 /** \cond sine_winows */
133
134 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
135
136 SINE_WINDOW(128);
137 SINE_WINDOW(256);
138 SINE_WINDOW(512);
139 SINE_WINDOW(1024);
140 SINE_WINDOW(2048);
141 SINE_WINDOW(4096);
142
143 static float *sine_windows[6] = {
144         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
145 };
146 /** \endcond sine_windows */
147
148 /* Generate a sine window. */
149 static void sine_window_init(float *window, int n)
150 {
151         int i;
152
153         for (i = 0; i < n; i++)
154                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
155 }
156
157 static void init_coef_vlc(struct private_wmadec_data *pwd, int sidx, int didx)
158 {
159         const struct coef_vlc_table *src = coef_vlcs + sidx;
160         struct vlc *dst = pwd->coef_vlc + didx;
161         int i, l, j, k, level, n = src->n;
162
163         init_vlc(dst, VLCBITS, n, src->huffbits, src->huffcodes, 4);
164         pwd->run_table[didx] = para_malloc(n * sizeof(uint16_t));
165         pwd->level_table[didx] = para_malloc(n * sizeof(uint16_t));
166         i = 2;
167         level = 1;
168         k = 0;
169         while (i < n) {
170                 l = src->levels[k++];
171                 for (j = 0; j < l; j++) {
172                         pwd->run_table[didx][i] = j;
173                         pwd->level_table[didx][i] = level;
174                         i++;
175                 }
176                 level++;
177         }
178 }
179
180 /* compute the scale factor band sizes for each MDCT block size */
181 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
182         float high_freq)
183 {
184         struct asf_header_info *ahi = &pwd->ahi;
185         int a, b, pos, lpos, k, block_len, i, j, n;
186         const uint8_t *table;
187
188         for (k = 0; k < pwd->nb_block_sizes; k++) {
189                 int exponent_size;
190
191                 block_len = pwd->frame_len >> k;
192                 table = NULL;
193                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
194                 if (a < 3) {
195                         if (ahi->sample_rate >= 44100)
196                                 table = exponent_band_44100[a];
197                         else if (ahi->sample_rate >= 32000)
198                                 table = exponent_band_32000[a];
199                         else if (ahi->sample_rate >= 22050)
200                                 table = exponent_band_22050[a];
201                 }
202                 if (table) {
203                         n = *table++;
204                         for (i = 0; i < n; i++)
205                                 pwd->exponent_bands[k][i] = table[i];
206                         exponent_size = n;
207                 } else {
208                         j = 0;
209                         lpos = 0;
210                         for (i = 0; i < 25; i++) {
211                                 a = wma_critical_freqs[i];
212                                 b = ahi->sample_rate;
213                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
214                                 pos <<= 2;
215                                 if (pos > block_len)
216                                         pos = block_len;
217                                 if (pos > lpos)
218                                         pwd->exponent_bands[k][j++] = pos - lpos;
219                                 if (pos >= block_len)
220                                         break;
221                                 lpos = pos;
222                         }
223                         exponent_size = j;
224                 }
225
226                 /* max number of coefs */
227                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
228                 /* high freq computation */
229                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
230                         / ahi->sample_rate + 0.5);
231                 n = exponent_size;
232                 j = 0;
233                 pos = 0;
234                 for (i = 0; i < n; i++) {
235                         int start, end;
236                         start = pos;
237                         pos += pwd->exponent_bands[k][i];
238                         end = pos;
239                         if (start < pwd->high_band_start[k])
240                                 start = pwd->high_band_start[k];
241                         if (end > pwd->coefs_end[k])
242                                 end = pwd->coefs_end[k];
243                         if (end > start)
244                                 pwd->exponent_high_bands[k][j++] = end - start;
245                 }
246                 pwd->exponent_high_sizes[k] = j;
247         }
248 }
249
250 static int wma_init(struct private_wmadec_data *pwd)
251 {
252         int i;
253         float bps1, high_freq;
254         volatile float bps;
255         int sample_rate1;
256         int coef_vlc_table;
257         struct asf_header_info *ahi = &pwd->ahi;
258         int flags2 = ahi->flags2;
259
260         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
261                 || ahi->channels <= 0 || ahi->channels > 8
262                 || ahi->bit_rate <= 0)
263                 return -E_WMA_BAD_PARAMS;
264
265         /* compute MDCT block size */
266         if (ahi->sample_rate <= 16000)
267                 pwd->frame_len_bits = 9;
268         else if (ahi->sample_rate <= 22050)
269                 pwd->frame_len_bits = 10;
270         else
271                 pwd->frame_len_bits = 11;
272         pwd->frame_len = 1 << pwd->frame_len_bits;
273         if (pwd->ahi.use_variable_block_len) {
274                 int nb_max, nb;
275                 nb = ((flags2 >> 3) & 3) + 1;
276                 if ((ahi->bit_rate / ahi->channels) >= 32000)
277                         nb += 2;
278                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
279                 if (nb > nb_max)
280                         nb = nb_max;
281                 pwd->nb_block_sizes = nb + 1;
282         } else
283                 pwd->nb_block_sizes = 1;
284
285         /* init rate dependent parameters */
286         pwd->use_noise_coding = 1;
287         high_freq = ahi->sample_rate * 0.5;
288
289         /* wma2 rates are normalized */
290         sample_rate1 = ahi->sample_rate;
291         if (sample_rate1 >= 44100)
292                 sample_rate1 = 44100;
293         else if (sample_rate1 >= 22050)
294                 sample_rate1 = 22050;
295         else if (sample_rate1 >= 16000)
296                 sample_rate1 = 16000;
297         else if (sample_rate1 >= 11025)
298                 sample_rate1 = 11025;
299         else if (sample_rate1 >= 8000)
300                 sample_rate1 = 8000;
301
302         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
303         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
304         /*
305          * Compute high frequency value and choose if noise coding should be
306          * activated.
307          */
308         bps1 = bps;
309         if (ahi->channels == 2)
310                 bps1 = bps * 1.6;
311         if (sample_rate1 == 44100) {
312                 if (bps1 >= 0.61)
313                         pwd->use_noise_coding = 0;
314                 else
315                         high_freq = high_freq * 0.4;
316         } else if (sample_rate1 == 22050) {
317                 if (bps1 >= 1.16)
318                         pwd->use_noise_coding = 0;
319                 else if (bps1 >= 0.72)
320                         high_freq = high_freq * 0.7;
321                 else
322                         high_freq = high_freq * 0.6;
323         } else if (sample_rate1 == 16000) {
324                 if (bps > 0.5)
325                         high_freq = high_freq * 0.5;
326                 else
327                         high_freq = high_freq * 0.3;
328         } else if (sample_rate1 == 11025)
329                 high_freq = high_freq * 0.7;
330         else if (sample_rate1 == 8000) {
331                 if (bps <= 0.625)
332                         high_freq = high_freq * 0.5;
333                 else if (bps > 0.75)
334                         pwd->use_noise_coding = 0;
335                 else
336                         high_freq = high_freq * 0.65;
337         } else {
338                 if (bps >= 0.8)
339                         high_freq = high_freq * 0.75;
340                 else if (bps >= 0.6)
341                         high_freq = high_freq * 0.6;
342                 else
343                         high_freq = high_freq * 0.5;
344         }
345         PARA_INFO_LOG("channels=%u sample_rate=%u "
346                 "bitrate=%u block_align=%d\n",
347                 ahi->channels, ahi->sample_rate,
348                 ahi->bit_rate, ahi->block_align);
349         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
350                 "high_freq=%f bitoffset=%d\n",
351                 pwd->frame_len, bps, bps1,
352                 high_freq, pwd->byte_offset_bits);
353         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
354                 pwd->use_noise_coding, pwd->ahi.use_exp_vlc, pwd->nb_block_sizes);
355
356         compute_scale_factor_band_sizes(pwd, high_freq);
357         /* init MDCT windows : simple sinus window */
358         for (i = 0; i < pwd->nb_block_sizes; i++) {
359                 int n;
360                 n = 1 << (pwd->frame_len_bits - i);
361                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
362                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
363         }
364
365         pwd->reset_block_lengths = true;
366
367         if (pwd->use_noise_coding) {
368                 /* init the noise generator */
369                 if (pwd->ahi.use_exp_vlc)
370                         pwd->noise_mult = 0.02;
371                 else
372                         pwd->noise_mult = 0.04;
373
374                 {
375                         unsigned int seed;
376                         float norm;
377                         seed = 1;
378                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
379                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
380                                 seed = seed * 314159 + 1;
381                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
382                         }
383                 }
384         }
385
386         /* choose the VLC tables for the coefficients */
387         coef_vlc_table = 4;
388         if (ahi->sample_rate >= 32000) {
389                 if (bps1 < 0.72)
390                         coef_vlc_table = 0;
391                 else if (bps1 < 1.16)
392                         coef_vlc_table = 2;
393         }
394         init_coef_vlc(pwd, coef_vlc_table, 0);
395         init_coef_vlc(pwd, coef_vlc_table + 1, 1);
396         return 0;
397 }
398
399 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd)
400 {
401         float wdel, a, b;
402         int i, e, m;
403
404         wdel = M_PI / pwd->frame_len;
405         for (i = 0; i < pwd->frame_len; i++)
406                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
407
408         /* tables for x^-0.25 computation */
409         for (i = 0; i < 256; i++) {
410                 e = i - 126;
411                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
412         }
413
414         /* These two tables are needed to avoid two operations in pow_m1_4. */
415         b = 1.0;
416         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
417                 m = (1 << LSP_POW_BITS) + i;
418                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
419                 a = pow(a, -0.25);
420                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
421                 pwd->lsp_pow_m_table2[i] = b - a;
422                 b = a;
423         }
424 }
425
426 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
427 {
428         struct private_wmadec_data *pwd;
429         int ret, i;
430
431         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
432         pwd = para_calloc(sizeof(*pwd));
433         ret = read_asf_header(initial_buf, len, &pwd->ahi);
434         if (ret <= 0) {
435                 free(pwd);
436                 return ret;
437         }
438
439         ret = wma_init(pwd);
440         if (ret < 0)
441                 return ret;
442         /* init MDCT */
443         for (i = 0; i < pwd->nb_block_sizes; i++) {
444                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
445                 if (ret < 0)
446                         return ret;
447         }
448         if (pwd->use_noise_coding) {
449                 PARA_INFO_LOG("using noise coding\n");
450                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
451                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
452                         wma_hgain_huffcodes, 2);
453         }
454
455         if (pwd->ahi.use_exp_vlc) {
456                 PARA_INFO_LOG("using exp_vlc\n");
457                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
458                         wma_scale_huffbits, wma_scale_huffcodes, 4);
459         } else {
460                 PARA_INFO_LOG("using curve\n");
461                 wma_lsp_to_curve_init(pwd);
462         }
463         *result = pwd;
464         return pwd->ahi.header_len;
465 }
466
467 /**
468  * compute x^-0.25 with an exponent and mantissa table. We use linear
469  * interpolation to reduce the mantissa table size at a small speed
470  * expense (linear interpolation approximately doubles the number of
471  * bits of precision).
472  */
473 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
474 {
475         union {
476                 float f;
477                 unsigned int v;
478         } u, t;
479         unsigned int e, m;
480         float a, b;
481
482         u.f = x;
483         e = u.v >> 23;
484         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
485         /* build interpolation scale: 1 <= t < 2. */
486         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
487         a = pwd->lsp_pow_m_table1[m];
488         b = pwd->lsp_pow_m_table2[m];
489         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
490 }
491
492 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
493                 float *out, float *val_max_ptr, int n, float *lsp)
494 {
495         int i, j;
496         float p, q, w, v, val_max;
497
498         val_max = 0;
499         for (i = 0; i < n; i++) {
500                 p = 0.5f;
501                 q = 0.5f;
502                 w = pwd->lsp_cos_table[i];
503                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
504                         q *= w - lsp[j - 1];
505                         p *= w - lsp[j];
506                 }
507                 p *= p * (2.0f - w);
508                 q *= q * (2.0f + w);
509                 v = p + q;
510                 v = pow_m1_4(pwd, v);
511                 if (v > val_max)
512                         val_max = v;
513                 out[i] = v;
514         }
515         *val_max_ptr = val_max;
516 }
517
518 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
519 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
520 {
521         float lsp_coefs[NB_LSP_COEFS];
522         int val, i;
523
524         for (i = 0; i < NB_LSP_COEFS; i++) {
525                 if (i == 0 || i >= 8)
526                         val = get_bits(&pwd->gb, 3);
527                 else
528                         val = get_bits(&pwd->gb, 4);
529                 lsp_coefs[i] = wma_lsp_codebook[i][val];
530         }
531
532         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
533                 pwd->block_len, lsp_coefs);
534 }
535
536 /* Decode exponents coded with VLC codes. */
537 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
538 {
539         int last_exp, n, code;
540         const uint16_t *ptr, *band_ptr;
541         float v, *q, max_scale, *q_end;
542
543         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
544         ptr = band_ptr;
545         q = pwd->exponents[ch];
546         q_end = q + pwd->block_len;
547         max_scale = 0;
548         last_exp = 36;
549
550         while (q < q_end) {
551                 code = get_vlc(&pwd->gb, &pwd->exp_vlc);
552                 if (code < 0)
553                         return code;
554                 /* NOTE: this offset is the same as MPEG4 AAC ! */
555                 last_exp += code - 60;
556                 /* XXX: use a table */
557                 v = pow(10, last_exp * (1.0 / 16.0));
558                 if (v > max_scale)
559                         max_scale = v;
560                 n = *ptr++;
561                 do {
562                         *q++ = v;
563                 } while (--n);
564         }
565         pwd->max_exponent[ch] = max_scale;
566         return 0;
567 }
568
569 /* compute src0 * src1 + src2 */
570 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
571                 const float *src2, int len)
572 {
573         int i;
574
575         for (i = 0; i < len; i++)
576                 dst[i] = src0[i] * src1[i] + src2[i];
577 }
578
579 static inline void vector_mult_reverse(float *dst, const float *src0,
580                 const float *src1, int len)
581 {
582         int i;
583
584         src1 += len - 1;
585         for (i = 0; i < len; i++)
586                 dst[i] = src0[i] * src1[-i];
587 }
588
589 /**
590  * Apply MDCT window and add into output.
591  *
592  * We ensure that when the windows overlap their squared sum
593  * is always 1 (MDCT reconstruction rule).
594  */
595 static void wma_window(struct private_wmadec_data *pwd, float *out)
596 {
597         float *in = pwd->output;
598         int block_len, bsize, n;
599
600         /* left part */
601         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
602                 block_len = pwd->block_len;
603                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
604                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
605         } else {
606                 block_len = 1 << pwd->prev_block_len_bits;
607                 n = (pwd->block_len - block_len) / 2;
608                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
609                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
610                         block_len);
611                 memcpy(out + n + block_len, in + n + block_len,
612                         n * sizeof(float));
613         }
614         out += pwd->block_len;
615         in += pwd->block_len;
616         /* right part */
617         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
618                 block_len = pwd->block_len;
619                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
620                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
621         } else {
622                 block_len = 1 << pwd->next_block_len_bits;
623                 n = (pwd->block_len - block_len) / 2;
624                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
625                 memcpy(out, in, n * sizeof(float));
626                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
627                         block_len);
628                 memset(out + n + block_len, 0, n * sizeof(float));
629         }
630 }
631
632 static int wma_total_gain_to_bits(int total_gain)
633 {
634         if (total_gain < 15)
635                 return 13;
636         else if (total_gain < 32)
637                 return 12;
638         else if (total_gain < 40)
639                 return 11;
640         else if (total_gain < 45)
641                 return 10;
642         else
643                 return 9;
644 }
645
646 static int compute_high_band_values(struct private_wmadec_data *pwd,
647                 int bsize, int nb_coefs[MAX_CHANNELS])
648 {
649         int ch;
650
651         if (!pwd->use_noise_coding)
652                 return 0;
653         for (ch = 0; ch < pwd->ahi.channels; ch++) {
654                 int i, m, a;
655                 if (!pwd->channel_coded[ch])
656                         continue;
657                 m = pwd->exponent_high_sizes[bsize];
658                 for (i = 0; i < m; i++) {
659                         a = get_bit(&pwd->gb);
660                         pwd->high_band_coded[ch][i] = a;
661                         if (!a)
662                                 continue;
663                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
664                 }
665         }
666         for (ch = 0; ch < pwd->ahi.channels; ch++) {
667                 int i, n, val;
668                 if (!pwd->channel_coded[ch])
669                         continue;
670                 n = pwd->exponent_high_sizes[bsize];
671                 val = (int)0x80000000;
672                 for (i = 0; i < n; i++) {
673                         if (!pwd->high_band_coded[ch][i])
674                                 continue;
675                         if (val == (int)0x80000000)
676                                 val = get_bits(&pwd->gb, 7) - 19;
677                         else {
678                                 int code = get_vlc(&pwd->gb, &pwd->hgain_vlc);
679                                 if (code < 0)
680                                         return code;
681                                 val += code - 18;
682                         }
683                         pwd->high_band_values[ch][i] = val;
684                 }
685         }
686         return 1;
687 }
688
689 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
690                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
691 {
692         int ch;
693         float mdct_norm = 1.0 / (pwd->block_len / 2);
694
695         for (ch = 0; ch < pwd->ahi.channels; ch++) {
696                 int16_t *coefs1;
697                 float *coefs, *exponents, mult, mult1, noise;
698                 int i, j, n, n1, last_high_band, esize;
699                 float exp_power[HIGH_BAND_MAX_SIZE];
700
701                 if (!pwd->channel_coded[ch])
702                         continue;
703                 coefs1 = pwd->coefs1[ch];
704                 exponents = pwd->exponents[ch];
705                 esize = pwd->exponents_bsize[ch];
706                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
707                 mult *= mdct_norm;
708                 coefs = pwd->coefs[ch];
709                 if (!pwd->use_noise_coding) {
710                         /* XXX: optimize more */
711                         n = nb_coefs[ch];
712                         for (i = 0; i < n; i++)
713                                 *coefs++ = coefs1[i] *
714                                         exponents[i << bsize >> esize] * mult;
715                         n = pwd->block_len - pwd->coefs_end[bsize];
716                         for (i = 0; i < n; i++)
717                                 *coefs++ = 0.0;
718                         continue;
719                 }
720                 n1 = pwd->exponent_high_sizes[bsize];
721                 /* compute power of high bands */
722                 exponents = pwd->exponents[ch] +
723                         (pwd->high_band_start[bsize] << bsize);
724                 last_high_band = 0; /* avoid warning */
725                 for (j = 0; j < n1; j++) {
726                         n = pwd->exponent_high_bands[
727                                 pwd->frame_len_bits - pwd->block_len_bits][j];
728                         if (pwd->high_band_coded[ch][j]) {
729                                 float e2, val;
730                                 e2 = 0;
731                                 for (i = 0; i < n; i++) {
732                                         val = exponents[i << bsize >> esize];
733                                         e2 += val * val;
734                                 }
735                                 exp_power[j] = e2 / n;
736                                 last_high_band = j;
737                         }
738                         exponents += n << bsize;
739                 }
740                 /* main freqs and high freqs */
741                 exponents = pwd->exponents[ch];
742                 for (j = -1; j < n1; j++) {
743                         if (j < 0)
744                                 n = pwd->high_band_start[bsize];
745                         else
746                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
747                                         - pwd->block_len_bits][j];
748                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
749                                 /* use noise with specified power */
750                                 mult1 = sqrt(exp_power[j]
751                                         / exp_power[last_high_band]);
752                                 /* XXX: use a table */
753                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
754                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
755                                 mult1 *= mdct_norm;
756                                 for (i = 0; i < n; i++) {
757                                         noise = pwd->noise_table[pwd->noise_index];
758                                         pwd->noise_index = (pwd->noise_index + 1)
759                                                 & (NOISE_TAB_SIZE - 1);
760                                         *coefs++ = noise * exponents[
761                                                 i << bsize >> esize] * mult1;
762                                 }
763                                 exponents += n << bsize;
764                         } else {
765                                 /* coded values + small noise */
766                                 for (i = 0; i < n; i++) {
767                                         noise = pwd->noise_table[pwd->noise_index];
768                                         pwd->noise_index = (pwd->noise_index + 1)
769                                                 & (NOISE_TAB_SIZE - 1);
770                                         *coefs++ = ((*coefs1++) + noise) *
771                                                 exponents[i << bsize >> esize]
772                                                 * mult;
773                                 }
774                                 exponents += n << bsize;
775                         }
776                 }
777                 /* very high freqs: noise */
778                 n = pwd->block_len - pwd->coefs_end[bsize];
779                 mult1 = mult * exponents[(-(1 << bsize)) >> esize];
780                 for (i = 0; i < n; i++) {
781                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
782                         pwd->noise_index = (pwd->noise_index + 1)
783                                 & (NOISE_TAB_SIZE - 1);
784                 }
785         }
786 }
787
788 /**
789  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
790  * errors.
791  */
792 static int wma_decode_block(struct private_wmadec_data *pwd)
793 {
794         int ret, n, v, ch, code, bsize;
795         int coef_nb_bits, total_gain;
796         int nb_coefs[MAX_CHANNELS];
797         bool ms_stereo = false; /* mid/side stereo mode */
798
799         /* compute current block length */
800         if (pwd->ahi.use_variable_block_len) {
801                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
802
803                 if (pwd->reset_block_lengths) {
804                         pwd->reset_block_lengths = false;
805                         v = get_bits(&pwd->gb, n);
806                         if (v >= pwd->nb_block_sizes)
807                                 return -E_WMA_BLOCK_SIZE;
808                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
809                         v = get_bits(&pwd->gb, n);
810                         if (v >= pwd->nb_block_sizes)
811                                 return -E_WMA_BLOCK_SIZE;
812                         pwd->block_len_bits = pwd->frame_len_bits - v;
813                 } else {
814                         /* update block lengths */
815                         pwd->prev_block_len_bits = pwd->block_len_bits;
816                         pwd->block_len_bits = pwd->next_block_len_bits;
817                 }
818                 v = get_bits(&pwd->gb, n);
819                 if (v >= pwd->nb_block_sizes)
820                         return -E_WMA_BLOCK_SIZE;
821                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
822         } else {
823                 /* fixed block len */
824                 pwd->next_block_len_bits = pwd->frame_len_bits;
825                 pwd->prev_block_len_bits = pwd->frame_len_bits;
826                 pwd->block_len_bits = pwd->frame_len_bits;
827         }
828
829         /* now check if the block length is coherent with the frame length */
830         pwd->block_len = 1 << pwd->block_len_bits;
831         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
832                 return -E_INCOHERENT_BLOCK_LEN;
833
834         if (pwd->ahi.channels == 2)
835                 ms_stereo = get_bit(&pwd->gb);
836         v = 0;
837         for (ch = 0; ch < pwd->ahi.channels; ch++) {
838                 int a = get_bit(&pwd->gb);
839                 pwd->channel_coded[ch] = a;
840                 v |= a;
841         }
842
843         bsize = pwd->frame_len_bits - pwd->block_len_bits;
844
845         /* if no channel coded, no need to go further */
846         /* XXX: fix potential framing problems */
847         if (!v)
848                 goto next;
849
850         /*
851          * Read total gain and extract corresponding number of bits for coef
852          * escape coding.
853          */
854         total_gain = 1;
855         for (;;) {
856                 int a = get_bits(&pwd->gb, 7);
857                 total_gain += a;
858                 if (a != 127)
859                         break;
860         }
861
862         coef_nb_bits = wma_total_gain_to_bits(total_gain);
863
864         /* compute number of coefficients */
865         n = pwd->coefs_end[bsize];
866         for (ch = 0; ch < pwd->ahi.channels; ch++)
867                 nb_coefs[ch] = n;
868
869         ret = compute_high_band_values(pwd, bsize, nb_coefs);
870         if (ret < 0)
871                 return ret;
872
873         /* exponents can be reused in short blocks. */
874         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
875                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
876                         if (pwd->channel_coded[ch]) {
877                                 if (pwd->ahi.use_exp_vlc) {
878                                         ret = decode_exp_vlc(pwd, ch);
879                                         if (ret < 0)
880                                                 return ret;
881                                 } else
882                                         decode_exp_lsp(pwd, ch);
883                                 pwd->exponents_bsize[ch] = bsize;
884                         }
885                 }
886         }
887
888         /* parse spectral coefficients : just RLE encoding */
889         for (ch = 0; ch < pwd->ahi.channels; ch++) {
890                 struct vlc *coef_vlc;
891                 int level, run, tindex;
892                 int16_t *ptr, *eptr;
893                 const uint16_t *level_table, *run_table;
894
895                 if (!pwd->channel_coded[ch])
896                         continue;
897                 /*
898                  * special VLC tables are used for ms stereo because there is
899                  * potentially less energy there
900                  */
901                 tindex = ch == 1 && ms_stereo;
902                 coef_vlc = &pwd->coef_vlc[tindex];
903                 run_table = pwd->run_table[tindex];
904                 level_table = pwd->level_table[tindex];
905                 /* XXX: optimize */
906                 ptr = &pwd->coefs1[ch][0];
907                 eptr = ptr + nb_coefs[ch];
908                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
909                 for (;;) {
910                         code = get_vlc(&pwd->gb, coef_vlc);
911                         if (code < 0)
912                                 return code;
913                         if (code == 1) /* EOB */
914                                 break;
915                         if (code == 0) { /* escape */
916                                 level = get_bits(&pwd->gb, coef_nb_bits);
917                                 /* reading block_len_bits would be better */
918                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
919                         } else { /* normal code */
920                                 run = run_table[code];
921                                 level = level_table[code];
922                         }
923                         if (!get_bit(&pwd->gb))
924                                 level = -level;
925                         ptr += run;
926                         if (ptr >= eptr) {
927                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
928                                 break;
929                         }
930                         *ptr++ = level;
931                         if (ptr >= eptr) /* EOB can be omitted */
932                                 break;
933                 }
934         }
935         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
936         if (ms_stereo && pwd->channel_coded[1]) {
937                 float a, b;
938                 int i;
939                 /*
940                  * Nominal case for ms stereo: we do it before mdct.
941                  *
942                  * No need to optimize this case because it should almost never
943                  * happen.
944                  */
945                 if (!pwd->channel_coded[0]) {
946                         PARA_NOTICE_LOG("rare ms-stereo\n");
947                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
948                         pwd->channel_coded[0] = 1;
949                 }
950                 for (i = 0; i < pwd->block_len; i++) {
951                         a = pwd->coefs[0][i];
952                         b = pwd->coefs[1][i];
953                         pwd->coefs[0][i] = a + b;
954                         pwd->coefs[1][i] = a - b;
955                 }
956         }
957 next:
958         for (ch = 0; ch < pwd->ahi.channels; ch++) {
959                 int n4, idx;
960
961                 n4 = pwd->block_len / 2;
962                 if (pwd->channel_coded[ch])
963                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
964                 else if (!(ms_stereo && ch == 1))
965                         memset(pwd->output, 0, sizeof(pwd->output));
966
967                 /* multiply by the window and add in the frame */
968                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
969                 wma_window(pwd, &pwd->frame_out[ch][idx]);
970         }
971
972         /* update block number */
973         pwd->block_pos += pwd->block_len;
974         if (pwd->block_pos >= pwd->frame_len)
975                 return 1;
976         else
977                 return 0;
978 }
979
980 /*
981  * Clip a signed integer value into the -32768,32767 range.
982  *
983  * \param a The value to clip.
984  *
985  * \return The clipped value.
986  */
987 static inline int16_t av_clip_int16(int a)
988 {
989         if ((a + 32768) & ~65535)
990                 return (a >> 31) ^ 32767;
991         else
992                 return a;
993 }
994
995 /* Decode a frame of frame_len samples. */
996 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
997 {
998         int ret, i, ch;
999         int16_t *ptr;
1000         float *iptr;
1001
1002         /* read each block */
1003         pwd->block_pos = 0;
1004         for (;;) {
1005                 ret = wma_decode_block(pwd);
1006                 if (ret < 0)
1007                         return ret;
1008                 if (ret)
1009                         break;
1010         }
1011
1012         /* convert frame to integer */
1013         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1014                 ptr = samples + ch;
1015                 iptr = pwd->frame_out[ch];
1016
1017                 for (i = 0; i < pwd->frame_len; i++) {
1018                         *ptr = av_clip_int16(lrintf(*iptr++));
1019                         ptr += pwd->ahi.channels;
1020                 }
1021                 /* prepare for next block */
1022                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1023                         pwd->frame_len * sizeof(float));
1024         }
1025         return 0;
1026 }
1027
1028 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *out,
1029                 int *out_size, const uint8_t *in)
1030 {
1031         int ret, in_size = pwd->ahi.packet_size - WMA_FRAME_SKIP;
1032         int16_t *samples = out;
1033
1034         init_get_bits(&pwd->gb, in, in_size);
1035         if (pwd->ahi.use_bit_reservoir) {
1036                 int i, nb_frames, bit_offset, pos, len;
1037                 uint8_t *q;
1038
1039                 /* read super frame header */
1040                 skip_bits(&pwd->gb, 4); /* super frame index */
1041                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1042                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1043                 ret = -E_WMA_OUTPUT_SPACE;
1044                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1045                                 * sizeof(int16_t) > *out_size)
1046                         goto fail;
1047
1048                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1049
1050                 if (pwd->last_superframe_len > 0) {
1051                         /* add bit_offset bits to last frame */
1052                         ret = -E_WMA_BAD_SUPERFRAME;
1053                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1054                                         MAX_CODED_SUPERFRAME_SIZE)
1055                                 goto fail;
1056                         q = pwd->last_superframe + pwd->last_superframe_len;
1057                         len = bit_offset;
1058                         while (len > 7) {
1059                                 *q++ = get_bits(&pwd->gb, 8);
1060                                 len -= 8;
1061                         }
1062                         if (len > 0)
1063                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1064
1065                         /* XXX: bit_offset bits into last frame */
1066                         init_get_bits(&pwd->gb, pwd->last_superframe,
1067                                 MAX_CODED_SUPERFRAME_SIZE);
1068                         /* skip unused bits */
1069                         if (pwd->last_bitoffset > 0)
1070                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1071                         /*
1072                          * This frame is stored in the last superframe and in
1073                          * the current one.
1074                          */
1075                         ret = wma_decode_frame(pwd, samples);
1076                         if (ret < 0)
1077                                 goto fail;
1078                         samples += pwd->ahi.channels * pwd->frame_len;
1079                 }
1080
1081                 /* read each frame starting from bit_offset */
1082                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1083                 init_get_bits(&pwd->gb, in + (pos >> 3),
1084                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1085                 len = pos & 7;
1086                 if (len > 0)
1087                         skip_bits(&pwd->gb, len);
1088
1089                 pwd->reset_block_lengths = true;
1090                 for (i = 0; i < nb_frames; i++) {
1091                         ret = wma_decode_frame(pwd, samples);
1092                         if (ret < 0)
1093                                 goto fail;
1094                         samples += pwd->ahi.channels * pwd->frame_len;
1095                 }
1096
1097                 /* we copy the end of the frame in the last frame buffer */
1098                 pos = get_bits_count(&pwd->gb) +
1099                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1100                 pwd->last_bitoffset = pos & 7;
1101                 pos >>= 3;
1102                 len = in_size - pos;
1103                 ret = -E_WMA_BAD_SUPERFRAME;
1104                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1105                         goto fail;
1106                 pwd->last_superframe_len = len;
1107                 memcpy(pwd->last_superframe, in + pos, len);
1108         } else {
1109                 PARA_DEBUG_LOG("not using bit reservoir\n");
1110                 ret = -E_WMA_OUTPUT_SPACE;
1111                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *out_size)
1112                         goto fail;
1113                 /* single frame decode */
1114                 ret = wma_decode_frame(pwd, samples);
1115                 if (ret < 0)
1116                         goto fail;
1117                 samples += pwd->ahi.channels * pwd->frame_len;
1118         }
1119         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1120                 pwd->frame_len, pwd->block_len,
1121                 (int)((int8_t *)samples - (int8_t *)out), pwd->ahi.block_align);
1122         *out_size = (int8_t *)samples - (int8_t *)out;
1123         return pwd->ahi.block_align;
1124 fail:
1125         /* reset the bit reservoir on errors */
1126         pwd->last_superframe_len = 0;
1127         return ret;
1128 }
1129
1130 static void wmadec_close(struct filter_node *fn)
1131 {
1132         struct private_wmadec_data *pwd = fn->private_data;
1133         int i;
1134
1135         if (!pwd)
1136                 return;
1137         for (i = 0; i < pwd->nb_block_sizes; i++)
1138                 imdct_end(pwd->mdct_ctx[i]);
1139         if (pwd->ahi.use_exp_vlc)
1140                 free_vlc(&pwd->exp_vlc);
1141         if (pwd->use_noise_coding)
1142                 free_vlc(&pwd->hgain_vlc);
1143         for (i = 0; i < 2; i++) {
1144                 free_vlc(&pwd->coef_vlc[i]);
1145                 free(pwd->run_table[i]);
1146                 free(pwd->level_table[i]);
1147         }
1148         free(fn->private_data);
1149         fn->private_data = NULL;
1150 }
1151
1152 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1153 {
1154         struct filter_node *fn = btr_context(btrn);
1155         struct private_wmadec_data *pwd = fn->private_data;
1156
1157         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1158                 result);
1159 }
1160
1161 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1162
1163 static int wmadec_post_select(__a_unused struct sched *s, void *context)
1164 {
1165         struct filter_node *fn = context;
1166         int ret, converted, out_size;
1167         struct private_wmadec_data *pwd = fn->private_data;
1168         struct btr_node *btrn = fn->btrn;
1169         size_t len;
1170         char *in, *out;
1171
1172 next_buffer:
1173         converted = 0;
1174         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1175         if (ret < 0)
1176                 goto err;
1177         if (ret == 0)
1178                 return 0;
1179         btr_merge(btrn, fn->min_iqs);
1180         len = btr_next_buffer(btrn, &in);
1181         ret = -E_WMADEC_EOF;
1182         if (len < fn->min_iqs)
1183                 goto err;
1184         if (!pwd) {
1185                 ret = wma_decode_init(in, len, &pwd);
1186                 if (ret < 0)
1187                         goto err;
1188                 if (ret == 0) {
1189                         fn->min_iqs += 4096;
1190                         goto next_buffer;
1191                 }
1192                 fn->min_iqs = 2 * pwd->ahi.packet_size;
1193                 fn->private_data = pwd;
1194                 converted = pwd->ahi.header_len;
1195                 goto success;
1196         }
1197         fn->min_iqs = pwd->ahi.packet_size;
1198         if (fn->min_iqs > len)
1199                 goto success;
1200         out_size = WMA_OUTPUT_BUFFER_SIZE;
1201         out = para_malloc(out_size);
1202         ret = wma_decode_superframe(pwd, out, &out_size,
1203                 (uint8_t *)in + WMA_FRAME_SKIP);
1204         if (ret < 0) {
1205                 free(out);
1206                 goto err;
1207         }
1208         if (out_size > 0) {
1209                 out = para_realloc(out, out_size);
1210                 btr_add_output(out, out_size, btrn);
1211         } else
1212                 free(out);
1213         converted += pwd->ahi.packet_size;
1214 success:
1215         btr_consume(btrn, converted);
1216         return 0;
1217 err:
1218         assert(ret < 0);
1219         btr_remove_node(&fn->btrn);
1220         return ret;
1221 }
1222
1223 static void wmadec_open(struct filter_node *fn)
1224 {
1225         fn->private_data = NULL;
1226         fn->min_iqs = 4096;
1227 }
1228
1229 const struct filter lsg_filter_cmd_com_wmadec_user_data = {
1230         .open = wmadec_open,
1231         .close = wmadec_close,
1232         .execute = wmadec_execute,
1233         .pre_select = generic_filter_pre_select,
1234         .post_select = wmadec_post_select,
1235 };