]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
befc39434d9c2aa8a8057957db37ad8eae4b406e
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27 #include <sys/select.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "imdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         struct asf_header_info ahi;
63         struct getbit_context gb;
64         int use_bit_reservoir;
65         int use_variable_block_len;
66         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
67         int use_noise_coding;   ///< true if perceptual noise is added
68         int byte_offset_bits;
69         struct vlc exp_vlc;
70         int exponent_sizes[BLOCK_NB_SIZES];
71         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
72         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
73         int coefs_start;        ///< first coded coef
74         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
75         int exponent_high_sizes[BLOCK_NB_SIZES];
76         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
77         struct vlc hgain_vlc;
78
79         /* coded values in high bands */
80         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
82
83         /* there are two possible tables for spectral coefficients */
84         struct vlc coef_vlc[2];
85         uint16_t *run_table[2];
86         uint16_t *level_table[2];
87         const struct coef_vlc_table *coef_vlcs[2];
88         /* frame info */
89         int frame_len;          ///< frame length in samples
90         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
91         int nb_block_sizes;     ///< number of block sizes
92         /* block info */
93         int reset_block_lengths;
94         int block_len_bits;     ///< log2 of current block length
95         int next_block_len_bits;        ///< log2 of next block length
96         int prev_block_len_bits;        ///< log2 of prev block length
97         int block_len;          ///< block length in samples
98         int block_pos;          ///< current position in frame
99         uint8_t ms_stereo;      ///< true if mid/side stereo mode
100         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
101         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
102         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
103         float max_exponent[MAX_CHANNELS];
104         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
106         float output[BLOCK_MAX_SIZE * 2];
107         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
108         float *windows[BLOCK_NB_SIZES];
109         /* output buffer for one frame and the last for IMDCT windowing */
110         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
111         /* last frame info */
112         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
113         int last_bitoffset;
114         int last_superframe_len;
115         float noise_table[NOISE_TAB_SIZE];
116         int noise_index;
117         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
118         /* lsp_to_curve tables */
119         float lsp_cos_table[BLOCK_MAX_SIZE];
120         float lsp_pow_e_table[256];
121         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
122         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
123 };
124
125 #define EXPVLCBITS 8
126 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
127
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
130
131 #define VLCBITS 9
132 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
133
134 #define SINE_WINDOW(x) float sine_ ## x[x] __aligned(16)
135
136 SINE_WINDOW(128);
137 SINE_WINDOW(256);
138 SINE_WINDOW(512);
139 SINE_WINDOW(1024);
140 SINE_WINDOW(2048);
141 SINE_WINDOW(4096);
142
143 static float *sine_windows[6] = {
144         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
145 };
146
147 /* Generate a sine window. */
148 static void sine_window_init(float *window, int n)
149 {
150         int i;
151
152         for (i = 0; i < n; i++)
153                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
154 }
155
156 static void wmadec_cleanup(struct private_wmadec_data *pwd)
157 {
158         int i;
159
160         for (i = 0; i < pwd->nb_block_sizes; i++)
161                 imdct_end(pwd->mdct_ctx[i]);
162         if (pwd->use_exp_vlc)
163                 free_vlc(&pwd->exp_vlc);
164         if (pwd->use_noise_coding)
165                 free_vlc(&pwd->hgain_vlc);
166         for (i = 0; i < 2; i++) {
167                 free_vlc(&pwd->coef_vlc[i]);
168                 free(pwd->run_table[i]);
169                 free(pwd->level_table[i]);
170         }
171 }
172
173 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
174                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
175 {
176         int n = vlc_table->n;
177         const uint8_t *table_bits = vlc_table->huffbits;
178         const uint32_t *table_codes = vlc_table->huffcodes;
179         const uint16_t *levels_table = vlc_table->levels;
180         uint16_t *run_table, *level_table;
181         int i, l, j, k, level;
182
183         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
184
185         run_table = para_malloc(n * sizeof(uint16_t));
186         level_table = para_malloc(n * sizeof(uint16_t));
187         i = 2;
188         level = 1;
189         k = 0;
190         while (i < n) {
191                 l = levels_table[k++];
192                 for (j = 0; j < l; j++) {
193                         run_table[i] = j;
194                         level_table[i] = level;
195                         i++;
196                 }
197                 level++;
198         }
199         *prun_table = run_table;
200         *plevel_table = level_table;
201 }
202
203 /* compute the scale factor band sizes for each MDCT block size */
204 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
205         float high_freq)
206 {
207         struct asf_header_info *ahi = &pwd->ahi;
208         int a, b, pos, lpos, k, block_len, i, j, n;
209         const uint8_t *table;
210
211         pwd->coefs_start = 0;
212         for (k = 0; k < pwd->nb_block_sizes; k++) {
213                 block_len = pwd->frame_len >> k;
214
215                 table = NULL;
216                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
217                 if (a < 3) {
218                         if (ahi->sample_rate >= 44100)
219                                 table = exponent_band_44100[a];
220                         else if (ahi->sample_rate >= 32000)
221                                 table = exponent_band_32000[a];
222                         else if (ahi->sample_rate >= 22050)
223                                 table = exponent_band_22050[a];
224                 }
225                 if (table) {
226                         n = *table++;
227                         for (i = 0; i < n; i++)
228                                 pwd->exponent_bands[k][i] = table[i];
229                         pwd->exponent_sizes[k] = n;
230                 } else {
231                         j = 0;
232                         lpos = 0;
233                         for (i = 0; i < 25; i++) {
234                                 a = wma_critical_freqs[i];
235                                 b = ahi->sample_rate;
236                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
237                                 pos <<= 2;
238                                 if (pos > block_len)
239                                         pos = block_len;
240                                 if (pos > lpos)
241                                         pwd->exponent_bands[k][j++] = pos - lpos;
242                                 if (pos >= block_len)
243                                         break;
244                                 lpos = pos;
245                         }
246                         pwd->exponent_sizes[k] = j;
247                 }
248
249                 /* max number of coefs */
250                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
251                 /* high freq computation */
252                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
253                         / ahi->sample_rate + 0.5);
254                 n = pwd->exponent_sizes[k];
255                 j = 0;
256                 pos = 0;
257                 for (i = 0; i < n; i++) {
258                         int start, end;
259                         start = pos;
260                         pos += pwd->exponent_bands[k][i];
261                         end = pos;
262                         if (start < pwd->high_band_start[k])
263                                 start = pwd->high_band_start[k];
264                         if (end > pwd->coefs_end[k])
265                                 end = pwd->coefs_end[k];
266                         if (end > start)
267                                 pwd->exponent_high_bands[k][j++] = end - start;
268                 }
269                 pwd->exponent_high_sizes[k] = j;
270         }
271 }
272
273 static int wma_init(struct private_wmadec_data *pwd)
274 {
275         int i;
276         float bps1, high_freq;
277         volatile float bps;
278         int sample_rate1;
279         int coef_vlc_table;
280         struct asf_header_info *ahi = &pwd->ahi;
281         int flags2 = ahi->flags2;
282
283         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
284                 || ahi->channels <= 0 || ahi->channels > 8
285                 || ahi->bit_rate <= 0)
286                 return -E_WMA_BAD_PARAMS;
287
288         /* compute MDCT block size */
289         if (ahi->sample_rate <= 16000) {
290                 pwd->frame_len_bits = 9;
291         } else if (ahi->sample_rate <= 22050) {
292                 pwd->frame_len_bits = 10;
293         } else {
294                 pwd->frame_len_bits = 11;
295         }
296         pwd->frame_len = 1 << pwd->frame_len_bits;
297         if (pwd->use_variable_block_len) {
298                 int nb_max, nb;
299                 nb = ((flags2 >> 3) & 3) + 1;
300                 if ((ahi->bit_rate / ahi->channels) >= 32000)
301                         nb += 2;
302                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
303                 if (nb > nb_max)
304                         nb = nb_max;
305                 pwd->nb_block_sizes = nb + 1;
306         } else
307                 pwd->nb_block_sizes = 1;
308
309         /* init rate dependent parameters */
310         pwd->use_noise_coding = 1;
311         high_freq = ahi->sample_rate * 0.5;
312
313         /* wma2 rates are normalized */
314         sample_rate1 = ahi->sample_rate;
315         if (sample_rate1 >= 44100)
316                 sample_rate1 = 44100;
317         else if (sample_rate1 >= 22050)
318                 sample_rate1 = 22050;
319         else if (sample_rate1 >= 16000)
320                 sample_rate1 = 16000;
321         else if (sample_rate1 >= 11025)
322                 sample_rate1 = 11025;
323         else if (sample_rate1 >= 8000)
324                 sample_rate1 = 8000;
325
326         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
327         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
328         /*
329          * Compute high frequency value and choose if noise coding should be
330          * activated.
331          */
332         bps1 = bps;
333         if (ahi->channels == 2)
334                 bps1 = bps * 1.6;
335         if (sample_rate1 == 44100) {
336                 if (bps1 >= 0.61)
337                         pwd->use_noise_coding = 0;
338                 else
339                         high_freq = high_freq * 0.4;
340         } else if (sample_rate1 == 22050) {
341                 if (bps1 >= 1.16)
342                         pwd->use_noise_coding = 0;
343                 else if (bps1 >= 0.72)
344                         high_freq = high_freq * 0.7;
345                 else
346                         high_freq = high_freq * 0.6;
347         } else if (sample_rate1 == 16000) {
348                 if (bps > 0.5)
349                         high_freq = high_freq * 0.5;
350                 else
351                         high_freq = high_freq * 0.3;
352         } else if (sample_rate1 == 11025) {
353                 high_freq = high_freq * 0.7;
354         } else if (sample_rate1 == 8000) {
355                 if (bps <= 0.625) {
356                         high_freq = high_freq * 0.5;
357                 } else if (bps > 0.75) {
358                         pwd->use_noise_coding = 0;
359                 } else {
360                         high_freq = high_freq * 0.65;
361                 }
362         } else {
363                 if (bps >= 0.8) {
364                         high_freq = high_freq * 0.75;
365                 } else if (bps >= 0.6) {
366                         high_freq = high_freq * 0.6;
367                 } else {
368                         high_freq = high_freq * 0.5;
369                 }
370         }
371         PARA_INFO_LOG("channels=%d sample_rate=%d "
372                 "bitrate=%d block_align=%d\n",
373                 ahi->channels, ahi->sample_rate,
374                 ahi->bit_rate, ahi->block_align);
375         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
376                 "high_freq=%f bitoffset=%d\n",
377                 pwd->frame_len, bps, bps1,
378                 high_freq, pwd->byte_offset_bits);
379         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
380                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
381
382         compute_scale_factor_band_sizes(pwd, high_freq);
383         /* init MDCT windows : simple sinus window */
384         for (i = 0; i < pwd->nb_block_sizes; i++) {
385                 int n;
386                 n = 1 << (pwd->frame_len_bits - i);
387                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
388                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
389         }
390
391         pwd->reset_block_lengths = 1;
392
393         if (pwd->use_noise_coding) {
394                 /* init the noise generator */
395                 if (pwd->use_exp_vlc)
396                         pwd->noise_mult = 0.02;
397                 else
398                         pwd->noise_mult = 0.04;
399
400                 {
401                         unsigned int seed;
402                         float norm;
403                         seed = 1;
404                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
405                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
406                                 seed = seed * 314159 + 1;
407                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
408                         }
409                 }
410         }
411
412         /* choose the VLC tables for the coefficients */
413         coef_vlc_table = 2;
414         if (ahi->sample_rate >= 32000) {
415                 if (bps1 < 0.72)
416                         coef_vlc_table = 0;
417                 else if (bps1 < 1.16)
418                         coef_vlc_table = 1;
419         }
420         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
421         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
422         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
423                 pwd->coef_vlcs[0]);
424         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
425                 pwd->coef_vlcs[1]);
426         return 0;
427 }
428
429 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
430 {
431         float wdel, a, b;
432         int i, e, m;
433
434         wdel = M_PI / frame_len;
435         for (i = 0; i < frame_len; i++)
436                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
437
438         /* tables for x^-0.25 computation */
439         for (i = 0; i < 256; i++) {
440                 e = i - 126;
441                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
442         }
443
444         /* These two tables are needed to avoid two operations in pow_m1_4. */
445         b = 1.0;
446         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
447                 m = (1 << LSP_POW_BITS) + i;
448                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
449                 a = pow(a, -0.25);
450                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
451                 pwd->lsp_pow_m_table2[i] = b - a;
452                 b = a;
453         }
454 }
455
456 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
457 {
458         struct private_wmadec_data *pwd;
459         int ret, i;
460
461         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
462         pwd = para_calloc(sizeof(*pwd));
463         ret = read_asf_header(initial_buf, len, &pwd->ahi);
464         if (ret <= 0) {
465                 free(pwd);
466                 return ret;
467         }
468
469         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
470         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
471         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
472
473         ret = wma_init(pwd);
474         if (ret < 0)
475                 return ret;
476         /* init MDCT */
477         for (i = 0; i < pwd->nb_block_sizes; i++) {
478                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
479                 if (ret < 0)
480                         return ret;
481         }
482         if (pwd->use_noise_coding) {
483                 PARA_INFO_LOG("using noise coding\n");
484                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
485                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
486                         wma_hgain_huffcodes, 2);
487         }
488
489         if (pwd->use_exp_vlc) {
490                 PARA_INFO_LOG("using exp_vlc\n");
491                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
492                 sizeof(wma_scale_huffbits), wma_scale_huffbits,
493                 wma_scale_huffcodes, 4);
494         } else {
495                 PARA_INFO_LOG("using curve\n");
496                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
497         }
498         *result = pwd;
499         return pwd->ahi.header_len;
500 }
501
502 /**
503  * compute x^-0.25 with an exponent and mantissa table. We use linear
504  * interpolation to reduce the mantissa table size at a small speed
505  * expense (linear interpolation approximately doubles the number of
506  * bits of precision).
507  */
508 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
509 {
510         union {
511                 float f;
512                 unsigned int v;
513         } u, t;
514         unsigned int e, m;
515         float a, b;
516
517         u.f = x;
518         e = u.v >> 23;
519         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
520         /* build interpolation scale: 1 <= t < 2. */
521         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
522         a = pwd->lsp_pow_m_table1[m];
523         b = pwd->lsp_pow_m_table2[m];
524         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
525 }
526
527 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
528                 float *out, float *val_max_ptr, int n, float *lsp)
529 {
530         int i, j;
531         float p, q, w, v, val_max;
532
533         val_max = 0;
534         for (i = 0; i < n; i++) {
535                 p = 0.5f;
536                 q = 0.5f;
537                 w = pwd->lsp_cos_table[i];
538                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
539                         q *= w - lsp[j - 1];
540                         p *= w - lsp[j];
541                 }
542                 p *= p * (2.0f - w);
543                 q *= q * (2.0f + w);
544                 v = p + q;
545                 v = pow_m1_4(pwd, v);
546                 if (v > val_max)
547                         val_max = v;
548                 out[i] = v;
549         }
550         *val_max_ptr = val_max;
551 }
552
553 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
554 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
555 {
556         float lsp_coefs[NB_LSP_COEFS];
557         int val, i;
558
559         for (i = 0; i < NB_LSP_COEFS; i++) {
560                 if (i == 0 || i >= 8)
561                         val = get_bits(&pwd->gb, 3);
562                 else
563                         val = get_bits(&pwd->gb, 4);
564                 lsp_coefs[i] = wma_lsp_codebook[i][val];
565         }
566
567         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
568                 pwd->block_len, lsp_coefs);
569 }
570
571 /* Decode exponents coded with VLC codes. */
572 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
573 {
574         int last_exp, n, code;
575         const uint16_t *ptr, *band_ptr;
576         float v, *q, max_scale, *q_end;
577
578         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
579         ptr = band_ptr;
580         q = pwd->exponents[ch];
581         q_end = q + pwd->block_len;
582         max_scale = 0;
583         last_exp = 36;
584
585         while (q < q_end) {
586                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
587                 if (code < 0)
588                         return -1;
589                 /* NOTE: this offset is the same as MPEG4 AAC ! */
590                 last_exp += code - 60;
591                 /* XXX: use a table */
592                 v = pow(10, last_exp * (1.0 / 16.0));
593                 if (v > max_scale)
594                         max_scale = v;
595                 n = *ptr++;
596                 do {
597                         *q++ = v;
598                 } while (--n);
599         }
600         pwd->max_exponent[ch] = max_scale;
601         return 0;
602 }
603
604 /* compute src0 * src1 + src2 */
605 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
606                 const float *src2, int len)
607 {
608         int i;
609
610         for (i = 0; i < len; i++)
611                 dst[i] = src0[i] * src1[i] + src2[i];
612 }
613
614 static inline void vector_mult_reverse(float *dst, const float *src0,
615                 const float *src1, int len)
616 {
617         int i;
618
619         src1 += len - 1;
620         for (i = 0; i < len; i++)
621                 dst[i] = src0[i] * src1[-i];
622 }
623
624 /**
625  * Apply MDCT window and add into output.
626  *
627  * We ensure that when the windows overlap their squared sum
628  * is always 1 (MDCT reconstruction rule).
629  */
630 static void wma_window(struct private_wmadec_data *pwd, float *out)
631 {
632         float *in = pwd->output;
633         int block_len, bsize, n;
634
635         /* left part */
636         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
637                 block_len = pwd->block_len;
638                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
639                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
640         } else {
641                 block_len = 1 << pwd->prev_block_len_bits;
642                 n = (pwd->block_len - block_len) / 2;
643                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
644                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
645                         block_len);
646                 memcpy(out + n + block_len, in + n + block_len,
647                         n * sizeof(float));
648         }
649         out += pwd->block_len;
650         in += pwd->block_len;
651         /* right part */
652         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
653                 block_len = pwd->block_len;
654                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
655                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
656         } else {
657                 block_len = 1 << pwd->next_block_len_bits;
658                 n = (pwd->block_len - block_len) / 2;
659                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
660                 memcpy(out, in, n * sizeof(float));
661                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
662                         block_len);
663                 memset(out + n + block_len, 0, n * sizeof(float));
664         }
665 }
666
667 static int wma_total_gain_to_bits(int total_gain)
668 {
669         if (total_gain < 15)
670                 return 13;
671         else if (total_gain < 32)
672                 return 12;
673         else if (total_gain < 40)
674                 return 11;
675         else if (total_gain < 45)
676                 return 10;
677         else
678                 return 9;
679 }
680
681 static int compute_high_band_values(struct private_wmadec_data *pwd,
682                 int bsize, int nb_coefs[MAX_CHANNELS])
683 {
684         int ch;
685
686         if (!pwd->use_noise_coding)
687                 return 0;
688         for (ch = 0; ch < pwd->ahi.channels; ch++) {
689                 int i, m, a;
690                 if (!pwd->channel_coded[ch])
691                         continue;
692                 m = pwd->exponent_high_sizes[bsize];
693                 for (i = 0; i < m; i++) {
694                         a = get_bit(&pwd->gb);
695                         pwd->high_band_coded[ch][i] = a;
696                         if (!a)
697                                 continue;
698                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
699                 }
700         }
701         for (ch = 0; ch < pwd->ahi.channels; ch++) {
702                 int i, n, val;
703                 if (!pwd->channel_coded[ch])
704                         continue;
705                 n = pwd->exponent_high_sizes[bsize];
706                 val = (int)0x80000000;
707                 for (i = 0; i < n; i++) {
708                         if (!pwd->high_band_coded[ch][i])
709                                 continue;
710                         if (val == (int)0x80000000)
711                                 val = get_bits(&pwd->gb, 7) - 19;
712                         else {
713                                 int code = get_vlc(&pwd->gb,
714                                         pwd->hgain_vlc.table, HGAINVLCBITS,
715                                         HGAINMAX);
716                                 if (code < 0)
717                                         return -1;
718                                 val += code - 18;
719                         }
720                         pwd->high_band_values[ch][i] = val;
721                 }
722         }
723         return 1;
724 }
725
726 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
727                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
728 {
729         int ch;
730         float mdct_norm = 1.0 / (pwd->block_len / 2);
731
732         for (ch = 0; ch < pwd->ahi.channels; ch++) {
733                 int16_t *coefs1;
734                 float *coefs, *exponents, mult, mult1, noise;
735                 int i, j, n, n1, last_high_band, esize;
736                 float exp_power[HIGH_BAND_MAX_SIZE];
737
738                 if (!pwd->channel_coded[ch])
739                         continue;
740                 coefs1 = pwd->coefs1[ch];
741                 exponents = pwd->exponents[ch];
742                 esize = pwd->exponents_bsize[ch];
743                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
744                 mult *= mdct_norm;
745                 coefs = pwd->coefs[ch];
746                 if (!pwd->use_noise_coding) {
747                         /* XXX: optimize more */
748                         for (i = 0; i < pwd->coefs_start; i++)
749                                 *coefs++ = 0.0;
750                         n = nb_coefs[ch];
751                         for (i = 0; i < n; i++)
752                                 *coefs++ = coefs1[i] *
753                                         exponents[i << bsize >> esize] * mult;
754                         n = pwd->block_len - pwd->coefs_end[bsize];
755                         for (i = 0; i < n; i++)
756                                 *coefs++ = 0.0;
757                         continue;
758                 }
759                 mult1 = mult;
760                 /* very low freqs: noise */
761                 for (i = 0; i < pwd->coefs_start; i++) {
762                         *coefs++ = pwd->noise_table[pwd->noise_index] *
763                                 exponents[i << bsize >> esize] * mult1;
764                         pwd->noise_index = (pwd->noise_index + 1) &
765                                 (NOISE_TAB_SIZE - 1);
766                 }
767                 n1 = pwd->exponent_high_sizes[bsize];
768                 /* compute power of high bands */
769                 exponents = pwd->exponents[ch] +
770                         (pwd->high_band_start[bsize] << bsize);
771                 last_high_band = 0; /* avoid warning */
772                 for (j = 0; j < n1; j++) {
773                         n = pwd->exponent_high_bands[
774                                 pwd->frame_len_bits - pwd->block_len_bits][j];
775                         if (pwd->high_band_coded[ch][j]) {
776                                 float e2, val;
777                                 e2 = 0;
778                                 for (i = 0; i < n; i++) {
779                                         val = exponents[i << bsize >> esize];
780                                         e2 += val * val;
781                                 }
782                                 exp_power[j] = e2 / n;
783                                 last_high_band = j;
784                         }
785                         exponents += n << bsize;
786                 }
787                 /* main freqs and high freqs */
788                 exponents = pwd->exponents[ch] + (pwd->coefs_start << bsize);
789                 for (j = -1; j < n1; j++) {
790                         if (j < 0)
791                                 n = pwd->high_band_start[bsize]
792                                         - pwd->coefs_start;
793                         else
794                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
795                                         - pwd->block_len_bits][j];
796                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
797                                 /* use noise with specified power */
798                                 mult1 = sqrt(exp_power[j]
799                                         / exp_power[last_high_band]);
800                                 /* XXX: use a table */
801                                 mult1 = mult1 * pow(10,
802                                         pwd->high_band_values[ch][j] * 0.05);
803                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
804                                 mult1 *= mdct_norm;
805                                 for (i = 0; i < n; i++) {
806                                         noise = pwd->noise_table[pwd->noise_index];
807                                         pwd->noise_index = (pwd->noise_index + 1)
808                                                 & (NOISE_TAB_SIZE - 1);
809                                         *coefs++ = noise * exponents[
810                                                 i << bsize >> esize] * mult1;
811                                 }
812                                 exponents += n << bsize;
813                         } else {
814                                 /* coded values + small noise */
815                                 for (i = 0; i < n; i++) {
816                                         noise = pwd->noise_table[pwd->noise_index];
817                                         pwd->noise_index = (pwd->noise_index + 1)
818                                                 & (NOISE_TAB_SIZE - 1);
819                                         *coefs++ = ((*coefs1++) + noise) *
820                                                 exponents[i << bsize >> esize]
821                                                 * mult;
822                                 }
823                                 exponents += n << bsize;
824                         }
825                 }
826                 /* very high freqs: noise */
827                 n = pwd->block_len - pwd->coefs_end[bsize];
828                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
829                 for (i = 0; i < n; i++) {
830                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
831                         pwd->noise_index = (pwd->noise_index + 1)
832                                 & (NOISE_TAB_SIZE - 1);
833                 }
834         }
835 }
836
837 /**
838  * @return 0 if OK. 1 if last block of frame. return -1 if
839  * unrecorrable error.
840  */
841 static int wma_decode_block(struct private_wmadec_data *pwd)
842 {
843         int n, v, ch, code, bsize;
844         int coef_nb_bits, total_gain;
845         int nb_coefs[MAX_CHANNELS];
846
847         /* compute current block length */
848         if (pwd->use_variable_block_len) {
849                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
850
851                 if (pwd->reset_block_lengths) {
852                         pwd->reset_block_lengths = 0;
853                         v = get_bits(&pwd->gb, n);
854                         if (v >= pwd->nb_block_sizes)
855                                 return -1;
856                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
857                         v = get_bits(&pwd->gb, n);
858                         if (v >= pwd->nb_block_sizes)
859                                 return -1;
860                         pwd->block_len_bits = pwd->frame_len_bits - v;
861                 } else {
862                         /* update block lengths */
863                         pwd->prev_block_len_bits = pwd->block_len_bits;
864                         pwd->block_len_bits = pwd->next_block_len_bits;
865                 }
866                 v = get_bits(&pwd->gb, n);
867                 if (v >= pwd->nb_block_sizes)
868                         return -1;
869                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
870         } else {
871                 /* fixed block len */
872                 pwd->next_block_len_bits = pwd->frame_len_bits;
873                 pwd->prev_block_len_bits = pwd->frame_len_bits;
874                 pwd->block_len_bits = pwd->frame_len_bits;
875         }
876
877         /* now check if the block length is coherent with the frame length */
878         pwd->block_len = 1 << pwd->block_len_bits;
879         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
880                 return -E_INCOHERENT_BLOCK_LEN;
881
882         if (pwd->ahi.channels == 2)
883                 pwd->ms_stereo = get_bit(&pwd->gb);
884         v = 0;
885         for (ch = 0; ch < pwd->ahi.channels; ch++) {
886                 int a = get_bit(&pwd->gb);
887                 pwd->channel_coded[ch] = a;
888                 v |= a;
889         }
890
891         bsize = pwd->frame_len_bits - pwd->block_len_bits;
892
893         /* if no channel coded, no need to go further */
894         /* XXX: fix potential framing problems */
895         if (!v)
896                 goto next;
897
898         /* read total gain and extract corresponding number of bits for
899            coef escape coding */
900         total_gain = 1;
901         for (;;) {
902                 int a = get_bits(&pwd->gb, 7);
903                 total_gain += a;
904                 if (a != 127)
905                         break;
906         }
907
908         coef_nb_bits = wma_total_gain_to_bits(total_gain);
909
910         /* compute number of coefficients */
911         n = pwd->coefs_end[bsize] - pwd->coefs_start;
912         for (ch = 0; ch < pwd->ahi.channels; ch++)
913                 nb_coefs[ch] = n;
914
915         if (compute_high_band_values(pwd, bsize, nb_coefs) < 0)
916                 return -1;
917
918         /* exponents can be reused in short blocks. */
919         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
920                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
921                         if (pwd->channel_coded[ch]) {
922                                 if (pwd->use_exp_vlc) {
923                                         if (decode_exp_vlc(pwd, ch) < 0)
924                                                 return -1;
925                                 } else {
926                                         decode_exp_lsp(pwd, ch);
927                                 }
928                                 pwd->exponents_bsize[ch] = bsize;
929                         }
930                 }
931         }
932
933         /* parse spectral coefficients : just RLE encoding */
934         for (ch = 0; ch < pwd->ahi.channels; ch++) {
935                 struct vlc *coef_vlc;
936                 int level, run, tindex;
937                 int16_t *ptr, *eptr;
938                 const uint16_t *level_table, *run_table;
939
940                 if (!pwd->channel_coded[ch])
941                         continue;
942                 /*
943                  * special VLC tables are used for ms stereo because there is
944                  * potentially less energy there
945                  */
946                 tindex = (ch == 1 && pwd->ms_stereo);
947                 coef_vlc = &pwd->coef_vlc[tindex];
948                 run_table = pwd->run_table[tindex];
949                 level_table = pwd->level_table[tindex];
950                 /* XXX: optimize */
951                 ptr = &pwd->coefs1[ch][0];
952                 eptr = ptr + nb_coefs[ch];
953                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
954                 for (;;) {
955                         code = get_vlc(&pwd->gb, coef_vlc->table,
956                                 VLCBITS, VLCMAX);
957                         if (code < 0)
958                                 return -1;
959                         if (code == 1) /* EOB */
960                                 break;
961                         if (code == 0) { /* escape */
962                                 level = get_bits(&pwd->gb, coef_nb_bits);
963                                 /* reading block_len_bits would be better */
964                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
965                         } else { /* normal code */
966                                 run = run_table[code];
967                                 level = level_table[code];
968                         }
969                         if (!get_bit(&pwd->gb))
970                                 level = -level;
971                         ptr += run;
972                         if (ptr >= eptr) {
973                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
974                                 break;
975                         }
976                         *ptr++ = level;
977                         if (ptr >= eptr) /* EOB can be omitted */
978                                 break;
979                 }
980         }
981
982         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
983
984         if (pwd->ms_stereo && pwd->channel_coded[1]) {
985                 float a, b;
986                 int i;
987
988                 /*
989                  * Nominal case for ms stereo: we do it before mdct.
990                  *
991                  * No need to optimize this case because it should almost never
992                  * happen.
993                  */
994                 if (!pwd->channel_coded[0]) {
995                         PARA_NOTICE_LOG("rare ms-stereo\n");
996                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
997                         pwd->channel_coded[0] = 1;
998                 }
999                 for (i = 0; i < pwd->block_len; i++) {
1000                         a = pwd->coefs[0][i];
1001                         b = pwd->coefs[1][i];
1002                         pwd->coefs[0][i] = a + b;
1003                         pwd->coefs[1][i] = a - b;
1004                 }
1005         }
1006
1007 next:
1008         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1009                 int n4, index;
1010
1011                 n = pwd->block_len;
1012                 n4 = pwd->block_len / 2;
1013                 if (pwd->channel_coded[ch])
1014                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1015                 else if (!(pwd->ms_stereo && ch == 1))
1016                         memset(pwd->output, 0, sizeof(pwd->output));
1017
1018                 /* multiply by the window and add in the frame */
1019                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1020                 wma_window(pwd, &pwd->frame_out[ch][index]);
1021         }
1022
1023         /* update block number */
1024         pwd->block_pos += pwd->block_len;
1025         if (pwd->block_pos >= pwd->frame_len)
1026                 return 1;
1027         else
1028                 return 0;
1029 }
1030
1031 /*
1032  * Clip a signed integer value into the -32768,32767 range.
1033  *
1034  * \param a The value to clip.
1035  *
1036  * \return The clipped value.
1037  */
1038 static inline int16_t av_clip_int16(int a)
1039 {
1040         if ((a + 32768) & ~65535)
1041                 return (a >> 31) ^ 32767;
1042         else
1043                 return a;
1044 }
1045
1046 /* Decode a frame of frame_len samples. */
1047 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1048 {
1049         int ret, i, n, ch, incr;
1050         int16_t *ptr;
1051         float *iptr;
1052
1053         /* read each block */
1054         pwd->block_pos = 0;
1055         for (;;) {
1056                 ret = wma_decode_block(pwd);
1057                 if (ret < 0)
1058                         return -1;
1059                 if (ret)
1060                         break;
1061         }
1062
1063         /* convert frame to integer */
1064         n = pwd->frame_len;
1065         incr = pwd->ahi.channels;
1066         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1067                 ptr = samples + ch;
1068                 iptr = pwd->frame_out[ch];
1069
1070                 for (i = 0; i < n; i++) {
1071                         *ptr = av_clip_int16(lrintf(*iptr++));
1072                         ptr += incr;
1073                 }
1074                 /* prepare for next block */
1075                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1076                         pwd->frame_len * sizeof(float));
1077         }
1078         return 0;
1079 }
1080
1081 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1082                 int *data_size, const uint8_t *buf, int buf_size)
1083 {
1084         int ret;
1085         int16_t *samples;
1086         static int frame_count;
1087
1088         if (buf_size == 0) {
1089                 pwd->last_superframe_len = 0;
1090                 return 0;
1091         }
1092         if (buf_size < pwd->ahi.block_align)
1093                 return 0;
1094         buf_size = pwd->ahi.block_align;
1095         samples = data;
1096         init_get_bits(&pwd->gb, buf, buf_size);
1097         if (pwd->use_bit_reservoir) {
1098                 int i, nb_frames, bit_offset, pos, len;
1099                 uint8_t *q;
1100
1101                 /* read super frame header */
1102                 skip_bits(&pwd->gb, 4); /* super frame index */
1103                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1104                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1105                 ret = -E_WMA_OUTPUT_SPACE;
1106                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1107                                 * sizeof(int16_t) > *data_size)
1108                         goto fail;
1109
1110                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1111
1112                 if (pwd->last_superframe_len > 0) {
1113                         /* add bit_offset bits to last frame */
1114                         ret = -E_WMA_BAD_SUPERFRAME;
1115                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1116                                         MAX_CODED_SUPERFRAME_SIZE)
1117                                 goto fail;
1118                         q = pwd->last_superframe + pwd->last_superframe_len;
1119                         len = bit_offset;
1120                         while (len > 7) {
1121                                 *q++ = get_bits(&pwd->gb, 8);
1122                                 len -= 8;
1123                         }
1124                         if (len > 0)
1125                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1126
1127                         /* XXX: bit_offset bits into last frame */
1128                         init_get_bits(&pwd->gb, pwd->last_superframe,
1129                                 MAX_CODED_SUPERFRAME_SIZE);
1130                         /* skip unused bits */
1131                         if (pwd->last_bitoffset > 0)
1132                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1133                         /*
1134                          * This frame is stored in the last superframe and in
1135                          * the current one.
1136                          */
1137                         ret = -E_WMA_DECODE;
1138                         if (wma_decode_frame(pwd, samples) < 0)
1139                                 goto fail;
1140                         frame_count++;
1141                         samples += pwd->ahi.channels * pwd->frame_len;
1142                 }
1143
1144                 /* read each frame starting from bit_offset */
1145                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1146                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1147                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1148                 len = pos & 7;
1149                 if (len > 0)
1150                         skip_bits(&pwd->gb, len);
1151
1152                 pwd->reset_block_lengths = 1;
1153                 for (i = 0; i < nb_frames; i++) {
1154                         ret = -E_WMA_DECODE;
1155                         if (wma_decode_frame(pwd, samples) < 0)
1156                                 goto fail;
1157                         frame_count++;
1158                         samples += pwd->ahi.channels * pwd->frame_len;
1159                 }
1160
1161                 /* we copy the end of the frame in the last frame buffer */
1162                 pos = get_bits_count(&pwd->gb) +
1163                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1164                 pwd->last_bitoffset = pos & 7;
1165                 pos >>= 3;
1166                 len = buf_size - pos;
1167                 ret = -E_WMA_BAD_SUPERFRAME;
1168                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1169                         goto fail;
1170                 pwd->last_superframe_len = len;
1171                 memcpy(pwd->last_superframe, buf + pos, len);
1172         } else {
1173                 PARA_DEBUG_LOG("not using bit reservoir\n");
1174                 ret = -E_WMA_OUTPUT_SPACE;
1175                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1176                         goto fail;
1177                 /* single frame decode */
1178                 ret = -E_WMA_DECODE;
1179                 if (wma_decode_frame(pwd, samples) < 0)
1180                         goto fail;
1181                 frame_count++;
1182                 samples += pwd->ahi.channels * pwd->frame_len;
1183         }
1184         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1185                 "outbytes: %zd, eaten: %d\n",
1186                 frame_count, pwd->frame_len, pwd->block_len,
1187                 (int8_t *) samples - (int8_t *) data, pwd->ahi.block_align);
1188         *data_size = (int8_t *)samples - (int8_t *)data;
1189         return pwd->ahi.block_align;
1190 fail:
1191         /* reset the bit reservoir on errors */
1192         pwd->last_superframe_len = 0;
1193         return ret;
1194 }
1195
1196 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1197                 struct filter_node *fn)
1198 {
1199         int ret, out_size = fn->bufsize - fn->loaded;
1200         struct private_wmadec_data *pwd = fn->private_data;
1201
1202         if (out_size < 128 * 1024)
1203                 return 0;
1204         if (len <= WMA_FRAME_SKIP)
1205                 return 0;
1206         if (!pwd) {
1207                 ret = wma_decode_init(inbuffer, len, &pwd);
1208                 if (ret <= 0)
1209                         return ret;
1210                 fn->private_data = pwd;
1211                 fn->fc->channels = pwd->ahi.channels;
1212                 fn->fc->samplerate = pwd->ahi.sample_rate;
1213                 return pwd->ahi.header_len;
1214         }
1215         /* skip 31 bytes */
1216         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1217                 return 0;
1218         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1219                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1220                 len - WMA_FRAME_SKIP);
1221         if (ret < 0)
1222                 return ret;
1223         fn->loaded += out_size;
1224         return ret + WMA_FRAME_SKIP;
1225 }
1226
1227 static void wmadec_close(struct filter_node *fn)
1228 {
1229         struct private_wmadec_data *pwd = fn->private_data;
1230
1231         if (!pwd)
1232                 return;
1233         wmadec_cleanup(pwd);
1234         free(fn->buf);
1235         fn->buf = NULL;
1236         free(fn->private_data);
1237         fn->private_data = NULL;
1238 }
1239
1240 static void wmadec_open(struct filter_node *fn)
1241 {
1242         fn->bufsize = 1024 * 1024;
1243         fn->buf = para_malloc(fn->bufsize);
1244         fn->private_data = NULL;
1245         fn->loaded = 0;
1246 }
1247
1248 /**
1249  * The init function of the wma decoder.
1250  *
1251  * \param f Its fields are filled in by the function.
1252  */
1253 void wmadec_filter_init(struct filter *f)
1254 {
1255         f->open = wmadec_open;
1256         f->close = wmadec_close;
1257         f->convert = wmadec_convert;
1258 }