c0d770d763dee327313270909c180e793983f22b
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27
28 #include "para.h"
29 #include "error.h"
30 #include "list.h"
31 #include "ggo.h"
32 #include "string.h"
33 #include "sched.h"
34 #include "filter.h"
35 #include "bitstream.h"
36 #include "imdct.h"
37 #include "wma.h"
38 #include "wmadata.h"
39
40
41 /* size of blocks */
42 #define BLOCK_MIN_BITS 7
43 #define BLOCK_MAX_BITS 11
44 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
45
46 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
47
48 /* XXX: find exact max size */
49 #define HIGH_BAND_MAX_SIZE 16
50
51 /* XXX: is it a suitable value ? */
52 #define MAX_CODED_SUPERFRAME_SIZE 16384
53
54 #define MAX_CHANNELS 2
55
56 #define NOISE_TAB_SIZE 8192
57
58 #define LSP_POW_BITS 7
59
60 struct private_wmadec_data {
61         struct asf_header_info ahi;
62         struct getbit_context gb;
63         int use_bit_reservoir;
64         int use_variable_block_len;
65         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
66         int use_noise_coding;   ///< true if perceptual noise is added
67         int byte_offset_bits;
68         struct vlc exp_vlc;
69         int exponent_sizes[BLOCK_NB_SIZES];
70         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
71         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
72         int coefs_start;        ///< first coded coef
73         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
74         int exponent_high_sizes[BLOCK_NB_SIZES];
75         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
76         struct vlc hgain_vlc;
77
78         /* coded values in high bands */
79         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
80         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81
82         /* there are two possible tables for spectral coefficients */
83         struct vlc coef_vlc[2];
84         uint16_t *run_table[2];
85         uint16_t *level_table[2];
86         uint16_t *int_table[2];
87         const struct coef_vlc_table *coef_vlcs[2];
88         /* frame info */
89         int frame_len;          ///< frame length in samples
90         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
91         int nb_block_sizes;     ///< number of block sizes
92         /* block info */
93         int reset_block_lengths;
94         int block_len_bits;     ///< log2 of current block length
95         int next_block_len_bits;        ///< log2 of next block length
96         int prev_block_len_bits;        ///< log2 of prev block length
97         int block_len;          ///< block length in samples
98         int block_pos;          ///< current position in frame
99         uint8_t ms_stereo;      ///< true if mid/side stereo mode
100         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
101         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
102         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
103         float max_exponent[MAX_CHANNELS];
104         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
106         float output[BLOCK_MAX_SIZE * 2];
107         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
108         float *windows[BLOCK_NB_SIZES];
109         /* output buffer for one frame and the last for IMDCT windowing */
110         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
111         /* last frame info */
112         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
113         int last_bitoffset;
114         int last_superframe_len;
115         float noise_table[NOISE_TAB_SIZE];
116         int noise_index;
117         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
118         /* lsp_to_curve tables */
119         float lsp_cos_table[BLOCK_MAX_SIZE];
120         float lsp_pow_e_table[256];
121         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
122         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
123 };
124
125 #define EXPVLCBITS 8
126 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
127
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
130
131 #define VLCBITS 9
132 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
133
134 DECLARE_ALIGNED(16, float, ff_sine_128[128]);
135 DECLARE_ALIGNED(16, float, ff_sine_256[256]);
136 DECLARE_ALIGNED(16, float, ff_sine_512[512]);
137 DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
138 DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
139 DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
140
141 static float *ff_sine_windows[6] = {
142         ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024,
143         ff_sine_2048, ff_sine_4096
144 };
145
146 /* Generate a sine window. */
147 static void sine_window_init(float *window, int n)
148 {
149         int i;
150
151         for (i = 0; i < n; i++)
152                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
153 }
154
155 static void wmadec_cleanup(struct private_wmadec_data *pwd)
156 {
157         int i;
158
159         for (i = 0; i < pwd->nb_block_sizes; i++)
160                 imdct_end(pwd->mdct_ctx[i]);
161         if (pwd->use_exp_vlc)
162                 free_vlc(&pwd->exp_vlc);
163         if (pwd->use_noise_coding)
164                 free_vlc(&pwd->hgain_vlc);
165         for (i = 0; i < 2; i++) {
166                 free_vlc(&pwd->coef_vlc[i]);
167                 free(pwd->run_table[i]);
168                 free(pwd->level_table[i]);
169                 free(pwd->int_table[i]);
170         }
171 }
172
173 /* XXX: use same run/length optimization as mpeg decoders */
174 //FIXME maybe split decode / encode or pass flag
175 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
176                 uint16_t **plevel_table, uint16_t **pint_table,
177                 const struct coef_vlc_table *vlc_table)
178 {
179         int n = vlc_table->n;
180         const uint8_t *table_bits = vlc_table->huffbits;
181         const uint32_t *table_codes = vlc_table->huffcodes;
182         const uint16_t *levels_table = vlc_table->levels;
183         uint16_t *run_table, *level_table, *int_table;
184         int i, l, j, k, level;
185
186         init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4);
187
188         run_table = para_malloc(n * sizeof(uint16_t));
189         level_table = para_malloc(n * sizeof(uint16_t));
190         int_table = para_malloc(n * sizeof(uint16_t));
191         i = 2;
192         level = 1;
193         k = 0;
194         while (i < n) {
195                 int_table[k] = i;
196                 l = levels_table[k++];
197                 for (j = 0; j < l; j++) {
198                         run_table[i] = j;
199                         level_table[i] = level;
200                         i++;
201                 }
202                 level++;
203         }
204         *prun_table = run_table;
205         *plevel_table = level_table;
206         *pint_table = int_table;
207 }
208
209 /* compute the scale factor band sizes for each MDCT block size */
210 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
211         float high_freq)
212 {
213         struct asf_header_info *ahi = &pwd->ahi;
214         int a, b, pos, lpos, k, block_len, i, j, n;
215         const uint8_t *table;
216
217         pwd->coefs_start = 0;
218         for (k = 0; k < pwd->nb_block_sizes; k++) {
219                 block_len = pwd->frame_len >> k;
220
221                 table = NULL;
222                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
223                 if (a < 3) {
224                         if (ahi->sample_rate >= 44100)
225                                 table = exponent_band_44100[a];
226                         else if (ahi->sample_rate >= 32000)
227                                 table = exponent_band_32000[a];
228                         else if (ahi->sample_rate >= 22050)
229                                 table = exponent_band_22050[a];
230                 }
231                 if (table) {
232                         n = *table++;
233                         for (i = 0; i < n; i++)
234                                 pwd->exponent_bands[k][i] = table[i];
235                         pwd->exponent_sizes[k] = n;
236                 } else {
237                         j = 0;
238                         lpos = 0;
239                         for (i = 0; i < 25; i++) {
240                                 a = wma_critical_freqs[i];
241                                 b = ahi->sample_rate;
242                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
243                                 pos <<= 2;
244                                 if (pos > block_len)
245                                         pos = block_len;
246                                 if (pos > lpos)
247                                         pwd->exponent_bands[k][j++] = pos - lpos;
248                                 if (pos >= block_len)
249                                         break;
250                                 lpos = pos;
251                         }
252                         pwd->exponent_sizes[k] = j;
253                 }
254
255                 /* max number of coefs */
256                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
257                 /* high freq computation */
258                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
259                         / ahi->sample_rate + 0.5);
260                 n = pwd->exponent_sizes[k];
261                 j = 0;
262                 pos = 0;
263                 for (i = 0; i < n; i++) {
264                         int start, end;
265                         start = pos;
266                         pos += pwd->exponent_bands[k][i];
267                         end = pos;
268                         if (start < pwd->high_band_start[k])
269                                 start = pwd->high_band_start[k];
270                         if (end > pwd->coefs_end[k])
271                                 end = pwd->coefs_end[k];
272                         if (end > start)
273                                 pwd->exponent_high_bands[k][j++] = end - start;
274                 }
275                 pwd->exponent_high_sizes[k] = j;
276         }
277 }
278
279 static int wma_init(struct private_wmadec_data *pwd)
280 {
281         int i;
282         float bps1, high_freq;
283         volatile float bps;
284         int sample_rate1;
285         int coef_vlc_table;
286         struct asf_header_info *ahi = &pwd->ahi;
287         int flags2 = ahi->flags2;
288
289         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
290                 || ahi->channels <= 0 || ahi->channels > 8
291                 || ahi->bit_rate <= 0)
292                 return -E_WMA_BAD_PARAMS;
293
294         /* compute MDCT block size */
295         if (ahi->sample_rate <= 16000) {
296                 pwd->frame_len_bits = 9;
297         } else if (ahi->sample_rate <= 22050) {
298                 pwd->frame_len_bits = 10;
299         } else {
300                 pwd->frame_len_bits = 11;
301         }
302         pwd->frame_len = 1 << pwd->frame_len_bits;
303         if (pwd->use_variable_block_len) {
304                 int nb_max, nb;
305                 nb = ((flags2 >> 3) & 3) + 1;
306                 if ((ahi->bit_rate / ahi->channels) >= 32000)
307                         nb += 2;
308                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
309                 if (nb > nb_max)
310                         nb = nb_max;
311                 pwd->nb_block_sizes = nb + 1;
312         } else
313                 pwd->nb_block_sizes = 1;
314
315         /* init rate dependent parameters */
316         pwd->use_noise_coding = 1;
317         high_freq = ahi->sample_rate * 0.5;
318
319         /* wma2 rates are normalized */
320         sample_rate1 = ahi->sample_rate;
321         if (sample_rate1 >= 44100)
322                 sample_rate1 = 44100;
323         else if (sample_rate1 >= 22050)
324                 sample_rate1 = 22050;
325         else if (sample_rate1 >= 16000)
326                 sample_rate1 = 16000;
327         else if (sample_rate1 >= 11025)
328                 sample_rate1 = 11025;
329         else if (sample_rate1 >= 8000)
330                 sample_rate1 = 8000;
331
332         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
333         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
334         /*
335          * Compute high frequency value and choose if noise coding should be
336          * activated.
337          */
338         bps1 = bps;
339         if (ahi->channels == 2)
340                 bps1 = bps * 1.6;
341         if (sample_rate1 == 44100) {
342                 if (bps1 >= 0.61)
343                         pwd->use_noise_coding = 0;
344                 else
345                         high_freq = high_freq * 0.4;
346         } else if (sample_rate1 == 22050) {
347                 if (bps1 >= 1.16)
348                         pwd->use_noise_coding = 0;
349                 else if (bps1 >= 0.72)
350                         high_freq = high_freq * 0.7;
351                 else
352                         high_freq = high_freq * 0.6;
353         } else if (sample_rate1 == 16000) {
354                 if (bps > 0.5)
355                         high_freq = high_freq * 0.5;
356                 else
357                         high_freq = high_freq * 0.3;
358         } else if (sample_rate1 == 11025) {
359                 high_freq = high_freq * 0.7;
360         } else if (sample_rate1 == 8000) {
361                 if (bps <= 0.625) {
362                         high_freq = high_freq * 0.5;
363                 } else if (bps > 0.75) {
364                         pwd->use_noise_coding = 0;
365                 } else {
366                         high_freq = high_freq * 0.65;
367                 }
368         } else {
369                 if (bps >= 0.8) {
370                         high_freq = high_freq * 0.75;
371                 } else if (bps >= 0.6) {
372                         high_freq = high_freq * 0.6;
373                 } else {
374                         high_freq = high_freq * 0.5;
375                 }
376         }
377         PARA_INFO_LOG("channels=%d sample_rate=%d "
378                 "bitrate=%d block_align=%d\n",
379                 ahi->channels, ahi->sample_rate,
380                 ahi->bit_rate, ahi->block_align);
381         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
382                 "high_freq=%f bitoffset=%d\n",
383                 pwd->frame_len, bps, bps1,
384                 high_freq, pwd->byte_offset_bits);
385         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
386                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
387
388         compute_scale_factor_band_sizes(pwd, high_freq);
389         /* init MDCT windows : simple sinus window */
390         for (i = 0; i < pwd->nb_block_sizes; i++) {
391                 int n;
392                 n = 1 << (pwd->frame_len_bits - i);
393                 sine_window_init(ff_sine_windows[pwd->frame_len_bits - i - 7], n);
394                 pwd->windows[i] = ff_sine_windows[pwd->frame_len_bits - i - 7];
395         }
396
397         pwd->reset_block_lengths = 1;
398
399         if (pwd->use_noise_coding) {
400                 /* init the noise generator */
401                 if (pwd->use_exp_vlc)
402                         pwd->noise_mult = 0.02;
403                 else
404                         pwd->noise_mult = 0.04;
405
406                 {
407                         unsigned int seed;
408                         float norm;
409                         seed = 1;
410                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
411                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
412                                 seed = seed * 314159 + 1;
413                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
414                         }
415                 }
416         }
417
418         /* choose the VLC tables for the coefficients */
419         coef_vlc_table = 2;
420         if (ahi->sample_rate >= 32000) {
421                 if (bps1 < 0.72)
422                         coef_vlc_table = 0;
423                 else if (bps1 < 1.16)
424                         coef_vlc_table = 1;
425         }
426         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
427         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
428         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
429                 &pwd->int_table[0], pwd->coef_vlcs[0]);
430         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
431                 &pwd->int_table[1], pwd->coef_vlcs[1]);
432         return 0;
433 }
434
435 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
436 {
437         float wdel, a, b;
438         int i, e, m;
439
440         wdel = M_PI / frame_len;
441         for (i = 0; i < frame_len; i++)
442                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
443
444         /* tables for x^-0.25 computation */
445         for (i = 0; i < 256; i++) {
446                 e = i - 126;
447                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
448         }
449
450         /* These two tables are needed to avoid two operations in pow_m1_4. */
451         b = 1.0;
452         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
453                 m = (1 << LSP_POW_BITS) + i;
454                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
455                 a = pow(a, -0.25);
456                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
457                 pwd->lsp_pow_m_table2[i] = b - a;
458                 b = a;
459         }
460 }
461
462 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
463 {
464         struct private_wmadec_data *pwd;
465         int ret, i;
466
467         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
468         pwd = para_calloc(sizeof(*pwd));
469         ret = read_asf_header(initial_buf, len, &pwd->ahi);
470         if (ret <= 0) {
471                 free(pwd);
472                 return ret;
473         }
474
475         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
476         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
477         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
478
479         ret = wma_init(pwd);
480         if (ret < 0)
481                 return ret;
482         /* init MDCT */
483         for (i = 0; i < pwd->nb_block_sizes; i++) {
484                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
485                 if (ret < 0)
486                         return ret;
487         }
488         if (pwd->use_noise_coding) {
489                 PARA_INFO_LOG("using noise coding\n");
490                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
491                         sizeof(ff_wma_hgain_huffbits), ff_wma_hgain_huffbits,
492                         1, 1, ff_wma_hgain_huffcodes, 2, 2);
493         }
494
495         if (pwd->use_exp_vlc) {
496                 PARA_INFO_LOG("using exp_vlc\n");
497                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
498                 sizeof(ff_wma_scale_huffbits), ff_wma_scale_huffbits,
499                 1, 1, ff_wma_scale_huffcodes, 4, 4);
500         } else {
501                 PARA_INFO_LOG("using curve\n");
502                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
503         }
504         *result = pwd;
505         return pwd->ahi.header_len;
506 }
507
508 /**
509  * compute x^-0.25 with an exponent and mantissa table. We use linear
510  * interpolation to reduce the mantissa table size at a small speed
511  * expense (linear interpolation approximately doubles the number of
512  * bits of precision).
513  */
514 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
515 {
516         union {
517                 float f;
518                 unsigned int v;
519         } u, t;
520         unsigned int e, m;
521         float a, b;
522
523         u.f = x;
524         e = u.v >> 23;
525         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
526         /* build interpolation scale: 1 <= t < 2. */
527         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
528         a = pwd->lsp_pow_m_table1[m];
529         b = pwd->lsp_pow_m_table2[m];
530         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
531 }
532
533 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
534                 float *out, float *val_max_ptr, int n, float *lsp)
535 {
536         int i, j;
537         float p, q, w, v, val_max;
538
539         val_max = 0;
540         for (i = 0; i < n; i++) {
541                 p = 0.5f;
542                 q = 0.5f;
543                 w = pwd->lsp_cos_table[i];
544                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
545                         q *= w - lsp[j - 1];
546                         p *= w - lsp[j];
547                 }
548                 p *= p * (2.0f - w);
549                 q *= q * (2.0f + w);
550                 v = p + q;
551                 v = pow_m1_4(pwd, v);
552                 if (v > val_max)
553                         val_max = v;
554                 out[i] = v;
555         }
556         *val_max_ptr = val_max;
557 }
558
559 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
560 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
561 {
562         float lsp_coefs[NB_LSP_COEFS];
563         int val, i;
564
565         for (i = 0; i < NB_LSP_COEFS; i++) {
566                 if (i == 0 || i >= 8)
567                         val = get_bits(&pwd->gb, 3);
568                 else
569                         val = get_bits(&pwd->gb, 4);
570                 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
571         }
572
573         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
574                 pwd->block_len, lsp_coefs);
575 }
576
577 /*
578  * Parse a vlc code, faster then get_vlc().
579  *
580  * \param bits The number of bits which will be read at once, must be
581  * identical to nb_bits in init_vlc()
582  *
583  * \param max_depth The number of times bits bits must be read to completely
584  * read the longest vlc code = (max_vlc_length + bits - 1) / bits.
585  */
586 static int get_vlc2(struct getbit_context *s, VLC_TYPE(*table)[2],
587                 int bits, int max_depth)
588 {
589         int code;
590
591         OPEN_READER(re, s)
592         UPDATE_CACHE(re, s)
593         GET_VLC(code, re, s, table, bits, max_depth)
594         CLOSE_READER(re, s)
595         return code;
596 }
597
598 /* Decode exponents coded with VLC codes. */
599 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
600 {
601         int last_exp, n, code;
602         const uint16_t *ptr, *band_ptr;
603         float v, *q, max_scale, *q_end;
604
605         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
606         ptr = band_ptr;
607         q = pwd->exponents[ch];
608         q_end = q + pwd->block_len;
609         max_scale = 0;
610         last_exp = 36;
611
612         while (q < q_end) {
613                 code = get_vlc2(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
614                 if (code < 0)
615                         return -1;
616                 /* NOTE: this offset is the same as MPEG4 AAC ! */
617                 last_exp += code - 60;
618                 /* XXX: use a table */
619                 v = pow(10, last_exp * (1.0 / 16.0));
620                 if (v > max_scale)
621                         max_scale = v;
622                 n = *ptr++;
623                 do {
624                         *q++ = v;
625                 } while (--n);
626         }
627         pwd->max_exponent[ch] = max_scale;
628         return 0;
629 }
630
631 /* compute src0 * src1 + src2 */
632 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
633                 const float *src2, int len)
634 {
635         int i;
636
637         for (i = 0; i < len; i++)
638                 dst[i] = src0[i] * src1[i] + src2[i];
639 }
640
641 static inline void vector_mult_reverse(float *dst, const float *src0,
642                 const float *src1, int len)
643 {
644         int i;
645
646         src1 += len - 1;
647         for (i = 0; i < len; i++)
648                 dst[i] = src0[i] * src1[-i];
649 }
650
651 /**
652  * Apply MDCT window and add into output.
653  *
654  * We ensure that when the windows overlap their squared sum
655  * is always 1 (MDCT reconstruction rule).
656  */
657 static void wma_window(struct private_wmadec_data *pwd, float *out)
658 {
659         float *in = pwd->output;
660         int block_len, bsize, n;
661
662         /* left part */
663         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
664                 block_len = pwd->block_len;
665                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
666                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
667         } else {
668                 block_len = 1 << pwd->prev_block_len_bits;
669                 n = (pwd->block_len - block_len) / 2;
670                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
671                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
672                         block_len);
673                 memcpy(out + n + block_len, in + n + block_len,
674                         n * sizeof(float));
675         }
676         out += pwd->block_len;
677         in += pwd->block_len;
678         /* right part */
679         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
680                 block_len = pwd->block_len;
681                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
682                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
683         } else {
684                 block_len = 1 << pwd->next_block_len_bits;
685                 n = (pwd->block_len - block_len) / 2;
686                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
687                 memcpy(out, in, n * sizeof(float));
688                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
689                         block_len);
690                 memset(out + n + block_len, 0, n * sizeof(float));
691         }
692 }
693
694 static int wma_total_gain_to_bits(int total_gain)
695 {
696         if (total_gain < 15)
697                 return 13;
698         else if (total_gain < 32)
699                 return 12;
700         else if (total_gain < 40)
701                 return 11;
702         else if (total_gain < 45)
703                 return 10;
704         else
705                 return 9;
706 }
707
708 /**
709  * @return 0 if OK. 1 if last block of frame. return -1 if
710  * unrecorrable error.
711  */
712 static int wma_decode_block(struct private_wmadec_data *pwd)
713 {
714         int n, v, ch, code, bsize;
715         int coef_nb_bits, total_gain;
716         int nb_coefs[MAX_CHANNELS];
717         float mdct_norm;
718
719         /* compute current block length */
720         if (pwd->use_variable_block_len) {
721                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
722
723                 if (pwd->reset_block_lengths) {
724                         pwd->reset_block_lengths = 0;
725                         v = get_bits(&pwd->gb, n);
726                         if (v >= pwd->nb_block_sizes)
727                                 return -1;
728                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
729                         v = get_bits(&pwd->gb, n);
730                         if (v >= pwd->nb_block_sizes)
731                                 return -1;
732                         pwd->block_len_bits = pwd->frame_len_bits - v;
733                 } else {
734                         /* update block lengths */
735                         pwd->prev_block_len_bits = pwd->block_len_bits;
736                         pwd->block_len_bits = pwd->next_block_len_bits;
737                 }
738                 v = get_bits(&pwd->gb, n);
739                 if (v >= pwd->nb_block_sizes)
740                         return -1;
741                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
742         } else {
743                 /* fixed block len */
744                 pwd->next_block_len_bits = pwd->frame_len_bits;
745                 pwd->prev_block_len_bits = pwd->frame_len_bits;
746                 pwd->block_len_bits = pwd->frame_len_bits;
747         }
748
749         /* now check if the block length is coherent with the frame length */
750         pwd->block_len = 1 << pwd->block_len_bits;
751         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
752                 return -E_INCOHERENT_BLOCK_LEN;
753
754         if (pwd->ahi.channels == 2)
755                 pwd->ms_stereo = get_bits1(&pwd->gb);
756         v = 0;
757         for (ch = 0; ch < pwd->ahi.channels; ch++) {
758                 int a = get_bits1(&pwd->gb);
759                 pwd->channel_coded[ch] = a;
760                 v |= a;
761         }
762
763         bsize = pwd->frame_len_bits - pwd->block_len_bits;
764
765         /* if no channel coded, no need to go further */
766         /* XXX: fix potential framing problems */
767         if (!v)
768                 goto next;
769
770         /* read total gain and extract corresponding number of bits for
771            coef escape coding */
772         total_gain = 1;
773         for (;;) {
774                 int a = get_bits(&pwd->gb, 7);
775                 total_gain += a;
776                 if (a != 127)
777                         break;
778         }
779
780         coef_nb_bits = wma_total_gain_to_bits(total_gain);
781
782         /* compute number of coefficients */
783         n = pwd->coefs_end[bsize] - pwd->coefs_start;
784         for (ch = 0; ch < pwd->ahi.channels; ch++)
785                 nb_coefs[ch] = n;
786
787         /* complex coding */
788         if (pwd->use_noise_coding) {
789                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
790                         if (pwd->channel_coded[ch]) {
791                                 int i, m, a;
792                                 m = pwd->exponent_high_sizes[bsize];
793                                 for (i = 0; i < m; i++) {
794                                         a = get_bits1(&pwd->gb);
795                                         pwd->high_band_coded[ch][i] = a;
796                                         /* if noise coding, the coefficients are not transmitted */
797                                         if (a)
798                                                 nb_coefs[ch] -=
799                                                     pwd->
800                                                     exponent_high_bands[bsize]
801                                                     [i];
802                                 }
803                         }
804                 }
805                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
806                         if (pwd->channel_coded[ch]) {
807                                 int i, val;
808
809                                 n = pwd->exponent_high_sizes[bsize];
810                                 val = (int) 0x80000000;
811                                 for (i = 0; i < n; i++) {
812                                         if (pwd->high_band_coded[ch][i]) {
813                                                 if (val == (int) 0x80000000) {
814                                                         val =
815                                                             get_bits(&pwd->gb,
816                                                                      7) - 19;
817                                                 } else {
818                                                         code =
819                                                             get_vlc2(&pwd->gb,
820                                                                      pwd->
821                                                                      hgain_vlc.
822                                                                      table,
823                                                                      HGAINVLCBITS,
824                                                                      HGAINMAX);
825                                                         if (code < 0)
826                                                                 return -1;
827                                                         val += code - 18;
828                                                 }
829                                                 pwd->high_band_values[ch][i] =
830                                                     val;
831                                         }
832                                 }
833                         }
834                 }
835         }
836
837         /* exponents can be reused in short blocks. */
838         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bits1(&pwd->gb)) {
839                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
840                         if (pwd->channel_coded[ch]) {
841                                 if (pwd->use_exp_vlc) {
842                                         if (decode_exp_vlc(pwd, ch) < 0)
843                                                 return -1;
844                                 } else {
845                                         decode_exp_lsp(pwd, ch);
846                                 }
847                                 pwd->exponents_bsize[ch] = bsize;
848                         }
849                 }
850         }
851
852         /* parse spectral coefficients : just RLE encoding */
853         for (ch = 0; ch < pwd->ahi.channels; ch++) {
854                 if (pwd->channel_coded[ch]) {
855                         struct vlc *coef_vlc;
856                         int level, run, sign, tindex;
857                         int16_t *ptr, *eptr;
858                         const uint16_t *level_table, *run_table;
859
860                         /* special VLC tables are used for ms stereo because
861                            there is potentially less energy there */
862                         tindex = (ch == 1 && pwd->ms_stereo);
863                         coef_vlc = &pwd->coef_vlc[tindex];
864                         run_table = pwd->run_table[tindex];
865                         level_table = pwd->level_table[tindex];
866                         /* XXX: optimize */
867                         ptr = &pwd->coefs1[ch][0];
868                         eptr = ptr + nb_coefs[ch];
869                         memset(ptr, 0, pwd->block_len * sizeof(int16_t));
870                         for (;;) {
871                                 code =
872                                     get_vlc2(&pwd->gb, coef_vlc->table, VLCBITS,
873                                              VLCMAX);
874                                 if (code < 0)
875                                         return -1;
876                                 if (code == 1) {
877                                         /* EOB */
878                                         break;
879                                 } else if (code == 0) {
880                                         /* escape */
881                                         level = get_bits(&pwd->gb, coef_nb_bits);
882                                         /* NOTE: this is rather suboptimal. reading
883                                            block_len_bits would be better */
884                                         run =
885                                             get_bits(&pwd->gb, pwd->frame_len_bits);
886                                 } else {
887                                         /* normal code */
888                                         run = run_table[code];
889                                         level = level_table[code];
890                                 }
891                                 sign = get_bits1(&pwd->gb);
892                                 if (!sign)
893                                         level = -level;
894                                 ptr += run;
895                                 if (ptr >= eptr) {
896                                         PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
897                                         break;
898                                 }
899                                 *ptr++ = level;
900                                 /* NOTE: EOB can be omitted */
901                                 if (ptr >= eptr)
902                                         break;
903                         }
904                 }
905         }
906
907         /* normalize */
908         {
909                 int n4 = pwd->block_len / 2;
910                 mdct_norm = 1.0 / (float) n4;
911         }
912
913         /* finally compute the MDCT coefficients */
914         for (ch = 0; ch < pwd->ahi.channels; ch++) {
915                 if (pwd->channel_coded[ch]) {
916                         int16_t *coefs1;
917                         float *coefs, *exponents, mult, mult1, noise;
918                         int i, j, n1, last_high_band, esize;
919                         float exp_power[HIGH_BAND_MAX_SIZE];
920
921                         coefs1 = pwd->coefs1[ch];
922                         exponents = pwd->exponents[ch];
923                         esize = pwd->exponents_bsize[ch];
924                         mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
925                         mult *= mdct_norm;
926                         coefs = pwd->coefs[ch];
927                         if (pwd->use_noise_coding) {
928                                 mult1 = mult;
929                                 /* very low freqs : noise */
930                                 for (i = 0; i < pwd->coefs_start; i++) {
931                                         *coefs++ =
932                                             pwd->noise_table[pwd->noise_index] *
933                                             exponents[i << bsize >> esize] *
934                                             mult1;
935                                         pwd->noise_index =
936                                             (pwd->noise_index +
937                                              1) & (NOISE_TAB_SIZE - 1);
938                                 }
939
940                                 n1 = pwd->exponent_high_sizes[bsize];
941
942                                 /* compute power of high bands */
943                                 exponents = pwd->exponents[ch] +
944                                     (pwd->high_band_start[bsize] << bsize);
945                                 last_high_band = 0;     /* avoid warning */
946                                 for (j = 0; j < n1; j++) {
947                                         n = pwd->exponent_high_bands[pwd->
948                                                                    frame_len_bits
949                                                                    -
950                                                                    pwd->
951                                                                    block_len_bits]
952                                             [j];
953                                         if (pwd->high_band_coded[ch][j]) {
954                                                 float e2, val;
955                                                 e2 = 0;
956                                                 for (i = 0; i < n; i++) {
957                                                         val = exponents[i << bsize
958                                                                       >> esize];
959                                                         e2 += val * val;
960                                                 }
961                                                 exp_power[j] = e2 / n;
962                                                 last_high_band = j;
963                                         }
964                                         exponents += n << bsize;
965                                 }
966
967                                 /* main freqs and high freqs */
968                                 exponents =
969                                     pwd->exponents[ch] +
970                                     (pwd->coefs_start << bsize);
971                                 for (j = -1; j < n1; j++) {
972                                         if (j < 0) {
973                                                 n = pwd->high_band_start[bsize] -
974                                                     pwd->coefs_start;
975                                         } else {
976                                                 n = pwd->exponent_high_bands[pwd->
977                                                                            frame_len_bits
978                                                                            -
979                                                                            pwd->
980                                                                            block_len_bits]
981                                                     [j];
982                                         }
983                                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
984                                                 /* use noise with specified power */
985                                                 mult1 =
986                                                     sqrt(exp_power[j] /
987                                                          exp_power
988                                                          [last_high_band]);
989                                                 /* XXX: use a table */
990                                                 mult1 =
991                                                     mult1 * pow(10,
992                                                                 pwd->
993                                                                 high_band_values
994                                                                 [ch][j] * 0.05);
995                                                 mult1 =
996                                                     mult1 /
997                                                     (pwd->max_exponent[ch] *
998                                                      pwd->noise_mult);
999                                                 mult1 *= mdct_norm;
1000                                                 for (i = 0; i < n; i++) {
1001                                                         noise =
1002                                                             pwd->noise_table[pwd->
1003                                                                            noise_index];
1004                                                         pwd->noise_index =
1005                                                             (pwd->noise_index +
1006                                                              1) &
1007                                                             (NOISE_TAB_SIZE -
1008                                                              1);
1009                                                         *coefs++ =
1010                                                             noise *
1011                                                             exponents[i << bsize
1012                                                                       >> esize]
1013                                                             * mult1;
1014                                                 }
1015                                                 exponents += n << bsize;
1016                                         } else {
1017                                                 /* coded values + small noise */
1018                                                 for (i = 0; i < n; i++) {
1019                                                         noise =
1020                                                             pwd->noise_table[pwd->
1021                                                                            noise_index];
1022                                                         pwd->noise_index =
1023                                                             (pwd->noise_index +
1024                                                              1) &
1025                                                             (NOISE_TAB_SIZE -
1026                                                              1);
1027                                                         *coefs++ =
1028                                                             ((*coefs1++) +
1029                                                              noise) *
1030                                                             exponents[i << bsize
1031                                                                       >> esize]
1032                                                             * mult;
1033                                                 }
1034                                                 exponents += n << bsize;
1035                                         }
1036                                 }
1037
1038                                 /* very high freqs : noise */
1039                                 n = pwd->block_len - pwd->coefs_end[bsize];
1040                                 mult1 =
1041                                     mult * exponents[((-1 << bsize)) >> esize];
1042                                 for (i = 0; i < n; i++) {
1043                                         *coefs++ =
1044                                             pwd->noise_table[pwd->noise_index] *
1045                                             mult1;
1046                                         pwd->noise_index =
1047                                             (pwd->noise_index +
1048                                              1) & (NOISE_TAB_SIZE - 1);
1049                                 }
1050                         } else {
1051                                 /* XXX: optimize more */
1052                                 for (i = 0; i < pwd->coefs_start; i++)
1053                                         *coefs++ = 0.0;
1054                                 n = nb_coefs[ch];
1055                                 for (i = 0; i < n; i++) {
1056                                         *coefs++ =
1057                                             coefs1[i] *
1058                                             exponents[i << bsize >> esize] *
1059                                             mult;
1060                                 }
1061                                 n = pwd->block_len - pwd->coefs_end[bsize];
1062                                 for (i = 0; i < n; i++)
1063                                         *coefs++ = 0.0;
1064                         }
1065                 }
1066         }
1067
1068         if (pwd->ms_stereo && pwd->channel_coded[1]) {
1069                 float a, b;
1070                 int i;
1071
1072                 /*
1073                  * Nominal case for ms stereo: we do it before mdct.
1074                  *
1075                  * No need to optimize this case because it should almost never
1076                  * happen.
1077                  */
1078                 if (!pwd->channel_coded[0]) {
1079                         PARA_NOTICE_LOG("rare ms-stereo\n");
1080                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
1081                         pwd->channel_coded[0] = 1;
1082                 }
1083                 for (i = 0; i < pwd->block_len; i++) {
1084                         a = pwd->coefs[0][i];
1085                         b = pwd->coefs[1][i];
1086                         pwd->coefs[0][i] = a + b;
1087                         pwd->coefs[1][i] = a - b;
1088                 }
1089         }
1090
1091 next:
1092         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1093                 int n4, index;
1094
1095                 n = pwd->block_len;
1096                 n4 = pwd->block_len / 2;
1097                 if (pwd->channel_coded[ch])
1098                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1099                 else if (!(pwd->ms_stereo && ch == 1))
1100                         memset(pwd->output, 0, sizeof(pwd->output));
1101
1102                 /* multiply by the window and add in the frame */
1103                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1104                 wma_window(pwd, &pwd->frame_out[ch][index]);
1105         }
1106
1107         /* update block number */
1108         pwd->block_pos += pwd->block_len;
1109         if (pwd->block_pos >= pwd->frame_len)
1110                 return 1;
1111         else
1112                 return 0;
1113 }
1114
1115 /*
1116  * Clip a signed integer value into the -32768,32767 range.
1117  *
1118  * \param a The value to clip.
1119  *
1120  * \return The clipped value.
1121  */
1122 static inline int16_t av_clip_int16(int a)
1123 {
1124         if ((a + 32768) & ~65535)
1125                 return (a >> 31) ^ 32767;
1126         else
1127                 return a;
1128 }
1129
1130 /* Decode a frame of frame_len samples. */
1131 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1132 {
1133         int ret, i, n, ch, incr;
1134         int16_t *ptr;
1135         float *iptr;
1136
1137         /* read each block */
1138         pwd->block_pos = 0;
1139         for (;;) {
1140                 ret = wma_decode_block(pwd);
1141                 if (ret < 0)
1142                         return -1;
1143                 if (ret)
1144                         break;
1145         }
1146
1147         /* convert frame to integer */
1148         n = pwd->frame_len;
1149         incr = pwd->ahi.channels;
1150         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1151                 ptr = samples + ch;
1152                 iptr = pwd->frame_out[ch];
1153
1154                 for (i = 0; i < n; i++) {
1155                         *ptr = av_clip_int16(lrintf(*iptr++));
1156                         ptr += incr;
1157                 }
1158                 /* prepare for next block */
1159                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1160                         pwd->frame_len * sizeof(float));
1161         }
1162         return 0;
1163 }
1164
1165 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1166                 int *data_size, const uint8_t *buf, int buf_size)
1167 {
1168         int ret, nb_frames, bit_offset, i, pos, len;
1169         uint8_t *q;
1170         int16_t *samples;
1171         static int frame_count;
1172
1173         if (buf_size == 0) {
1174                 pwd->last_superframe_len = 0;
1175                 return 0;
1176         }
1177         if (buf_size < pwd->ahi.block_align)
1178                 return 0;
1179         buf_size = pwd->ahi.block_align;
1180         samples = data;
1181         init_get_bits(&pwd->gb, buf, buf_size * 8);
1182         if (pwd->use_bit_reservoir) {
1183                 /* read super frame header */
1184                 skip_bits(&pwd->gb, 4); /* super frame index */
1185                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1186                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1187                 ret = -E_WMA_OUTPUT_SPACE;
1188                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1189                                 * sizeof(int16_t) > *data_size)
1190                         goto fail;
1191
1192                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1193
1194                 if (pwd->last_superframe_len > 0) {
1195                         /* add bit_offset bits to last frame */
1196                         ret = -E_WMA_BAD_SUPERFRAME;
1197                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1198                                         MAX_CODED_SUPERFRAME_SIZE)
1199                                 goto fail;
1200                         q = pwd->last_superframe + pwd->last_superframe_len;
1201                         len = bit_offset;
1202                         while (len > 7) {
1203                                 *q++ = get_bits(&pwd->gb, 8);
1204                                 len -= 8;
1205                         }
1206                         if (len > 0)
1207                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1208
1209                         /* XXX: bit_offset bits into last frame */
1210                         init_get_bits(&pwd->gb, pwd->last_superframe,
1211                                 MAX_CODED_SUPERFRAME_SIZE * 8);
1212                         /* skip unused bits */
1213                         if (pwd->last_bitoffset > 0)
1214                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1215                         /*
1216                          * This frame is stored in the last superframe and in
1217                          * the current one.
1218                          */
1219                         ret = -E_WMA_DECODE;
1220                         if (wma_decode_frame(pwd, samples) < 0)
1221                                 goto fail;
1222                         frame_count++;
1223                         samples += pwd->ahi.channels * pwd->frame_len;
1224                 }
1225
1226                 /* read each frame starting from bit_offset */
1227                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1228                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1229                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)) * 8);
1230                 len = pos & 7;
1231                 if (len > 0)
1232                         skip_bits(&pwd->gb, len);
1233
1234                 pwd->reset_block_lengths = 1;
1235                 for (i = 0; i < nb_frames; i++) {
1236                         ret = -E_WMA_DECODE;
1237                         if (wma_decode_frame(pwd, samples) < 0)
1238                                 goto fail;
1239                         frame_count++;
1240                         samples += pwd->ahi.channels * pwd->frame_len;
1241                 }
1242
1243                 /* we copy the end of the frame in the last frame buffer */
1244                 pos = get_bits_count(&pwd->gb) +
1245                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1246                 pwd->last_bitoffset = pos & 7;
1247                 pos >>= 3;
1248                 len = buf_size - pos;
1249                 ret = -E_WMA_BAD_SUPERFRAME;
1250                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1251                         goto fail;
1252                 pwd->last_superframe_len = len;
1253                 memcpy(pwd->last_superframe, buf + pos, len);
1254         } else {
1255                 PARA_DEBUG_LOG("not using bit reservoir\n");
1256                 ret = -E_WMA_OUTPUT_SPACE;
1257                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1258                         goto fail;
1259                 /* single frame decode */
1260                 ret = -E_WMA_DECODE;
1261                 if (wma_decode_frame(pwd, samples) < 0)
1262                         goto fail;
1263                 frame_count++;
1264                 samples += pwd->ahi.channels * pwd->frame_len;
1265         }
1266         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1267                 "outbytes: %d, eaten: %d\n",
1268                 frame_count, pwd->frame_len, pwd->block_len,
1269                 (int8_t *) samples - (int8_t *) data, pwd->ahi.block_align);
1270         *data_size = (int8_t *)samples - (int8_t *)data;
1271         return pwd->ahi.block_align;
1272 fail:
1273         /* reset the bit reservoir on errors */
1274         pwd->last_superframe_len = 0;
1275         return ret;
1276 }
1277
1278 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1279                 struct filter_node *fn)
1280 {
1281         int ret, out_size = fn->bufsize - fn->loaded;
1282         struct private_wmadec_data *pwd = fn->private_data;
1283
1284         if (out_size < 128 * 1024)
1285                 return 0;
1286         if (!pwd) {
1287                 ret = wma_decode_init(inbuffer, len, &pwd);
1288                 if (ret <= 0)
1289                         return ret;
1290                 fn->private_data = pwd;
1291                 fn->fc->channels = pwd->ahi.channels;
1292                 fn->fc->samplerate = pwd->ahi.sample_rate;
1293                 return pwd->ahi.header_len;
1294         }
1295         /* skip 31 bytes */
1296         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1297                 return 0;
1298         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1299                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1300                 len - WMA_FRAME_SKIP);
1301         if (ret < 0)
1302                 return ret;
1303         fn->loaded += out_size;
1304         return ret + WMA_FRAME_SKIP;
1305 }
1306
1307 static void wmadec_close(struct filter_node *fn)
1308 {
1309         struct private_wmadec_data *pwd = fn->private_data;
1310
1311         if (!pwd)
1312                 return;
1313         wmadec_cleanup(pwd);
1314         free(fn->buf);
1315         fn->buf = NULL;
1316         free(fn->private_data);
1317         fn->private_data = NULL;
1318 }
1319
1320 static void wmadec_open(struct filter_node *fn)
1321 {
1322         fn->bufsize = 1024 * 1024;
1323         fn->buf = para_malloc(fn->bufsize);
1324         fn->private_data = NULL;
1325         fn->loaded = 0;
1326 }
1327
1328 /**
1329  * The init function of the wma decoder.
1330  *
1331  * \param f Its fields are filled in by the function.
1332  */
1333 void wmadec_filter_init(struct filter *f)
1334 {
1335         f->open = wmadec_open;
1336         f->close = wmadec_close;
1337         f->convert = wmadec_convert;
1338 }