pass the buffer size to init_get_bits() in bytes.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27
28 #include "para.h"
29 #include "error.h"
30 #include "list.h"
31 #include "ggo.h"
32 #include "string.h"
33 #include "sched.h"
34 #include "filter.h"
35 #include "bitstream.h"
36 #include "imdct.h"
37 #include "wma.h"
38 #include "wmadata.h"
39
40
41 /* size of blocks */
42 #define BLOCK_MIN_BITS 7
43 #define BLOCK_MAX_BITS 11
44 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
45
46 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
47
48 /* XXX: find exact max size */
49 #define HIGH_BAND_MAX_SIZE 16
50
51 /* XXX: is it a suitable value ? */
52 #define MAX_CODED_SUPERFRAME_SIZE 16384
53
54 #define MAX_CHANNELS 2
55
56 #define NOISE_TAB_SIZE 8192
57
58 #define LSP_POW_BITS 7
59
60 struct private_wmadec_data {
61         struct asf_header_info ahi;
62         struct getbit_context gb;
63         int use_bit_reservoir;
64         int use_variable_block_len;
65         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
66         int use_noise_coding;   ///< true if perceptual noise is added
67         int byte_offset_bits;
68         struct vlc exp_vlc;
69         int exponent_sizes[BLOCK_NB_SIZES];
70         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
71         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
72         int coefs_start;        ///< first coded coef
73         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
74         int exponent_high_sizes[BLOCK_NB_SIZES];
75         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
76         struct vlc hgain_vlc;
77
78         /* coded values in high bands */
79         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
80         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81
82         /* there are two possible tables for spectral coefficients */
83         struct vlc coef_vlc[2];
84         uint16_t *run_table[2];
85         uint16_t *level_table[2];
86         uint16_t *int_table[2];
87         const struct coef_vlc_table *coef_vlcs[2];
88         /* frame info */
89         int frame_len;          ///< frame length in samples
90         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
91         int nb_block_sizes;     ///< number of block sizes
92         /* block info */
93         int reset_block_lengths;
94         int block_len_bits;     ///< log2 of current block length
95         int next_block_len_bits;        ///< log2 of next block length
96         int prev_block_len_bits;        ///< log2 of prev block length
97         int block_len;          ///< block length in samples
98         int block_pos;          ///< current position in frame
99         uint8_t ms_stereo;      ///< true if mid/side stereo mode
100         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
101         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
102         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
103         float max_exponent[MAX_CHANNELS];
104         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
106         float output[BLOCK_MAX_SIZE * 2];
107         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
108         float *windows[BLOCK_NB_SIZES];
109         /* output buffer for one frame and the last for IMDCT windowing */
110         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
111         /* last frame info */
112         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
113         int last_bitoffset;
114         int last_superframe_len;
115         float noise_table[NOISE_TAB_SIZE];
116         int noise_index;
117         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
118         /* lsp_to_curve tables */
119         float lsp_cos_table[BLOCK_MAX_SIZE];
120         float lsp_pow_e_table[256];
121         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
122         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
123 };
124
125 #define EXPVLCBITS 8
126 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
127
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
130
131 #define VLCBITS 9
132 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
133
134 DECLARE_ALIGNED(16, float, ff_sine_128[128]);
135 DECLARE_ALIGNED(16, float, ff_sine_256[256]);
136 DECLARE_ALIGNED(16, float, ff_sine_512[512]);
137 DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
138 DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
139 DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
140
141 static float *ff_sine_windows[6] = {
142         ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024,
143         ff_sine_2048, ff_sine_4096
144 };
145
146 /* Generate a sine window. */
147 static void sine_window_init(float *window, int n)
148 {
149         int i;
150
151         for (i = 0; i < n; i++)
152                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
153 }
154
155 static void wmadec_cleanup(struct private_wmadec_data *pwd)
156 {
157         int i;
158
159         for (i = 0; i < pwd->nb_block_sizes; i++)
160                 imdct_end(pwd->mdct_ctx[i]);
161         if (pwd->use_exp_vlc)
162                 free_vlc(&pwd->exp_vlc);
163         if (pwd->use_noise_coding)
164                 free_vlc(&pwd->hgain_vlc);
165         for (i = 0; i < 2; i++) {
166                 free_vlc(&pwd->coef_vlc[i]);
167                 free(pwd->run_table[i]);
168                 free(pwd->level_table[i]);
169                 free(pwd->int_table[i]);
170         }
171 }
172
173 /* XXX: use same run/length optimization as mpeg decoders */
174 //FIXME maybe split decode / encode or pass flag
175 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
176                 uint16_t **plevel_table, uint16_t **pint_table,
177                 const struct coef_vlc_table *vlc_table)
178 {
179         int n = vlc_table->n;
180         const uint8_t *table_bits = vlc_table->huffbits;
181         const uint32_t *table_codes = vlc_table->huffcodes;
182         const uint16_t *levels_table = vlc_table->levels;
183         uint16_t *run_table, *level_table, *int_table;
184         int i, l, j, k, level;
185
186         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
187
188         run_table = para_malloc(n * sizeof(uint16_t));
189         level_table = para_malloc(n * sizeof(uint16_t));
190         int_table = para_malloc(n * sizeof(uint16_t));
191         i = 2;
192         level = 1;
193         k = 0;
194         while (i < n) {
195                 int_table[k] = i;
196                 l = levels_table[k++];
197                 for (j = 0; j < l; j++) {
198                         run_table[i] = j;
199                         level_table[i] = level;
200                         i++;
201                 }
202                 level++;
203         }
204         *prun_table = run_table;
205         *plevel_table = level_table;
206         *pint_table = int_table;
207 }
208
209 /* compute the scale factor band sizes for each MDCT block size */
210 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
211         float high_freq)
212 {
213         struct asf_header_info *ahi = &pwd->ahi;
214         int a, b, pos, lpos, k, block_len, i, j, n;
215         const uint8_t *table;
216
217         pwd->coefs_start = 0;
218         for (k = 0; k < pwd->nb_block_sizes; k++) {
219                 block_len = pwd->frame_len >> k;
220
221                 table = NULL;
222                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
223                 if (a < 3) {
224                         if (ahi->sample_rate >= 44100)
225                                 table = exponent_band_44100[a];
226                         else if (ahi->sample_rate >= 32000)
227                                 table = exponent_band_32000[a];
228                         else if (ahi->sample_rate >= 22050)
229                                 table = exponent_band_22050[a];
230                 }
231                 if (table) {
232                         n = *table++;
233                         for (i = 0; i < n; i++)
234                                 pwd->exponent_bands[k][i] = table[i];
235                         pwd->exponent_sizes[k] = n;
236                 } else {
237                         j = 0;
238                         lpos = 0;
239                         for (i = 0; i < 25; i++) {
240                                 a = wma_critical_freqs[i];
241                                 b = ahi->sample_rate;
242                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
243                                 pos <<= 2;
244                                 if (pos > block_len)
245                                         pos = block_len;
246                                 if (pos > lpos)
247                                         pwd->exponent_bands[k][j++] = pos - lpos;
248                                 if (pos >= block_len)
249                                         break;
250                                 lpos = pos;
251                         }
252                         pwd->exponent_sizes[k] = j;
253                 }
254
255                 /* max number of coefs */
256                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
257                 /* high freq computation */
258                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
259                         / ahi->sample_rate + 0.5);
260                 n = pwd->exponent_sizes[k];
261                 j = 0;
262                 pos = 0;
263                 for (i = 0; i < n; i++) {
264                         int start, end;
265                         start = pos;
266                         pos += pwd->exponent_bands[k][i];
267                         end = pos;
268                         if (start < pwd->high_band_start[k])
269                                 start = pwd->high_band_start[k];
270                         if (end > pwd->coefs_end[k])
271                                 end = pwd->coefs_end[k];
272                         if (end > start)
273                                 pwd->exponent_high_bands[k][j++] = end - start;
274                 }
275                 pwd->exponent_high_sizes[k] = j;
276         }
277 }
278
279 static int wma_init(struct private_wmadec_data *pwd)
280 {
281         int i;
282         float bps1, high_freq;
283         volatile float bps;
284         int sample_rate1;
285         int coef_vlc_table;
286         struct asf_header_info *ahi = &pwd->ahi;
287         int flags2 = ahi->flags2;
288
289         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
290                 || ahi->channels <= 0 || ahi->channels > 8
291                 || ahi->bit_rate <= 0)
292                 return -E_WMA_BAD_PARAMS;
293
294         /* compute MDCT block size */
295         if (ahi->sample_rate <= 16000) {
296                 pwd->frame_len_bits = 9;
297         } else if (ahi->sample_rate <= 22050) {
298                 pwd->frame_len_bits = 10;
299         } else {
300                 pwd->frame_len_bits = 11;
301         }
302         pwd->frame_len = 1 << pwd->frame_len_bits;
303         if (pwd->use_variable_block_len) {
304                 int nb_max, nb;
305                 nb = ((flags2 >> 3) & 3) + 1;
306                 if ((ahi->bit_rate / ahi->channels) >= 32000)
307                         nb += 2;
308                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
309                 if (nb > nb_max)
310                         nb = nb_max;
311                 pwd->nb_block_sizes = nb + 1;
312         } else
313                 pwd->nb_block_sizes = 1;
314
315         /* init rate dependent parameters */
316         pwd->use_noise_coding = 1;
317         high_freq = ahi->sample_rate * 0.5;
318
319         /* wma2 rates are normalized */
320         sample_rate1 = ahi->sample_rate;
321         if (sample_rate1 >= 44100)
322                 sample_rate1 = 44100;
323         else if (sample_rate1 >= 22050)
324                 sample_rate1 = 22050;
325         else if (sample_rate1 >= 16000)
326                 sample_rate1 = 16000;
327         else if (sample_rate1 >= 11025)
328                 sample_rate1 = 11025;
329         else if (sample_rate1 >= 8000)
330                 sample_rate1 = 8000;
331
332         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
333         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
334         /*
335          * Compute high frequency value and choose if noise coding should be
336          * activated.
337          */
338         bps1 = bps;
339         if (ahi->channels == 2)
340                 bps1 = bps * 1.6;
341         if (sample_rate1 == 44100) {
342                 if (bps1 >= 0.61)
343                         pwd->use_noise_coding = 0;
344                 else
345                         high_freq = high_freq * 0.4;
346         } else if (sample_rate1 == 22050) {
347                 if (bps1 >= 1.16)
348                         pwd->use_noise_coding = 0;
349                 else if (bps1 >= 0.72)
350                         high_freq = high_freq * 0.7;
351                 else
352                         high_freq = high_freq * 0.6;
353         } else if (sample_rate1 == 16000) {
354                 if (bps > 0.5)
355                         high_freq = high_freq * 0.5;
356                 else
357                         high_freq = high_freq * 0.3;
358         } else if (sample_rate1 == 11025) {
359                 high_freq = high_freq * 0.7;
360         } else if (sample_rate1 == 8000) {
361                 if (bps <= 0.625) {
362                         high_freq = high_freq * 0.5;
363                 } else if (bps > 0.75) {
364                         pwd->use_noise_coding = 0;
365                 } else {
366                         high_freq = high_freq * 0.65;
367                 }
368         } else {
369                 if (bps >= 0.8) {
370                         high_freq = high_freq * 0.75;
371                 } else if (bps >= 0.6) {
372                         high_freq = high_freq * 0.6;
373                 } else {
374                         high_freq = high_freq * 0.5;
375                 }
376         }
377         PARA_INFO_LOG("channels=%d sample_rate=%d "
378                 "bitrate=%d block_align=%d\n",
379                 ahi->channels, ahi->sample_rate,
380                 ahi->bit_rate, ahi->block_align);
381         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
382                 "high_freq=%f bitoffset=%d\n",
383                 pwd->frame_len, bps, bps1,
384                 high_freq, pwd->byte_offset_bits);
385         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
386                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
387
388         compute_scale_factor_band_sizes(pwd, high_freq);
389         /* init MDCT windows : simple sinus window */
390         for (i = 0; i < pwd->nb_block_sizes; i++) {
391                 int n;
392                 n = 1 << (pwd->frame_len_bits - i);
393                 sine_window_init(ff_sine_windows[pwd->frame_len_bits - i - 7], n);
394                 pwd->windows[i] = ff_sine_windows[pwd->frame_len_bits - i - 7];
395         }
396
397         pwd->reset_block_lengths = 1;
398
399         if (pwd->use_noise_coding) {
400                 /* init the noise generator */
401                 if (pwd->use_exp_vlc)
402                         pwd->noise_mult = 0.02;
403                 else
404                         pwd->noise_mult = 0.04;
405
406                 {
407                         unsigned int seed;
408                         float norm;
409                         seed = 1;
410                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
411                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
412                                 seed = seed * 314159 + 1;
413                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
414                         }
415                 }
416         }
417
418         /* choose the VLC tables for the coefficients */
419         coef_vlc_table = 2;
420         if (ahi->sample_rate >= 32000) {
421                 if (bps1 < 0.72)
422                         coef_vlc_table = 0;
423                 else if (bps1 < 1.16)
424                         coef_vlc_table = 1;
425         }
426         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
427         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
428         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
429                 &pwd->int_table[0], pwd->coef_vlcs[0]);
430         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
431                 &pwd->int_table[1], pwd->coef_vlcs[1]);
432         return 0;
433 }
434
435 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
436 {
437         float wdel, a, b;
438         int i, e, m;
439
440         wdel = M_PI / frame_len;
441         for (i = 0; i < frame_len; i++)
442                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
443
444         /* tables for x^-0.25 computation */
445         for (i = 0; i < 256; i++) {
446                 e = i - 126;
447                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
448         }
449
450         /* These two tables are needed to avoid two operations in pow_m1_4. */
451         b = 1.0;
452         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
453                 m = (1 << LSP_POW_BITS) + i;
454                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
455                 a = pow(a, -0.25);
456                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
457                 pwd->lsp_pow_m_table2[i] = b - a;
458                 b = a;
459         }
460 }
461
462 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
463 {
464         struct private_wmadec_data *pwd;
465         int ret, i;
466
467         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
468         pwd = para_calloc(sizeof(*pwd));
469         ret = read_asf_header(initial_buf, len, &pwd->ahi);
470         if (ret <= 0) {
471                 free(pwd);
472                 return ret;
473         }
474
475         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
476         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
477         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
478
479         ret = wma_init(pwd);
480         if (ret < 0)
481                 return ret;
482         /* init MDCT */
483         for (i = 0; i < pwd->nb_block_sizes; i++) {
484                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
485                 if (ret < 0)
486                         return ret;
487         }
488         if (pwd->use_noise_coding) {
489                 PARA_INFO_LOG("using noise coding\n");
490                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
491                         sizeof(ff_wma_hgain_huffbits), ff_wma_hgain_huffbits,
492                         ff_wma_hgain_huffcodes, 2);
493         }
494
495         if (pwd->use_exp_vlc) {
496                 PARA_INFO_LOG("using exp_vlc\n");
497                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
498                 sizeof(ff_wma_scale_huffbits), ff_wma_scale_huffbits,
499                 ff_wma_scale_huffcodes, 4);
500         } else {
501                 PARA_INFO_LOG("using curve\n");
502                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
503         }
504         *result = pwd;
505         return pwd->ahi.header_len;
506 }
507
508 /**
509  * compute x^-0.25 with an exponent and mantissa table. We use linear
510  * interpolation to reduce the mantissa table size at a small speed
511  * expense (linear interpolation approximately doubles the number of
512  * bits of precision).
513  */
514 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
515 {
516         union {
517                 float f;
518                 unsigned int v;
519         } u, t;
520         unsigned int e, m;
521         float a, b;
522
523         u.f = x;
524         e = u.v >> 23;
525         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
526         /* build interpolation scale: 1 <= t < 2. */
527         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
528         a = pwd->lsp_pow_m_table1[m];
529         b = pwd->lsp_pow_m_table2[m];
530         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
531 }
532
533 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
534                 float *out, float *val_max_ptr, int n, float *lsp)
535 {
536         int i, j;
537         float p, q, w, v, val_max;
538
539         val_max = 0;
540         for (i = 0; i < n; i++) {
541                 p = 0.5f;
542                 q = 0.5f;
543                 w = pwd->lsp_cos_table[i];
544                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
545                         q *= w - lsp[j - 1];
546                         p *= w - lsp[j];
547                 }
548                 p *= p * (2.0f - w);
549                 q *= q * (2.0f + w);
550                 v = p + q;
551                 v = pow_m1_4(pwd, v);
552                 if (v > val_max)
553                         val_max = v;
554                 out[i] = v;
555         }
556         *val_max_ptr = val_max;
557 }
558
559 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
560 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
561 {
562         float lsp_coefs[NB_LSP_COEFS];
563         int val, i;
564
565         for (i = 0; i < NB_LSP_COEFS; i++) {
566                 if (i == 0 || i >= 8)
567                         val = get_bits(&pwd->gb, 3);
568                 else
569                         val = get_bits(&pwd->gb, 4);
570                 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
571         }
572
573         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
574                 pwd->block_len, lsp_coefs);
575 }
576
577 /* Decode exponents coded with VLC codes. */
578 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
579 {
580         int last_exp, n, code;
581         const uint16_t *ptr, *band_ptr;
582         float v, *q, max_scale, *q_end;
583
584         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
585         ptr = band_ptr;
586         q = pwd->exponents[ch];
587         q_end = q + pwd->block_len;
588         max_scale = 0;
589         last_exp = 36;
590
591         while (q < q_end) {
592                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
593                 if (code < 0)
594                         return -1;
595                 /* NOTE: this offset is the same as MPEG4 AAC ! */
596                 last_exp += code - 60;
597                 /* XXX: use a table */
598                 v = pow(10, last_exp * (1.0 / 16.0));
599                 if (v > max_scale)
600                         max_scale = v;
601                 n = *ptr++;
602                 do {
603                         *q++ = v;
604                 } while (--n);
605         }
606         pwd->max_exponent[ch] = max_scale;
607         return 0;
608 }
609
610 /* compute src0 * src1 + src2 */
611 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
612                 const float *src2, int len)
613 {
614         int i;
615
616         for (i = 0; i < len; i++)
617                 dst[i] = src0[i] * src1[i] + src2[i];
618 }
619
620 static inline void vector_mult_reverse(float *dst, const float *src0,
621                 const float *src1, int len)
622 {
623         int i;
624
625         src1 += len - 1;
626         for (i = 0; i < len; i++)
627                 dst[i] = src0[i] * src1[-i];
628 }
629
630 /**
631  * Apply MDCT window and add into output.
632  *
633  * We ensure that when the windows overlap their squared sum
634  * is always 1 (MDCT reconstruction rule).
635  */
636 static void wma_window(struct private_wmadec_data *pwd, float *out)
637 {
638         float *in = pwd->output;
639         int block_len, bsize, n;
640
641         /* left part */
642         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
643                 block_len = pwd->block_len;
644                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
645                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
646         } else {
647                 block_len = 1 << pwd->prev_block_len_bits;
648                 n = (pwd->block_len - block_len) / 2;
649                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
650                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
651                         block_len);
652                 memcpy(out + n + block_len, in + n + block_len,
653                         n * sizeof(float));
654         }
655         out += pwd->block_len;
656         in += pwd->block_len;
657         /* right part */
658         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
659                 block_len = pwd->block_len;
660                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
661                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
662         } else {
663                 block_len = 1 << pwd->next_block_len_bits;
664                 n = (pwd->block_len - block_len) / 2;
665                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
666                 memcpy(out, in, n * sizeof(float));
667                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
668                         block_len);
669                 memset(out + n + block_len, 0, n * sizeof(float));
670         }
671 }
672
673 static int wma_total_gain_to_bits(int total_gain)
674 {
675         if (total_gain < 15)
676                 return 13;
677         else if (total_gain < 32)
678                 return 12;
679         else if (total_gain < 40)
680                 return 11;
681         else if (total_gain < 45)
682                 return 10;
683         else
684                 return 9;
685 }
686
687 /**
688  * @return 0 if OK. 1 if last block of frame. return -1 if
689  * unrecorrable error.
690  */
691 static int wma_decode_block(struct private_wmadec_data *pwd)
692 {
693         int n, v, ch, code, bsize;
694         int coef_nb_bits, total_gain;
695         int nb_coefs[MAX_CHANNELS];
696         float mdct_norm;
697
698         /* compute current block length */
699         if (pwd->use_variable_block_len) {
700                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
701
702                 if (pwd->reset_block_lengths) {
703                         pwd->reset_block_lengths = 0;
704                         v = get_bits(&pwd->gb, n);
705                         if (v >= pwd->nb_block_sizes)
706                                 return -1;
707                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
708                         v = get_bits(&pwd->gb, n);
709                         if (v >= pwd->nb_block_sizes)
710                                 return -1;
711                         pwd->block_len_bits = pwd->frame_len_bits - v;
712                 } else {
713                         /* update block lengths */
714                         pwd->prev_block_len_bits = pwd->block_len_bits;
715                         pwd->block_len_bits = pwd->next_block_len_bits;
716                 }
717                 v = get_bits(&pwd->gb, n);
718                 if (v >= pwd->nb_block_sizes)
719                         return -1;
720                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
721         } else {
722                 /* fixed block len */
723                 pwd->next_block_len_bits = pwd->frame_len_bits;
724                 pwd->prev_block_len_bits = pwd->frame_len_bits;
725                 pwd->block_len_bits = pwd->frame_len_bits;
726         }
727
728         /* now check if the block length is coherent with the frame length */
729         pwd->block_len = 1 << pwd->block_len_bits;
730         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
731                 return -E_INCOHERENT_BLOCK_LEN;
732
733         if (pwd->ahi.channels == 2)
734                 pwd->ms_stereo = get_bits1(&pwd->gb);
735         v = 0;
736         for (ch = 0; ch < pwd->ahi.channels; ch++) {
737                 int a = get_bits1(&pwd->gb);
738                 pwd->channel_coded[ch] = a;
739                 v |= a;
740         }
741
742         bsize = pwd->frame_len_bits - pwd->block_len_bits;
743
744         /* if no channel coded, no need to go further */
745         /* XXX: fix potential framing problems */
746         if (!v)
747                 goto next;
748
749         /* read total gain and extract corresponding number of bits for
750            coef escape coding */
751         total_gain = 1;
752         for (;;) {
753                 int a = get_bits(&pwd->gb, 7);
754                 total_gain += a;
755                 if (a != 127)
756                         break;
757         }
758
759         coef_nb_bits = wma_total_gain_to_bits(total_gain);
760
761         /* compute number of coefficients */
762         n = pwd->coefs_end[bsize] - pwd->coefs_start;
763         for (ch = 0; ch < pwd->ahi.channels; ch++)
764                 nb_coefs[ch] = n;
765
766         /* complex coding */
767         if (pwd->use_noise_coding) {
768                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
769                         if (pwd->channel_coded[ch]) {
770                                 int i, m, a;
771                                 m = pwd->exponent_high_sizes[bsize];
772                                 for (i = 0; i < m; i++) {
773                                         a = get_bits1(&pwd->gb);
774                                         pwd->high_band_coded[ch][i] = a;
775                                         /* if noise coding, the coefficients are not transmitted */
776                                         if (a)
777                                                 nb_coefs[ch] -=
778                                                     pwd->
779                                                     exponent_high_bands[bsize]
780                                                     [i];
781                                 }
782                         }
783                 }
784                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
785                         if (pwd->channel_coded[ch]) {
786                                 int i, val;
787
788                                 n = pwd->exponent_high_sizes[bsize];
789                                 val = (int) 0x80000000;
790                                 for (i = 0; i < n; i++) {
791                                         if (pwd->high_band_coded[ch][i]) {
792                                                 if (val == (int) 0x80000000) {
793                                                         val =
794                                                             get_bits(&pwd->gb,
795                                                                      7) - 19;
796                                                 } else {
797                                                         code =
798                                                             get_vlc(&pwd->gb,
799                                                                      pwd->
800                                                                      hgain_vlc.
801                                                                      table,
802                                                                      HGAINVLCBITS,
803                                                                      HGAINMAX);
804                                                         if (code < 0)
805                                                                 return -1;
806                                                         val += code - 18;
807                                                 }
808                                                 pwd->high_band_values[ch][i] =
809                                                     val;
810                                         }
811                                 }
812                         }
813                 }
814         }
815
816         /* exponents can be reused in short blocks. */
817         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bits1(&pwd->gb)) {
818                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
819                         if (pwd->channel_coded[ch]) {
820                                 if (pwd->use_exp_vlc) {
821                                         if (decode_exp_vlc(pwd, ch) < 0)
822                                                 return -1;
823                                 } else {
824                                         decode_exp_lsp(pwd, ch);
825                                 }
826                                 pwd->exponents_bsize[ch] = bsize;
827                         }
828                 }
829         }
830
831         /* parse spectral coefficients : just RLE encoding */
832         for (ch = 0; ch < pwd->ahi.channels; ch++) {
833                 if (pwd->channel_coded[ch]) {
834                         struct vlc *coef_vlc;
835                         int level, run, sign, tindex;
836                         int16_t *ptr, *eptr;
837                         const uint16_t *level_table, *run_table;
838
839                         /* special VLC tables are used for ms stereo because
840                            there is potentially less energy there */
841                         tindex = (ch == 1 && pwd->ms_stereo);
842                         coef_vlc = &pwd->coef_vlc[tindex];
843                         run_table = pwd->run_table[tindex];
844                         level_table = pwd->level_table[tindex];
845                         /* XXX: optimize */
846                         ptr = &pwd->coefs1[ch][0];
847                         eptr = ptr + nb_coefs[ch];
848                         memset(ptr, 0, pwd->block_len * sizeof(int16_t));
849                         for (;;) {
850                                 code =
851                                     get_vlc(&pwd->gb, coef_vlc->table, VLCBITS,
852                                              VLCMAX);
853                                 if (code < 0)
854                                         return -1;
855                                 if (code == 1) {
856                                         /* EOB */
857                                         break;
858                                 } else if (code == 0) {
859                                         /* escape */
860                                         level = get_bits(&pwd->gb, coef_nb_bits);
861                                         /* NOTE: this is rather suboptimal. reading
862                                            block_len_bits would be better */
863                                         run =
864                                             get_bits(&pwd->gb, pwd->frame_len_bits);
865                                 } else {
866                                         /* normal code */
867                                         run = run_table[code];
868                                         level = level_table[code];
869                                 }
870                                 sign = get_bits1(&pwd->gb);
871                                 if (!sign)
872                                         level = -level;
873                                 ptr += run;
874                                 if (ptr >= eptr) {
875                                         PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
876                                         break;
877                                 }
878                                 *ptr++ = level;
879                                 /* NOTE: EOB can be omitted */
880                                 if (ptr >= eptr)
881                                         break;
882                         }
883                 }
884         }
885
886         /* normalize */
887         {
888                 int n4 = pwd->block_len / 2;
889                 mdct_norm = 1.0 / (float) n4;
890         }
891
892         /* finally compute the MDCT coefficients */
893         for (ch = 0; ch < pwd->ahi.channels; ch++) {
894                 if (pwd->channel_coded[ch]) {
895                         int16_t *coefs1;
896                         float *coefs, *exponents, mult, mult1, noise;
897                         int i, j, n1, last_high_band, esize;
898                         float exp_power[HIGH_BAND_MAX_SIZE];
899
900                         coefs1 = pwd->coefs1[ch];
901                         exponents = pwd->exponents[ch];
902                         esize = pwd->exponents_bsize[ch];
903                         mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
904                         mult *= mdct_norm;
905                         coefs = pwd->coefs[ch];
906                         if (pwd->use_noise_coding) {
907                                 mult1 = mult;
908                                 /* very low freqs : noise */
909                                 for (i = 0; i < pwd->coefs_start; i++) {
910                                         *coefs++ =
911                                             pwd->noise_table[pwd->noise_index] *
912                                             exponents[i << bsize >> esize] *
913                                             mult1;
914                                         pwd->noise_index =
915                                             (pwd->noise_index +
916                                              1) & (NOISE_TAB_SIZE - 1);
917                                 }
918
919                                 n1 = pwd->exponent_high_sizes[bsize];
920
921                                 /* compute power of high bands */
922                                 exponents = pwd->exponents[ch] +
923                                     (pwd->high_band_start[bsize] << bsize);
924                                 last_high_band = 0;     /* avoid warning */
925                                 for (j = 0; j < n1; j++) {
926                                         n = pwd->exponent_high_bands[pwd->
927                                                                    frame_len_bits
928                                                                    -
929                                                                    pwd->
930                                                                    block_len_bits]
931                                             [j];
932                                         if (pwd->high_band_coded[ch][j]) {
933                                                 float e2, val;
934                                                 e2 = 0;
935                                                 for (i = 0; i < n; i++) {
936                                                         val = exponents[i << bsize
937                                                                       >> esize];
938                                                         e2 += val * val;
939                                                 }
940                                                 exp_power[j] = e2 / n;
941                                                 last_high_band = j;
942                                         }
943                                         exponents += n << bsize;
944                                 }
945
946                                 /* main freqs and high freqs */
947                                 exponents =
948                                     pwd->exponents[ch] +
949                                     (pwd->coefs_start << bsize);
950                                 for (j = -1; j < n1; j++) {
951                                         if (j < 0) {
952                                                 n = pwd->high_band_start[bsize] -
953                                                     pwd->coefs_start;
954                                         } else {
955                                                 n = pwd->exponent_high_bands[pwd->
956                                                                            frame_len_bits
957                                                                            -
958                                                                            pwd->
959                                                                            block_len_bits]
960                                                     [j];
961                                         }
962                                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
963                                                 /* use noise with specified power */
964                                                 mult1 =
965                                                     sqrt(exp_power[j] /
966                                                          exp_power
967                                                          [last_high_band]);
968                                                 /* XXX: use a table */
969                                                 mult1 =
970                                                     mult1 * pow(10,
971                                                                 pwd->
972                                                                 high_band_values
973                                                                 [ch][j] * 0.05);
974                                                 mult1 =
975                                                     mult1 /
976                                                     (pwd->max_exponent[ch] *
977                                                      pwd->noise_mult);
978                                                 mult1 *= mdct_norm;
979                                                 for (i = 0; i < n; i++) {
980                                                         noise =
981                                                             pwd->noise_table[pwd->
982                                                                            noise_index];
983                                                         pwd->noise_index =
984                                                             (pwd->noise_index +
985                                                              1) &
986                                                             (NOISE_TAB_SIZE -
987                                                              1);
988                                                         *coefs++ =
989                                                             noise *
990                                                             exponents[i << bsize
991                                                                       >> esize]
992                                                             * mult1;
993                                                 }
994                                                 exponents += n << bsize;
995                                         } else {
996                                                 /* coded values + small noise */
997                                                 for (i = 0; i < n; i++) {
998                                                         noise =
999                                                             pwd->noise_table[pwd->
1000                                                                            noise_index];
1001                                                         pwd->noise_index =
1002                                                             (pwd->noise_index +
1003                                                              1) &
1004                                                             (NOISE_TAB_SIZE -
1005                                                              1);
1006                                                         *coefs++ =
1007                                                             ((*coefs1++) +
1008                                                              noise) *
1009                                                             exponents[i << bsize
1010                                                                       >> esize]
1011                                                             * mult;
1012                                                 }
1013                                                 exponents += n << bsize;
1014                                         }
1015                                 }
1016
1017                                 /* very high freqs : noise */
1018                                 n = pwd->block_len - pwd->coefs_end[bsize];
1019                                 mult1 =
1020                                     mult * exponents[((-1 << bsize)) >> esize];
1021                                 for (i = 0; i < n; i++) {
1022                                         *coefs++ =
1023                                             pwd->noise_table[pwd->noise_index] *
1024                                             mult1;
1025                                         pwd->noise_index =
1026                                             (pwd->noise_index +
1027                                              1) & (NOISE_TAB_SIZE - 1);
1028                                 }
1029                         } else {
1030                                 /* XXX: optimize more */
1031                                 for (i = 0; i < pwd->coefs_start; i++)
1032                                         *coefs++ = 0.0;
1033                                 n = nb_coefs[ch];
1034                                 for (i = 0; i < n; i++) {
1035                                         *coefs++ =
1036                                             coefs1[i] *
1037                                             exponents[i << bsize >> esize] *
1038                                             mult;
1039                                 }
1040                                 n = pwd->block_len - pwd->coefs_end[bsize];
1041                                 for (i = 0; i < n; i++)
1042                                         *coefs++ = 0.0;
1043                         }
1044                 }
1045         }
1046
1047         if (pwd->ms_stereo && pwd->channel_coded[1]) {
1048                 float a, b;
1049                 int i;
1050
1051                 /*
1052                  * Nominal case for ms stereo: we do it before mdct.
1053                  *
1054                  * No need to optimize this case because it should almost never
1055                  * happen.
1056                  */
1057                 if (!pwd->channel_coded[0]) {
1058                         PARA_NOTICE_LOG("rare ms-stereo\n");
1059                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
1060                         pwd->channel_coded[0] = 1;
1061                 }
1062                 for (i = 0; i < pwd->block_len; i++) {
1063                         a = pwd->coefs[0][i];
1064                         b = pwd->coefs[1][i];
1065                         pwd->coefs[0][i] = a + b;
1066                         pwd->coefs[1][i] = a - b;
1067                 }
1068         }
1069
1070 next:
1071         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1072                 int n4, index;
1073
1074                 n = pwd->block_len;
1075                 n4 = pwd->block_len / 2;
1076                 if (pwd->channel_coded[ch])
1077                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1078                 else if (!(pwd->ms_stereo && ch == 1))
1079                         memset(pwd->output, 0, sizeof(pwd->output));
1080
1081                 /* multiply by the window and add in the frame */
1082                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1083                 wma_window(pwd, &pwd->frame_out[ch][index]);
1084         }
1085
1086         /* update block number */
1087         pwd->block_pos += pwd->block_len;
1088         if (pwd->block_pos >= pwd->frame_len)
1089                 return 1;
1090         else
1091                 return 0;
1092 }
1093
1094 /*
1095  * Clip a signed integer value into the -32768,32767 range.
1096  *
1097  * \param a The value to clip.
1098  *
1099  * \return The clipped value.
1100  */
1101 static inline int16_t av_clip_int16(int a)
1102 {
1103         if ((a + 32768) & ~65535)
1104                 return (a >> 31) ^ 32767;
1105         else
1106                 return a;
1107 }
1108
1109 /* Decode a frame of frame_len samples. */
1110 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1111 {
1112         int ret, i, n, ch, incr;
1113         int16_t *ptr;
1114         float *iptr;
1115
1116         /* read each block */
1117         pwd->block_pos = 0;
1118         for (;;) {
1119                 ret = wma_decode_block(pwd);
1120                 if (ret < 0)
1121                         return -1;
1122                 if (ret)
1123                         break;
1124         }
1125
1126         /* convert frame to integer */
1127         n = pwd->frame_len;
1128         incr = pwd->ahi.channels;
1129         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1130                 ptr = samples + ch;
1131                 iptr = pwd->frame_out[ch];
1132
1133                 for (i = 0; i < n; i++) {
1134                         *ptr = av_clip_int16(lrintf(*iptr++));
1135                         ptr += incr;
1136                 }
1137                 /* prepare for next block */
1138                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1139                         pwd->frame_len * sizeof(float));
1140         }
1141         return 0;
1142 }
1143
1144 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1145                 int *data_size, const uint8_t *buf, int buf_size)
1146 {
1147         int ret, nb_frames, bit_offset, i, pos, len;
1148         uint8_t *q;
1149         int16_t *samples;
1150         static int frame_count;
1151
1152         if (buf_size == 0) {
1153                 pwd->last_superframe_len = 0;
1154                 return 0;
1155         }
1156         if (buf_size < pwd->ahi.block_align)
1157                 return 0;
1158         buf_size = pwd->ahi.block_align;
1159         samples = data;
1160         init_get_bits(&pwd->gb, buf, buf_size);
1161         if (pwd->use_bit_reservoir) {
1162                 /* read super frame header */
1163                 skip_bits(&pwd->gb, 4); /* super frame index */
1164                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1165                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1166                 ret = -E_WMA_OUTPUT_SPACE;
1167                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1168                                 * sizeof(int16_t) > *data_size)
1169                         goto fail;
1170
1171                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1172
1173                 if (pwd->last_superframe_len > 0) {
1174                         /* add bit_offset bits to last frame */
1175                         ret = -E_WMA_BAD_SUPERFRAME;
1176                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1177                                         MAX_CODED_SUPERFRAME_SIZE)
1178                                 goto fail;
1179                         q = pwd->last_superframe + pwd->last_superframe_len;
1180                         len = bit_offset;
1181                         while (len > 7) {
1182                                 *q++ = get_bits(&pwd->gb, 8);
1183                                 len -= 8;
1184                         }
1185                         if (len > 0)
1186                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1187
1188                         /* XXX: bit_offset bits into last frame */
1189                         init_get_bits(&pwd->gb, pwd->last_superframe,
1190                                 MAX_CODED_SUPERFRAME_SIZE);
1191                         /* skip unused bits */
1192                         if (pwd->last_bitoffset > 0)
1193                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1194                         /*
1195                          * This frame is stored in the last superframe and in
1196                          * the current one.
1197                          */
1198                         ret = -E_WMA_DECODE;
1199                         if (wma_decode_frame(pwd, samples) < 0)
1200                                 goto fail;
1201                         frame_count++;
1202                         samples += pwd->ahi.channels * pwd->frame_len;
1203                 }
1204
1205                 /* read each frame starting from bit_offset */
1206                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1207                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1208                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1209                 len = pos & 7;
1210                 if (len > 0)
1211                         skip_bits(&pwd->gb, len);
1212
1213                 pwd->reset_block_lengths = 1;
1214                 for (i = 0; i < nb_frames; i++) {
1215                         ret = -E_WMA_DECODE;
1216                         if (wma_decode_frame(pwd, samples) < 0)
1217                                 goto fail;
1218                         frame_count++;
1219                         samples += pwd->ahi.channels * pwd->frame_len;
1220                 }
1221
1222                 /* we copy the end of the frame in the last frame buffer */
1223                 pos = get_bits_count(&pwd->gb) +
1224                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1225                 pwd->last_bitoffset = pos & 7;
1226                 pos >>= 3;
1227                 len = buf_size - pos;
1228                 ret = -E_WMA_BAD_SUPERFRAME;
1229                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1230                         goto fail;
1231                 pwd->last_superframe_len = len;
1232                 memcpy(pwd->last_superframe, buf + pos, len);
1233         } else {
1234                 PARA_DEBUG_LOG("not using bit reservoir\n");
1235                 ret = -E_WMA_OUTPUT_SPACE;
1236                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1237                         goto fail;
1238                 /* single frame decode */
1239                 ret = -E_WMA_DECODE;
1240                 if (wma_decode_frame(pwd, samples) < 0)
1241                         goto fail;
1242                 frame_count++;
1243                 samples += pwd->ahi.channels * pwd->frame_len;
1244         }
1245         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1246                 "outbytes: %d, eaten: %d\n",
1247                 frame_count, pwd->frame_len, pwd->block_len,
1248                 (int8_t *) samples - (int8_t *) data, pwd->ahi.block_align);
1249         *data_size = (int8_t *)samples - (int8_t *)data;
1250         return pwd->ahi.block_align;
1251 fail:
1252         /* reset the bit reservoir on errors */
1253         pwd->last_superframe_len = 0;
1254         return ret;
1255 }
1256
1257 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1258                 struct filter_node *fn)
1259 {
1260         int ret, out_size = fn->bufsize - fn->loaded;
1261         struct private_wmadec_data *pwd = fn->private_data;
1262
1263         if (out_size < 128 * 1024)
1264                 return 0;
1265         if (!pwd) {
1266                 ret = wma_decode_init(inbuffer, len, &pwd);
1267                 if (ret <= 0)
1268                         return ret;
1269                 fn->private_data = pwd;
1270                 fn->fc->channels = pwd->ahi.channels;
1271                 fn->fc->samplerate = pwd->ahi.sample_rate;
1272                 return pwd->ahi.header_len;
1273         }
1274         /* skip 31 bytes */
1275         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1276                 return 0;
1277         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1278                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1279                 len - WMA_FRAME_SKIP);
1280         if (ret < 0)
1281                 return ret;
1282         fn->loaded += out_size;
1283         return ret + WMA_FRAME_SKIP;
1284 }
1285
1286 static void wmadec_close(struct filter_node *fn)
1287 {
1288         struct private_wmadec_data *pwd = fn->private_data;
1289
1290         if (!pwd)
1291                 return;
1292         wmadec_cleanup(pwd);
1293         free(fn->buf);
1294         fn->buf = NULL;
1295         free(fn->private_data);
1296         fn->private_data = NULL;
1297 }
1298
1299 static void wmadec_open(struct filter_node *fn)
1300 {
1301         fn->bufsize = 1024 * 1024;
1302         fn->buf = para_malloc(fn->bufsize);
1303         fn->private_data = NULL;
1304         fn->loaded = 0;
1305 }
1306
1307 /**
1308  * The init function of the wma decoder.
1309  *
1310  * \param f Its fields are filled in by the function.
1311  */
1312 void wmadec_filter_init(struct filter *f)
1313 {
1314         f->open = wmadec_open;
1315         f->close = wmadec_close;
1316         f->convert = wmadec_convert;
1317 }