sched: Introduce task_status().
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <inttypes.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <math.h>
24 #include <string.h>
25 #include <regex.h>
26 #include <sys/select.h>
27
28 #include "para.h"
29 #include "error.h"
30 #include "list.h"
31 #include "ggo.h"
32 #include "string.h"
33 #include "sched.h"
34 #include "buffer_tree.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "imdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         /** Information contained in the audio file header. */
63         struct asf_header_info ahi;
64         struct getbit_context gb;
65         /** Whether to use the bit reservoir. */
66         int use_bit_reservoir;
67         /** Whether to use variable block length. */
68         int use_variable_block_len;
69         /** Whether to use exponent coding. */
70         int use_exp_vlc;
71         /** Whether perceptual noise is added. */
72         int use_noise_coding;
73         /** Depends on number of the bits per second and the frame length. */
74         int byte_offset_bits;
75         /** Only used if use_exp_vlc is true. */
76         struct vlc exp_vlc;
77         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
78         /** The index of the first coef in high band. */
79         int high_band_start[BLOCK_NB_SIZES];
80         /** Maximal number of coded coefficients. */
81         int coefs_end[BLOCK_NB_SIZES];
82         int exponent_high_sizes[BLOCK_NB_SIZES];
83         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
84         struct vlc hgain_vlc;
85
86         /* coded values in high bands */
87         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
88         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
89
90         /* there are two possible tables for spectral coefficients */
91         struct vlc coef_vlc[2];
92         uint16_t *run_table[2];
93         uint16_t *level_table[2];
94         const struct coef_vlc_table *coef_vlcs[2];
95         /** Frame length in samples. */
96         int frame_len;
97         /** log2 of frame_len. */
98         int frame_len_bits;
99         /** Number of block sizes. */
100         int nb_block_sizes;
101         /* block info */
102         int reset_block_lengths;
103         /** log2 of current block length. */
104         int block_len_bits;
105         /** log2 of next block length. */
106         int next_block_len_bits;
107         /** log2 of previous block length. */
108         int prev_block_len_bits;
109         /** Block length in samples. */
110         int block_len;
111         /** Current position in frame. */
112         int block_pos;
113         /** True if mid/side stereo mode. */
114         uint8_t ms_stereo;
115         /** True if channel is coded. */
116         uint8_t channel_coded[MAX_CHANNELS];
117         /** log2 ratio frame/exp. length. */
118         int exponents_bsize[MAX_CHANNELS];
119
120         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
121         float max_exponent[MAX_CHANNELS];
122         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
123         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
124         float output[BLOCK_MAX_SIZE * 2];
125         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
126         float *windows[BLOCK_NB_SIZES];
127         /** Output buffer for one frame and the last for IMDCT windowing. */
128         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
129         /** Last frame info. */
130         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
131         int last_bitoffset;
132         int last_superframe_len;
133         float noise_table[NOISE_TAB_SIZE];
134         int noise_index;
135         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
136         /* lsp_to_curve tables */
137         float lsp_cos_table[BLOCK_MAX_SIZE];
138         float lsp_pow_e_table[256];
139         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
140         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
141 };
142
143 #define EXPVLCBITS 8
144 #define EXPMAX DIV_ROUND_UP(19, EXPVLCBITS)
145
146 #define HGAINVLCBITS 9
147 #define HGAINMAX DIV_ROUND_UP(13, HGAINVLCBITS)
148
149 #define VLCBITS 9
150 #define VLCMAX DIV_ROUND_UP(22, VLCBITS)
151
152 /** \cond sine_winows */
153
154 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
155
156 SINE_WINDOW(128);
157 SINE_WINDOW(256);
158 SINE_WINDOW(512);
159 SINE_WINDOW(1024);
160 SINE_WINDOW(2048);
161 SINE_WINDOW(4096);
162
163 static float *sine_windows[6] = {
164         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
165 };
166 /** \endcond sine_windows */
167
168 /* Generate a sine window. */
169 static void sine_window_init(float *window, int n)
170 {
171         int i;
172
173         for (i = 0; i < n; i++)
174                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
175 }
176
177 static void wmadec_cleanup(struct private_wmadec_data *pwd)
178 {
179         int i;
180
181         for (i = 0; i < pwd->nb_block_sizes; i++)
182                 imdct_end(pwd->mdct_ctx[i]);
183         if (pwd->use_exp_vlc)
184                 free_vlc(&pwd->exp_vlc);
185         if (pwd->use_noise_coding)
186                 free_vlc(&pwd->hgain_vlc);
187         for (i = 0; i < 2; i++) {
188                 free_vlc(&pwd->coef_vlc[i]);
189                 free(pwd->run_table[i]);
190                 free(pwd->level_table[i]);
191         }
192 }
193
194 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
195                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
196 {
197         int n = vlc_table->n;
198         const uint8_t *table_bits = vlc_table->huffbits;
199         const uint32_t *table_codes = vlc_table->huffcodes;
200         const uint16_t *levels_table = vlc_table->levels;
201         uint16_t *run_table, *level_table;
202         int i, l, j, k, level;
203
204         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
205
206         run_table = para_malloc(n * sizeof(uint16_t));
207         level_table = para_malloc(n * sizeof(uint16_t));
208         i = 2;
209         level = 1;
210         k = 0;
211         while (i < n) {
212                 l = levels_table[k++];
213                 for (j = 0; j < l; j++) {
214                         run_table[i] = j;
215                         level_table[i] = level;
216                         i++;
217                 }
218                 level++;
219         }
220         *prun_table = run_table;
221         *plevel_table = level_table;
222 }
223
224 /* compute the scale factor band sizes for each MDCT block size */
225 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
226         float high_freq)
227 {
228         struct asf_header_info *ahi = &pwd->ahi;
229         int a, b, pos, lpos, k, block_len, i, j, n;
230         const uint8_t *table;
231
232         for (k = 0; k < pwd->nb_block_sizes; k++) {
233                 int exponent_size;
234
235                 block_len = pwd->frame_len >> k;
236                 table = NULL;
237                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
238                 if (a < 3) {
239                         if (ahi->sample_rate >= 44100)
240                                 table = exponent_band_44100[a];
241                         else if (ahi->sample_rate >= 32000)
242                                 table = exponent_band_32000[a];
243                         else if (ahi->sample_rate >= 22050)
244                                 table = exponent_band_22050[a];
245                 }
246                 if (table) {
247                         n = *table++;
248                         for (i = 0; i < n; i++)
249                                 pwd->exponent_bands[k][i] = table[i];
250                         exponent_size = n;
251                 } else {
252                         j = 0;
253                         lpos = 0;
254                         for (i = 0; i < 25; i++) {
255                                 a = wma_critical_freqs[i];
256                                 b = ahi->sample_rate;
257                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
258                                 pos <<= 2;
259                                 if (pos > block_len)
260                                         pos = block_len;
261                                 if (pos > lpos)
262                                         pwd->exponent_bands[k][j++] = pos - lpos;
263                                 if (pos >= block_len)
264                                         break;
265                                 lpos = pos;
266                         }
267                         exponent_size = j;
268                 }
269
270                 /* max number of coefs */
271                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
272                 /* high freq computation */
273                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
274                         / ahi->sample_rate + 0.5);
275                 n = exponent_size;
276                 j = 0;
277                 pos = 0;
278                 for (i = 0; i < n; i++) {
279                         int start, end;
280                         start = pos;
281                         pos += pwd->exponent_bands[k][i];
282                         end = pos;
283                         if (start < pwd->high_band_start[k])
284                                 start = pwd->high_band_start[k];
285                         if (end > pwd->coefs_end[k])
286                                 end = pwd->coefs_end[k];
287                         if (end > start)
288                                 pwd->exponent_high_bands[k][j++] = end - start;
289                 }
290                 pwd->exponent_high_sizes[k] = j;
291         }
292 }
293
294 static int wma_init(struct private_wmadec_data *pwd)
295 {
296         int i;
297         float bps1, high_freq;
298         volatile float bps;
299         int sample_rate1;
300         int coef_vlc_table;
301         struct asf_header_info *ahi = &pwd->ahi;
302         int flags2 = ahi->flags2;
303
304         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
305                 || ahi->channels <= 0 || ahi->channels > 8
306                 || ahi->bit_rate <= 0)
307                 return -E_WMA_BAD_PARAMS;
308
309         /* compute MDCT block size */
310         if (ahi->sample_rate <= 16000)
311                 pwd->frame_len_bits = 9;
312         else if (ahi->sample_rate <= 22050)
313                 pwd->frame_len_bits = 10;
314         else
315                 pwd->frame_len_bits = 11;
316         pwd->frame_len = 1 << pwd->frame_len_bits;
317         if (pwd->use_variable_block_len) {
318                 int nb_max, nb;
319                 nb = ((flags2 >> 3) & 3) + 1;
320                 if ((ahi->bit_rate / ahi->channels) >= 32000)
321                         nb += 2;
322                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
323                 if (nb > nb_max)
324                         nb = nb_max;
325                 pwd->nb_block_sizes = nb + 1;
326         } else
327                 pwd->nb_block_sizes = 1;
328
329         /* init rate dependent parameters */
330         pwd->use_noise_coding = 1;
331         high_freq = ahi->sample_rate * 0.5;
332
333         /* wma2 rates are normalized */
334         sample_rate1 = ahi->sample_rate;
335         if (sample_rate1 >= 44100)
336                 sample_rate1 = 44100;
337         else if (sample_rate1 >= 22050)
338                 sample_rate1 = 22050;
339         else if (sample_rate1 >= 16000)
340                 sample_rate1 = 16000;
341         else if (sample_rate1 >= 11025)
342                 sample_rate1 = 11025;
343         else if (sample_rate1 >= 8000)
344                 sample_rate1 = 8000;
345
346         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
347         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
348         /*
349          * Compute high frequency value and choose if noise coding should be
350          * activated.
351          */
352         bps1 = bps;
353         if (ahi->channels == 2)
354                 bps1 = bps * 1.6;
355         if (sample_rate1 == 44100) {
356                 if (bps1 >= 0.61)
357                         pwd->use_noise_coding = 0;
358                 else
359                         high_freq = high_freq * 0.4;
360         } else if (sample_rate1 == 22050) {
361                 if (bps1 >= 1.16)
362                         pwd->use_noise_coding = 0;
363                 else if (bps1 >= 0.72)
364                         high_freq = high_freq * 0.7;
365                 else
366                         high_freq = high_freq * 0.6;
367         } else if (sample_rate1 == 16000) {
368                 if (bps > 0.5)
369                         high_freq = high_freq * 0.5;
370                 else
371                         high_freq = high_freq * 0.3;
372         } else if (sample_rate1 == 11025)
373                 high_freq = high_freq * 0.7;
374         else if (sample_rate1 == 8000) {
375                 if (bps <= 0.625)
376                         high_freq = high_freq * 0.5;
377                 else if (bps > 0.75)
378                         pwd->use_noise_coding = 0;
379                 else
380                         high_freq = high_freq * 0.65;
381         } else {
382                 if (bps >= 0.8)
383                         high_freq = high_freq * 0.75;
384                 else if (bps >= 0.6)
385                         high_freq = high_freq * 0.6;
386                 else
387                         high_freq = high_freq * 0.5;
388         }
389         PARA_INFO_LOG("channels=%d sample_rate=%d "
390                 "bitrate=%d block_align=%d\n",
391                 ahi->channels, ahi->sample_rate,
392                 ahi->bit_rate, ahi->block_align);
393         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
394                 "high_freq=%f bitoffset=%d\n",
395                 pwd->frame_len, bps, bps1,
396                 high_freq, pwd->byte_offset_bits);
397         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
398                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
399
400         compute_scale_factor_band_sizes(pwd, high_freq);
401         /* init MDCT windows : simple sinus window */
402         for (i = 0; i < pwd->nb_block_sizes; i++) {
403                 int n;
404                 n = 1 << (pwd->frame_len_bits - i);
405                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
406                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
407         }
408
409         pwd->reset_block_lengths = 1;
410
411         if (pwd->use_noise_coding) {
412                 /* init the noise generator */
413                 if (pwd->use_exp_vlc)
414                         pwd->noise_mult = 0.02;
415                 else
416                         pwd->noise_mult = 0.04;
417
418                 {
419                         unsigned int seed;
420                         float norm;
421                         seed = 1;
422                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
423                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
424                                 seed = seed * 314159 + 1;
425                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
426                         }
427                 }
428         }
429
430         /* choose the VLC tables for the coefficients */
431         coef_vlc_table = 2;
432         if (ahi->sample_rate >= 32000) {
433                 if (bps1 < 0.72)
434                         coef_vlc_table = 0;
435                 else if (bps1 < 1.16)
436                         coef_vlc_table = 1;
437         }
438         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
439         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
440         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
441                 pwd->coef_vlcs[0]);
442         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
443                 pwd->coef_vlcs[1]);
444         return 0;
445 }
446
447 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
448 {
449         float wdel, a, b;
450         int i, e, m;
451
452         wdel = M_PI / frame_len;
453         for (i = 0; i < frame_len; i++)
454                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
455
456         /* tables for x^-0.25 computation */
457         for (i = 0; i < 256; i++) {
458                 e = i - 126;
459                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
460         }
461
462         /* These two tables are needed to avoid two operations in pow_m1_4. */
463         b = 1.0;
464         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
465                 m = (1 << LSP_POW_BITS) + i;
466                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
467                 a = pow(a, -0.25);
468                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
469                 pwd->lsp_pow_m_table2[i] = b - a;
470                 b = a;
471         }
472 }
473
474 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
475 {
476         struct private_wmadec_data *pwd;
477         int ret, i;
478
479         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
480         pwd = para_calloc(sizeof(*pwd));
481         ret = read_asf_header(initial_buf, len, &pwd->ahi);
482         if (ret <= 0) {
483                 free(pwd);
484                 return ret;
485         }
486
487         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
488         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
489         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
490
491         ret = wma_init(pwd);
492         if (ret < 0)
493                 return ret;
494         /* init MDCT */
495         for (i = 0; i < pwd->nb_block_sizes; i++) {
496                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
497                 if (ret < 0)
498                         return ret;
499         }
500         if (pwd->use_noise_coding) {
501                 PARA_INFO_LOG("using noise coding\n");
502                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
503                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
504                         wma_hgain_huffcodes, 2);
505         }
506
507         if (pwd->use_exp_vlc) {
508                 PARA_INFO_LOG("using exp_vlc\n");
509                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
510                         wma_scale_huffbits, wma_scale_huffcodes, 4);
511         } else {
512                 PARA_INFO_LOG("using curve\n");
513                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
514         }
515         *result = pwd;
516         return pwd->ahi.header_len;
517 }
518
519 /**
520  * compute x^-0.25 with an exponent and mantissa table. We use linear
521  * interpolation to reduce the mantissa table size at a small speed
522  * expense (linear interpolation approximately doubles the number of
523  * bits of precision).
524  */
525 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
526 {
527         union {
528                 float f;
529                 unsigned int v;
530         } u, t;
531         unsigned int e, m;
532         float a, b;
533
534         u.f = x;
535         e = u.v >> 23;
536         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
537         /* build interpolation scale: 1 <= t < 2. */
538         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
539         a = pwd->lsp_pow_m_table1[m];
540         b = pwd->lsp_pow_m_table2[m];
541         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
542 }
543
544 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
545                 float *out, float *val_max_ptr, int n, float *lsp)
546 {
547         int i, j;
548         float p, q, w, v, val_max;
549
550         val_max = 0;
551         for (i = 0; i < n; i++) {
552                 p = 0.5f;
553                 q = 0.5f;
554                 w = pwd->lsp_cos_table[i];
555                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
556                         q *= w - lsp[j - 1];
557                         p *= w - lsp[j];
558                 }
559                 p *= p * (2.0f - w);
560                 q *= q * (2.0f + w);
561                 v = p + q;
562                 v = pow_m1_4(pwd, v);
563                 if (v > val_max)
564                         val_max = v;
565                 out[i] = v;
566         }
567         *val_max_ptr = val_max;
568 }
569
570 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
571 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
572 {
573         float lsp_coefs[NB_LSP_COEFS];
574         int val, i;
575
576         for (i = 0; i < NB_LSP_COEFS; i++) {
577                 if (i == 0 || i >= 8)
578                         val = get_bits(&pwd->gb, 3);
579                 else
580                         val = get_bits(&pwd->gb, 4);
581                 lsp_coefs[i] = wma_lsp_codebook[i][val];
582         }
583
584         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
585                 pwd->block_len, lsp_coefs);
586 }
587
588 /* Decode exponents coded with VLC codes. */
589 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
590 {
591         int last_exp, n, code;
592         const uint16_t *ptr, *band_ptr;
593         float v, *q, max_scale, *q_end;
594
595         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
596         ptr = band_ptr;
597         q = pwd->exponents[ch];
598         q_end = q + pwd->block_len;
599         max_scale = 0;
600         last_exp = 36;
601
602         while (q < q_end) {
603                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
604                 if (code < 0)
605                         return code;
606                 /* NOTE: this offset is the same as MPEG4 AAC ! */
607                 last_exp += code - 60;
608                 /* XXX: use a table */
609                 v = pow(10, last_exp * (1.0 / 16.0));
610                 if (v > max_scale)
611                         max_scale = v;
612                 n = *ptr++;
613                 do {
614                         *q++ = v;
615                 } while (--n);
616         }
617         pwd->max_exponent[ch] = max_scale;
618         return 0;
619 }
620
621 /* compute src0 * src1 + src2 */
622 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
623                 const float *src2, int len)
624 {
625         int i;
626
627         for (i = 0; i < len; i++)
628                 dst[i] = src0[i] * src1[i] + src2[i];
629 }
630
631 static inline void vector_mult_reverse(float *dst, const float *src0,
632                 const float *src1, int len)
633 {
634         int i;
635
636         src1 += len - 1;
637         for (i = 0; i < len; i++)
638                 dst[i] = src0[i] * src1[-i];
639 }
640
641 /**
642  * Apply MDCT window and add into output.
643  *
644  * We ensure that when the windows overlap their squared sum
645  * is always 1 (MDCT reconstruction rule).
646  */
647 static void wma_window(struct private_wmadec_data *pwd, float *out)
648 {
649         float *in = pwd->output;
650         int block_len, bsize, n;
651
652         /* left part */
653         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
654                 block_len = pwd->block_len;
655                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
656                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
657         } else {
658                 block_len = 1 << pwd->prev_block_len_bits;
659                 n = (pwd->block_len - block_len) / 2;
660                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
661                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
662                         block_len);
663                 memcpy(out + n + block_len, in + n + block_len,
664                         n * sizeof(float));
665         }
666         out += pwd->block_len;
667         in += pwd->block_len;
668         /* right part */
669         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
670                 block_len = pwd->block_len;
671                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
672                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
673         } else {
674                 block_len = 1 << pwd->next_block_len_bits;
675                 n = (pwd->block_len - block_len) / 2;
676                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
677                 memcpy(out, in, n * sizeof(float));
678                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
679                         block_len);
680                 memset(out + n + block_len, 0, n * sizeof(float));
681         }
682 }
683
684 static int wma_total_gain_to_bits(int total_gain)
685 {
686         if (total_gain < 15)
687                 return 13;
688         else if (total_gain < 32)
689                 return 12;
690         else if (total_gain < 40)
691                 return 11;
692         else if (total_gain < 45)
693                 return 10;
694         else
695                 return 9;
696 }
697
698 static int compute_high_band_values(struct private_wmadec_data *pwd,
699                 int bsize, int nb_coefs[MAX_CHANNELS])
700 {
701         int ch;
702
703         if (!pwd->use_noise_coding)
704                 return 0;
705         for (ch = 0; ch < pwd->ahi.channels; ch++) {
706                 int i, m, a;
707                 if (!pwd->channel_coded[ch])
708                         continue;
709                 m = pwd->exponent_high_sizes[bsize];
710                 for (i = 0; i < m; i++) {
711                         a = get_bit(&pwd->gb);
712                         pwd->high_band_coded[ch][i] = a;
713                         if (!a)
714                                 continue;
715                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
716                 }
717         }
718         for (ch = 0; ch < pwd->ahi.channels; ch++) {
719                 int i, n, val;
720                 if (!pwd->channel_coded[ch])
721                         continue;
722                 n = pwd->exponent_high_sizes[bsize];
723                 val = (int)0x80000000;
724                 for (i = 0; i < n; i++) {
725                         if (!pwd->high_band_coded[ch][i])
726                                 continue;
727                         if (val == (int)0x80000000)
728                                 val = get_bits(&pwd->gb, 7) - 19;
729                         else {
730                                 int code = get_vlc(&pwd->gb,
731                                         pwd->hgain_vlc.table, HGAINVLCBITS,
732                                         HGAINMAX);
733                                 if (code < 0)
734                                         return code;
735                                 val += code - 18;
736                         }
737                         pwd->high_band_values[ch][i] = val;
738                 }
739         }
740         return 1;
741 }
742
743 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
744                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
745 {
746         int ch;
747         float mdct_norm = 1.0 / (pwd->block_len / 2);
748
749         for (ch = 0; ch < pwd->ahi.channels; ch++) {
750                 int16_t *coefs1;
751                 float *coefs, *exponents, mult, mult1, noise;
752                 int i, j, n, n1, last_high_band, esize;
753                 float exp_power[HIGH_BAND_MAX_SIZE];
754
755                 if (!pwd->channel_coded[ch])
756                         continue;
757                 coefs1 = pwd->coefs1[ch];
758                 exponents = pwd->exponents[ch];
759                 esize = pwd->exponents_bsize[ch];
760                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
761                 mult *= mdct_norm;
762                 coefs = pwd->coefs[ch];
763                 if (!pwd->use_noise_coding) {
764                         /* XXX: optimize more */
765                         n = nb_coefs[ch];
766                         for (i = 0; i < n; i++)
767                                 *coefs++ = coefs1[i] *
768                                         exponents[i << bsize >> esize] * mult;
769                         n = pwd->block_len - pwd->coefs_end[bsize];
770                         for (i = 0; i < n; i++)
771                                 *coefs++ = 0.0;
772                         continue;
773                 }
774                 n1 = pwd->exponent_high_sizes[bsize];
775                 /* compute power of high bands */
776                 exponents = pwd->exponents[ch] +
777                         (pwd->high_band_start[bsize] << bsize);
778                 last_high_band = 0; /* avoid warning */
779                 for (j = 0; j < n1; j++) {
780                         n = pwd->exponent_high_bands[
781                                 pwd->frame_len_bits - pwd->block_len_bits][j];
782                         if (pwd->high_band_coded[ch][j]) {
783                                 float e2, val;
784                                 e2 = 0;
785                                 for (i = 0; i < n; i++) {
786                                         val = exponents[i << bsize >> esize];
787                                         e2 += val * val;
788                                 }
789                                 exp_power[j] = e2 / n;
790                                 last_high_band = j;
791                         }
792                         exponents += n << bsize;
793                 }
794                 /* main freqs and high freqs */
795                 exponents = pwd->exponents[ch];
796                 for (j = -1; j < n1; j++) {
797                         if (j < 0)
798                                 n = pwd->high_band_start[bsize];
799                         else
800                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
801                                         - pwd->block_len_bits][j];
802                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
803                                 /* use noise with specified power */
804                                 mult1 = sqrt(exp_power[j]
805                                         / exp_power[last_high_band]);
806                                 /* XXX: use a table */
807                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
808                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
809                                 mult1 *= mdct_norm;
810                                 for (i = 0; i < n; i++) {
811                                         noise = pwd->noise_table[pwd->noise_index];
812                                         pwd->noise_index = (pwd->noise_index + 1)
813                                                 & (NOISE_TAB_SIZE - 1);
814                                         *coefs++ = noise * exponents[
815                                                 i << bsize >> esize] * mult1;
816                                 }
817                                 exponents += n << bsize;
818                         } else {
819                                 /* coded values + small noise */
820                                 for (i = 0; i < n; i++) {
821                                         noise = pwd->noise_table[pwd->noise_index];
822                                         pwd->noise_index = (pwd->noise_index + 1)
823                                                 & (NOISE_TAB_SIZE - 1);
824                                         *coefs++ = ((*coefs1++) + noise) *
825                                                 exponents[i << bsize >> esize]
826                                                 * mult;
827                                 }
828                                 exponents += n << bsize;
829                         }
830                 }
831                 /* very high freqs: noise */
832                 n = pwd->block_len - pwd->coefs_end[bsize];
833                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
834                 for (i = 0; i < n; i++) {
835                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
836                         pwd->noise_index = (pwd->noise_index + 1)
837                                 & (NOISE_TAB_SIZE - 1);
838                 }
839         }
840 }
841
842 /**
843  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
844  * errors.
845  */
846 static int wma_decode_block(struct private_wmadec_data *pwd)
847 {
848         int ret, n, v, ch, code, bsize;
849         int coef_nb_bits, total_gain;
850         int nb_coefs[MAX_CHANNELS];
851
852         /* compute current block length */
853         if (pwd->use_variable_block_len) {
854                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
855
856                 if (pwd->reset_block_lengths) {
857                         pwd->reset_block_lengths = 0;
858                         v = get_bits(&pwd->gb, n);
859                         if (v >= pwd->nb_block_sizes)
860                                 return -E_WMA_BLOCK_SIZE;
861                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
862                         v = get_bits(&pwd->gb, n);
863                         if (v >= pwd->nb_block_sizes)
864                                 return -E_WMA_BLOCK_SIZE;
865                         pwd->block_len_bits = pwd->frame_len_bits - v;
866                 } else {
867                         /* update block lengths */
868                         pwd->prev_block_len_bits = pwd->block_len_bits;
869                         pwd->block_len_bits = pwd->next_block_len_bits;
870                 }
871                 v = get_bits(&pwd->gb, n);
872                 if (v >= pwd->nb_block_sizes)
873                         return -E_WMA_BLOCK_SIZE;
874                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
875         } else {
876                 /* fixed block len */
877                 pwd->next_block_len_bits = pwd->frame_len_bits;
878                 pwd->prev_block_len_bits = pwd->frame_len_bits;
879                 pwd->block_len_bits = pwd->frame_len_bits;
880         }
881
882         /* now check if the block length is coherent with the frame length */
883         pwd->block_len = 1 << pwd->block_len_bits;
884         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
885                 return -E_INCOHERENT_BLOCK_LEN;
886
887         if (pwd->ahi.channels == 2)
888                 pwd->ms_stereo = get_bit(&pwd->gb);
889         v = 0;
890         for (ch = 0; ch < pwd->ahi.channels; ch++) {
891                 int a = get_bit(&pwd->gb);
892                 pwd->channel_coded[ch] = a;
893                 v |= a;
894         }
895
896         bsize = pwd->frame_len_bits - pwd->block_len_bits;
897
898         /* if no channel coded, no need to go further */
899         /* XXX: fix potential framing problems */
900         if (!v)
901                 goto next;
902
903         /*
904          * Read total gain and extract corresponding number of bits for coef
905          * escape coding.
906          */
907         total_gain = 1;
908         for (;;) {
909                 int a = get_bits(&pwd->gb, 7);
910                 total_gain += a;
911                 if (a != 127)
912                         break;
913         }
914
915         coef_nb_bits = wma_total_gain_to_bits(total_gain);
916
917         /* compute number of coefficients */
918         n = pwd->coefs_end[bsize];
919         for (ch = 0; ch < pwd->ahi.channels; ch++)
920                 nb_coefs[ch] = n;
921
922         ret = compute_high_band_values(pwd, bsize, nb_coefs);
923         if (ret < 0)
924                 return ret;
925
926         /* exponents can be reused in short blocks. */
927         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
928                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
929                         if (pwd->channel_coded[ch]) {
930                                 if (pwd->use_exp_vlc) {
931                                         ret = decode_exp_vlc(pwd, ch);
932                                         if (ret < 0)
933                                                 return ret;
934                                 } else
935                                         decode_exp_lsp(pwd, ch);
936                                 pwd->exponents_bsize[ch] = bsize;
937                         }
938                 }
939         }
940
941         /* parse spectral coefficients : just RLE encoding */
942         for (ch = 0; ch < pwd->ahi.channels; ch++) {
943                 struct vlc *coef_vlc;
944                 int level, run, tindex;
945                 int16_t *ptr, *eptr;
946                 const uint16_t *level_table, *run_table;
947
948                 if (!pwd->channel_coded[ch])
949                         continue;
950                 /*
951                  * special VLC tables are used for ms stereo because there is
952                  * potentially less energy there
953                  */
954                 tindex = (ch == 1 && pwd->ms_stereo);
955                 coef_vlc = &pwd->coef_vlc[tindex];
956                 run_table = pwd->run_table[tindex];
957                 level_table = pwd->level_table[tindex];
958                 /* XXX: optimize */
959                 ptr = &pwd->coefs1[ch][0];
960                 eptr = ptr + nb_coefs[ch];
961                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
962                 for (;;) {
963                         code = get_vlc(&pwd->gb, coef_vlc->table,
964                                 VLCBITS, VLCMAX);
965                         if (code < 0)
966                                 return code;
967                         if (code == 1) /* EOB */
968                                 break;
969                         if (code == 0) { /* escape */
970                                 level = get_bits(&pwd->gb, coef_nb_bits);
971                                 /* reading block_len_bits would be better */
972                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
973                         } else { /* normal code */
974                                 run = run_table[code];
975                                 level = level_table[code];
976                         }
977                         if (!get_bit(&pwd->gb))
978                                 level = -level;
979                         ptr += run;
980                         if (ptr >= eptr) {
981                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
982                                 break;
983                         }
984                         *ptr++ = level;
985                         if (ptr >= eptr) /* EOB can be omitted */
986                                 break;
987                 }
988         }
989         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
990         if (pwd->ms_stereo && pwd->channel_coded[1]) {
991                 float a, b;
992                 int i;
993                 /*
994                  * Nominal case for ms stereo: we do it before mdct.
995                  *
996                  * No need to optimize this case because it should almost never
997                  * happen.
998                  */
999                 if (!pwd->channel_coded[0]) {
1000                         PARA_NOTICE_LOG("rare ms-stereo\n");
1001                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
1002                         pwd->channel_coded[0] = 1;
1003                 }
1004                 for (i = 0; i < pwd->block_len; i++) {
1005                         a = pwd->coefs[0][i];
1006                         b = pwd->coefs[1][i];
1007                         pwd->coefs[0][i] = a + b;
1008                         pwd->coefs[1][i] = a - b;
1009                 }
1010         }
1011 next:
1012         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1013                 int n4, idx;
1014
1015                 n4 = pwd->block_len / 2;
1016                 if (pwd->channel_coded[ch])
1017                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1018                 else if (!(pwd->ms_stereo && ch == 1))
1019                         memset(pwd->output, 0, sizeof(pwd->output));
1020
1021                 /* multiply by the window and add in the frame */
1022                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
1023                 wma_window(pwd, &pwd->frame_out[ch][idx]);
1024         }
1025
1026         /* update block number */
1027         pwd->block_pos += pwd->block_len;
1028         if (pwd->block_pos >= pwd->frame_len)
1029                 return 1;
1030         else
1031                 return 0;
1032 }
1033
1034 /*
1035  * Clip a signed integer value into the -32768,32767 range.
1036  *
1037  * \param a The value to clip.
1038  *
1039  * \return The clipped value.
1040  */
1041 static inline int16_t av_clip_int16(int a)
1042 {
1043         if ((a + 32768) & ~65535)
1044                 return (a >> 31) ^ 32767;
1045         else
1046                 return a;
1047 }
1048
1049 /* Decode a frame of frame_len samples. */
1050 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1051 {
1052         int ret, i, n, ch, incr;
1053         int16_t *ptr;
1054         float *iptr;
1055
1056         /* read each block */
1057         pwd->block_pos = 0;
1058         for (;;) {
1059                 ret = wma_decode_block(pwd);
1060                 if (ret < 0)
1061                         return ret;
1062                 if (ret)
1063                         break;
1064         }
1065
1066         /* convert frame to integer */
1067         n = pwd->frame_len;
1068         incr = pwd->ahi.channels;
1069         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1070                 ptr = samples + ch;
1071                 iptr = pwd->frame_out[ch];
1072
1073                 for (i = 0; i < n; i++) {
1074                         *ptr = av_clip_int16(lrintf(*iptr++));
1075                         ptr += incr;
1076                 }
1077                 /* prepare for next block */
1078                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1079                         pwd->frame_len * sizeof(float));
1080         }
1081         return 0;
1082 }
1083
1084 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1085                 int *data_size, const uint8_t *buf, int buf_size)
1086 {
1087         int ret;
1088         int16_t *samples;
1089
1090         if (buf_size == 0) {
1091                 pwd->last_superframe_len = 0;
1092                 return 0;
1093         }
1094         if (buf_size < pwd->ahi.block_align)
1095                 return 0;
1096         buf_size = pwd->ahi.block_align;
1097         samples = data;
1098         init_get_bits(&pwd->gb, buf, buf_size);
1099         if (pwd->use_bit_reservoir) {
1100                 int i, nb_frames, bit_offset, pos, len;
1101                 uint8_t *q;
1102
1103                 /* read super frame header */
1104                 skip_bits(&pwd->gb, 4); /* super frame index */
1105                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1106                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1107                 ret = -E_WMA_OUTPUT_SPACE;
1108                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1109                                 * sizeof(int16_t) > *data_size)
1110                         goto fail;
1111
1112                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1113
1114                 if (pwd->last_superframe_len > 0) {
1115                         /* add bit_offset bits to last frame */
1116                         ret = -E_WMA_BAD_SUPERFRAME;
1117                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1118                                         MAX_CODED_SUPERFRAME_SIZE)
1119                                 goto fail;
1120                         q = pwd->last_superframe + pwd->last_superframe_len;
1121                         len = bit_offset;
1122                         while (len > 7) {
1123                                 *q++ = get_bits(&pwd->gb, 8);
1124                                 len -= 8;
1125                         }
1126                         if (len > 0)
1127                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1128
1129                         /* XXX: bit_offset bits into last frame */
1130                         init_get_bits(&pwd->gb, pwd->last_superframe,
1131                                 MAX_CODED_SUPERFRAME_SIZE);
1132                         /* skip unused bits */
1133                         if (pwd->last_bitoffset > 0)
1134                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1135                         /*
1136                          * This frame is stored in the last superframe and in
1137                          * the current one.
1138                          */
1139                         ret = wma_decode_frame(pwd, samples);
1140                         if (ret < 0)
1141                                 goto fail;
1142                         samples += pwd->ahi.channels * pwd->frame_len;
1143                 }
1144
1145                 /* read each frame starting from bit_offset */
1146                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1147                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1148                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1149                 len = pos & 7;
1150                 if (len > 0)
1151                         skip_bits(&pwd->gb, len);
1152
1153                 pwd->reset_block_lengths = 1;
1154                 for (i = 0; i < nb_frames; i++) {
1155                         ret = wma_decode_frame(pwd, samples);
1156                         if (ret < 0)
1157                                 goto fail;
1158                         samples += pwd->ahi.channels * pwd->frame_len;
1159                 }
1160
1161                 /* we copy the end of the frame in the last frame buffer */
1162                 pos = get_bits_count(&pwd->gb) +
1163                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1164                 pwd->last_bitoffset = pos & 7;
1165                 pos >>= 3;
1166                 len = buf_size - pos;
1167                 ret = -E_WMA_BAD_SUPERFRAME;
1168                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1169                         goto fail;
1170                 pwd->last_superframe_len = len;
1171                 memcpy(pwd->last_superframe, buf + pos, len);
1172         } else {
1173                 PARA_DEBUG_LOG("not using bit reservoir\n");
1174                 ret = -E_WMA_OUTPUT_SPACE;
1175                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1176                         goto fail;
1177                 /* single frame decode */
1178                 ret = wma_decode_frame(pwd, samples);
1179                 if (ret < 0)
1180                         goto fail;
1181                 samples += pwd->ahi.channels * pwd->frame_len;
1182         }
1183         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1184                 pwd->frame_len, pwd->block_len,
1185                 (int)((int8_t *)samples - (int8_t *)data), pwd->ahi.block_align);
1186         *data_size = (int8_t *)samples - (int8_t *)data;
1187         return pwd->ahi.block_align;
1188 fail:
1189         /* reset the bit reservoir on errors */
1190         pwd->last_superframe_len = 0;
1191         return ret;
1192 }
1193
1194 static void wmadec_close(struct filter_node *fn)
1195 {
1196         struct private_wmadec_data *pwd = fn->private_data;
1197
1198         if (!pwd)
1199                 return;
1200         wmadec_cleanup(pwd);
1201         free(fn->private_data);
1202         fn->private_data = NULL;
1203 }
1204
1205 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1206 {
1207         struct filter_node *fn = btr_context(btrn);
1208         struct private_wmadec_data *pwd = fn->private_data;
1209
1210         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1211                 result);
1212 }
1213
1214 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1215
1216 static int wmadec_post_select(__a_unused struct sched *s, struct task *t)
1217 {
1218         struct filter_node *fn = task_context(t);
1219         int ret, converted, out_size;
1220         struct private_wmadec_data *pwd = fn->private_data;
1221         struct btr_node *btrn = fn->btrn;
1222         size_t len;
1223         char *in, *out;
1224
1225 next_buffer:
1226         converted = 0;
1227         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1228         if (ret < 0)
1229                 goto err;
1230         if (ret == 0)
1231                 return 0;
1232         btr_merge(btrn, fn->min_iqs);
1233         len = btr_next_buffer(btrn, (char **)&in);
1234         ret = -E_WMADEC_EOF;
1235         if (len < fn->min_iqs)
1236                 goto err;
1237         if (!pwd) {
1238                 ret = wma_decode_init(in, len, &pwd);
1239                 if (ret < 0)
1240                         goto err;
1241                 if (ret == 0) {
1242                         fn->min_iqs += 4096;
1243                         goto next_buffer;
1244                 }
1245                 fn->min_iqs = 2 * (WMA_FRAME_SKIP + pwd->ahi.block_align);
1246                 fn->private_data = pwd;
1247                 converted = pwd->ahi.header_len;
1248                 goto success;
1249         }
1250         fn->min_iqs = WMA_FRAME_SKIP + pwd->ahi.block_align;
1251         if (fn->min_iqs > len)
1252                 goto success;
1253         out_size = WMA_OUTPUT_BUFFER_SIZE;
1254         out = para_malloc(out_size);
1255         ret = wma_decode_superframe(pwd, out, &out_size,
1256                 (uint8_t *)in + WMA_FRAME_SKIP, len - WMA_FRAME_SKIP);
1257         if (ret < 0) {
1258                 free(out);
1259                 goto err;
1260         }
1261         out = para_realloc(out, out_size);
1262         if (out_size > 0)
1263                 btr_add_output(out, out_size, btrn);
1264         converted += ret + WMA_FRAME_SKIP;
1265 success:
1266         btr_consume(btrn, converted);
1267         return 0;
1268 err:
1269         assert(ret < 0);
1270         btr_remove_node(&fn->btrn);
1271         return ret;
1272 }
1273
1274 static void wmadec_open(struct filter_node *fn)
1275 {
1276         fn->private_data = NULL;
1277         fn->min_iqs = 4096;
1278 }
1279
1280 /**
1281  * The init function of the wma decoder.
1282  *
1283  * \param f Its fields are filled in by the function.
1284  */
1285 void wmadec_filter_init(struct filter *f)
1286 {
1287         f->open = wmadec_open;
1288         f->close = wmadec_close;
1289         f->execute = wmadec_execute;
1290         f->pre_select = generic_filter_pre_select;
1291         f->post_select = wmadec_post_select;
1292 }