2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License, see file COPYING.LIB.
11 /** \file wmadec_filter.c paraslash's WMA decoder. */
14 * This decoder handles Microsoft Windows Media Audio data version 2.
19 #include <sys/select.h>
26 #include "buffer_tree.h"
28 #include "portable_io.h"
29 #include "bitstream.h"
36 #define BLOCK_MIN_BITS 7
37 #define BLOCK_MAX_BITS 11
38 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
40 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
42 /* XXX: find exact max size */
43 #define HIGH_BAND_MAX_SIZE 16
45 /* XXX: is it a suitable value ? */
46 #define MAX_CODED_SUPERFRAME_SIZE 16384
48 #define MAX_CHANNELS 2
50 #define NOISE_TAB_SIZE 8192
52 #define LSP_POW_BITS 7
54 struct private_wmadec_data
{
55 /** Information contained in the audio file header. */
56 struct asf_header_info ahi
;
57 struct getbit_context gb
;
58 /** Whether perceptual noise is added. */
60 /** Depends on number of the bits per second and the frame length. */
62 /** Only used if ahi->use_exp_vlc is true. */
64 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
65 /** The index of the first coef in high band. */
66 int high_band_start
[BLOCK_NB_SIZES
];
67 /** Maximal number of coded coefficients. */
68 int coefs_end
[BLOCK_NB_SIZES
];
69 int exponent_high_sizes
[BLOCK_NB_SIZES
];
70 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
73 /* coded values in high bands */
74 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
75 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
77 /* there are two possible tables for spectral coefficients */
78 struct vlc coef_vlc
[2];
79 uint16_t *run_table
[2];
80 uint16_t *level_table
[2];
81 /** Frame length in samples. */
83 /** log2 of frame_len. */
85 /** Number of block sizes, one if !ahi->use_variable_block_len. */
87 /* Whether to update block lengths from getbit context. */
88 bool reset_block_lengths
;
89 /** log2 of current block length. */
91 /** log2 of next block length. */
92 int next_block_len_bits
;
93 /** log2 of previous block length. */
94 int prev_block_len_bits
;
95 /** Block length in samples. */
97 /** Current position in frame. */
99 /** True if channel is coded. */
100 uint8_t channel_coded
[MAX_CHANNELS
];
101 /** log2 ratio frame/exp. length. */
102 int exponents_bsize
[MAX_CHANNELS
];
104 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
105 float max_exponent
[MAX_CHANNELS
];
106 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
107 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
108 float output
[BLOCK_MAX_SIZE
* 2];
109 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
110 float *windows
[BLOCK_NB_SIZES
];
111 /** Output buffer for one frame and the last for IMDCT windowing. */
112 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
113 /** Last frame info. */
114 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
116 int last_superframe_len
;
117 float noise_table
[NOISE_TAB_SIZE
];
119 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
120 /* lsp_to_curve tables */
121 float lsp_cos_table
[BLOCK_MAX_SIZE
];
122 float lsp_pow_e_table
[256];
123 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
124 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
128 #define HGAINVLCBITS 9
131 /** \cond sine_winows */
133 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
142 static float *sine_windows
[6] = {
143 sine_128
, sine_256
, sine_512
, sine_1024
, sine_2048
, sine_4096
145 /** \endcond sine_windows */
147 /* Generate a sine window. */
148 static void sine_window_init(float *window
, int n
)
152 for (i
= 0; i
< n
; i
++)
153 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
156 static void init_coef_vlc(struct private_wmadec_data
*pwd
, int sidx
, int didx
)
158 const struct coef_vlc_table
*src
= coef_vlcs
+ sidx
;
159 struct vlc
*dst
= pwd
->coef_vlc
+ didx
;
160 int i
, l
, j
, k
, level
, n
= src
->n
;
162 init_vlc(dst
, VLCBITS
, n
, src
->huffbits
, src
->huffcodes
, 4);
163 pwd
->run_table
[didx
] = para_malloc(n
* sizeof(uint16_t));
164 pwd
->level_table
[didx
] = para_malloc(n
* sizeof(uint16_t));
169 l
= src
->levels
[k
++];
170 for (j
= 0; j
< l
; j
++) {
171 pwd
->run_table
[didx
][i
] = j
;
172 pwd
->level_table
[didx
][i
] = level
;
179 /* compute the scale factor band sizes for each MDCT block size */
180 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
183 struct asf_header_info
*ahi
= &pwd
->ahi
;
184 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
185 const uint8_t *table
;
187 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
190 block_len
= pwd
->frame_len
>> k
;
192 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
194 if (ahi
->sample_rate
>= 44100)
195 table
= exponent_band_44100
[a
];
196 else if (ahi
->sample_rate
>= 32000)
197 table
= exponent_band_32000
[a
];
198 else if (ahi
->sample_rate
>= 22050)
199 table
= exponent_band_22050
[a
];
203 for (i
= 0; i
< n
; i
++)
204 pwd
->exponent_bands
[k
][i
] = table
[i
];
209 for (i
= 0; i
< 25; i
++) {
210 a
= wma_critical_freqs
[i
];
211 b
= ahi
->sample_rate
;
212 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
217 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
218 if (pos
>= block_len
)
225 /* max number of coefs */
226 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
227 /* high freq computation */
228 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
229 / ahi
->sample_rate
+ 0.5);
233 for (i
= 0; i
< n
; i
++) {
236 pos
+= pwd
->exponent_bands
[k
][i
];
238 if (start
< pwd
->high_band_start
[k
])
239 start
= pwd
->high_band_start
[k
];
240 if (end
> pwd
->coefs_end
[k
])
241 end
= pwd
->coefs_end
[k
];
243 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
245 pwd
->exponent_high_sizes
[k
] = j
;
249 static int wma_init(struct private_wmadec_data
*pwd
)
252 float bps1
, high_freq
;
256 struct asf_header_info
*ahi
= &pwd
->ahi
;
257 int flags2
= ahi
->flags2
;
259 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
260 || ahi
->channels
<= 0 || ahi
->channels
> 8
261 || ahi
->bit_rate
<= 0)
262 return -E_WMA_BAD_PARAMS
;
264 /* compute MDCT block size */
265 if (ahi
->sample_rate
<= 16000)
266 pwd
->frame_len_bits
= 9;
267 else if (ahi
->sample_rate
<= 22050)
268 pwd
->frame_len_bits
= 10;
270 pwd
->frame_len_bits
= 11;
271 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
272 if (pwd
->ahi
.use_variable_block_len
) {
274 nb
= ((flags2
>> 3) & 3) + 1;
275 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
277 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
280 pwd
->nb_block_sizes
= nb
+ 1;
282 pwd
->nb_block_sizes
= 1;
284 /* init rate dependent parameters */
285 pwd
->use_noise_coding
= 1;
286 high_freq
= ahi
->sample_rate
* 0.5;
288 /* wma2 rates are normalized */
289 sample_rate1
= ahi
->sample_rate
;
290 if (sample_rate1
>= 44100)
291 sample_rate1
= 44100;
292 else if (sample_rate1
>= 22050)
293 sample_rate1
= 22050;
294 else if (sample_rate1
>= 16000)
295 sample_rate1
= 16000;
296 else if (sample_rate1
>= 11025)
297 sample_rate1
= 11025;
298 else if (sample_rate1
>= 8000)
301 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
302 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
304 * Compute high frequency value and choose if noise coding should be
308 if (ahi
->channels
== 2)
310 if (sample_rate1
== 44100) {
312 pwd
->use_noise_coding
= 0;
314 high_freq
= high_freq
* 0.4;
315 } else if (sample_rate1
== 22050) {
317 pwd
->use_noise_coding
= 0;
318 else if (bps1
>= 0.72)
319 high_freq
= high_freq
* 0.7;
321 high_freq
= high_freq
* 0.6;
322 } else if (sample_rate1
== 16000) {
324 high_freq
= high_freq
* 0.5;
326 high_freq
= high_freq
* 0.3;
327 } else if (sample_rate1
== 11025)
328 high_freq
= high_freq
* 0.7;
329 else if (sample_rate1
== 8000) {
331 high_freq
= high_freq
* 0.5;
333 pwd
->use_noise_coding
= 0;
335 high_freq
= high_freq
* 0.65;
338 high_freq
= high_freq
* 0.75;
340 high_freq
= high_freq
* 0.6;
342 high_freq
= high_freq
* 0.5;
344 PARA_INFO_LOG("channels=%u sample_rate=%u "
345 "bitrate=%u block_align=%d\n",
346 ahi
->channels
, ahi
->sample_rate
,
347 ahi
->bit_rate
, ahi
->block_align
);
348 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
349 "high_freq=%f bitoffset=%d\n",
350 pwd
->frame_len
, bps
, bps1
,
351 high_freq
, pwd
->byte_offset_bits
);
352 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
353 pwd
->use_noise_coding
, pwd
->ahi
.use_exp_vlc
, pwd
->nb_block_sizes
);
355 compute_scale_factor_band_sizes(pwd
, high_freq
);
356 /* init MDCT windows : simple sinus window */
357 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
359 n
= 1 << (pwd
->frame_len_bits
- i
);
360 sine_window_init(sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
361 pwd
->windows
[i
] = sine_windows
[pwd
->frame_len_bits
- i
- 7];
364 pwd
->reset_block_lengths
= true;
366 if (pwd
->use_noise_coding
) {
367 /* init the noise generator */
368 if (pwd
->ahi
.use_exp_vlc
)
369 pwd
->noise_mult
= 0.02;
371 pwd
->noise_mult
= 0.04;
377 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
378 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
379 seed
= seed
* 314159 + 1;
380 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
385 /* choose the VLC tables for the coefficients */
387 if (ahi
->sample_rate
>= 32000) {
390 else if (bps1
< 1.16)
393 init_coef_vlc(pwd
, coef_vlc_table
, 0);
394 init_coef_vlc(pwd
, coef_vlc_table
+ 1, 1);
398 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
)
403 wdel
= M_PI
/ pwd
->frame_len
;
404 for (i
= 0; i
< pwd
->frame_len
; i
++)
405 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
407 /* tables for x^-0.25 computation */
408 for (i
= 0; i
< 256; i
++) {
410 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
413 /* These two tables are needed to avoid two operations in pow_m1_4. */
415 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
416 m
= (1 << LSP_POW_BITS
) + i
;
417 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
419 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
420 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
425 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
427 struct private_wmadec_data
*pwd
;
430 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
431 pwd
= para_calloc(sizeof(*pwd
));
432 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
442 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
443 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
447 if (pwd
->use_noise_coding
) {
448 PARA_INFO_LOG("using noise coding\n");
449 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
450 sizeof(wma_hgain_huffbits
), wma_hgain_huffbits
,
451 wma_hgain_huffcodes
, 2);
454 if (pwd
->ahi
.use_exp_vlc
) {
455 PARA_INFO_LOG("using exp_vlc\n");
456 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
, sizeof(wma_scale_huffbits
),
457 wma_scale_huffbits
, wma_scale_huffcodes
, 4);
459 PARA_INFO_LOG("using curve\n");
460 wma_lsp_to_curve_init(pwd
);
463 return pwd
->ahi
.header_len
;
467 * compute x^-0.25 with an exponent and mantissa table. We use linear
468 * interpolation to reduce the mantissa table size at a small speed
469 * expense (linear interpolation approximately doubles the number of
470 * bits of precision).
472 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
483 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
484 /* build interpolation scale: 1 <= t < 2. */
485 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
486 a
= pwd
->lsp_pow_m_table1
[m
];
487 b
= pwd
->lsp_pow_m_table2
[m
];
488 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
491 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
492 float *out
, float *val_max_ptr
, int n
, float *lsp
)
495 float p
, q
, w
, v
, val_max
;
498 for (i
= 0; i
< n
; i
++) {
501 w
= pwd
->lsp_cos_table
[i
];
502 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
509 v
= pow_m1_4(pwd
, v
);
514 *val_max_ptr
= val_max
;
517 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
518 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
520 float lsp_coefs
[NB_LSP_COEFS
];
523 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
524 if (i
== 0 || i
>= 8)
525 val
= get_bits(&pwd
->gb
, 3);
527 val
= get_bits(&pwd
->gb
, 4);
528 lsp_coefs
[i
] = wma_lsp_codebook
[i
][val
];
531 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
532 pwd
->block_len
, lsp_coefs
);
535 /* Decode exponents coded with VLC codes. */
536 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
538 int last_exp
, n
, code
;
539 const uint16_t *ptr
, *band_ptr
;
540 float v
, *q
, max_scale
, *q_end
;
542 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
544 q
= pwd
->exponents
[ch
];
545 q_end
= q
+ pwd
->block_len
;
550 code
= get_vlc(&pwd
->gb
, &pwd
->exp_vlc
);
553 /* NOTE: this offset is the same as MPEG4 AAC ! */
554 last_exp
+= code
- 60;
555 /* XXX: use a table */
556 v
= pow(10, last_exp
* (1.0 / 16.0));
564 pwd
->max_exponent
[ch
] = max_scale
;
568 /* compute src0 * src1 + src2 */
569 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
570 const float *src2
, int len
)
574 for (i
= 0; i
< len
; i
++)
575 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
578 static inline void vector_mult_reverse(float *dst
, const float *src0
,
579 const float *src1
, int len
)
584 for (i
= 0; i
< len
; i
++)
585 dst
[i
] = src0
[i
] * src1
[-i
];
589 * Apply MDCT window and add into output.
591 * We ensure that when the windows overlap their squared sum
592 * is always 1 (MDCT reconstruction rule).
594 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
596 float *in
= pwd
->output
;
597 int block_len
, bsize
, n
;
600 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
601 block_len
= pwd
->block_len
;
602 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
603 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
605 block_len
= 1 << pwd
->prev_block_len_bits
;
606 n
= (pwd
->block_len
- block_len
) / 2;
607 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
608 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
610 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
613 out
+= pwd
->block_len
;
614 in
+= pwd
->block_len
;
616 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
617 block_len
= pwd
->block_len
;
618 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
619 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
621 block_len
= 1 << pwd
->next_block_len_bits
;
622 n
= (pwd
->block_len
- block_len
) / 2;
623 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
624 memcpy(out
, in
, n
* sizeof(float));
625 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
627 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
631 static int wma_total_gain_to_bits(int total_gain
)
635 else if (total_gain
< 32)
637 else if (total_gain
< 40)
639 else if (total_gain
< 45)
645 static int compute_high_band_values(struct private_wmadec_data
*pwd
,
646 int bsize
, int nb_coefs
[MAX_CHANNELS
])
650 if (!pwd
->use_noise_coding
)
652 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
654 if (!pwd
->channel_coded
[ch
])
656 m
= pwd
->exponent_high_sizes
[bsize
];
657 for (i
= 0; i
< m
; i
++) {
658 a
= get_bit(&pwd
->gb
);
659 pwd
->high_band_coded
[ch
][i
] = a
;
662 nb_coefs
[ch
] -= pwd
->exponent_high_bands
[bsize
][i
];
665 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
667 if (!pwd
->channel_coded
[ch
])
669 n
= pwd
->exponent_high_sizes
[bsize
];
670 val
= (int)0x80000000;
671 for (i
= 0; i
< n
; i
++) {
672 if (!pwd
->high_band_coded
[ch
][i
])
674 if (val
== (int)0x80000000)
675 val
= get_bits(&pwd
->gb
, 7) - 19;
677 int code
= get_vlc(&pwd
->gb
, &pwd
->hgain_vlc
);
682 pwd
->high_band_values
[ch
][i
] = val
;
688 static void compute_mdct_coefficients(struct private_wmadec_data
*pwd
,
689 int bsize
, int total_gain
, int nb_coefs
[MAX_CHANNELS
])
692 float mdct_norm
= 1.0 / (pwd
->block_len
/ 2);
694 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
696 float *coefs
, *exponents
, mult
, mult1
, noise
;
697 int i
, j
, n
, n1
, last_high_band
, esize
;
698 float exp_power
[HIGH_BAND_MAX_SIZE
];
700 if (!pwd
->channel_coded
[ch
])
702 coefs1
= pwd
->coefs1
[ch
];
703 exponents
= pwd
->exponents
[ch
];
704 esize
= pwd
->exponents_bsize
[ch
];
705 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
707 coefs
= pwd
->coefs
[ch
];
708 if (!pwd
->use_noise_coding
) {
709 /* XXX: optimize more */
711 for (i
= 0; i
< n
; i
++)
712 *coefs
++ = coefs1
[i
] *
713 exponents
[i
<< bsize
>> esize
] * mult
;
714 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
715 for (i
= 0; i
< n
; i
++)
719 n1
= pwd
->exponent_high_sizes
[bsize
];
720 /* compute power of high bands */
721 exponents
= pwd
->exponents
[ch
] +
722 (pwd
->high_band_start
[bsize
] << bsize
);
723 last_high_band
= 0; /* avoid warning */
724 for (j
= 0; j
< n1
; j
++) {
725 n
= pwd
->exponent_high_bands
[
726 pwd
->frame_len_bits
- pwd
->block_len_bits
][j
];
727 if (pwd
->high_band_coded
[ch
][j
]) {
730 for (i
= 0; i
< n
; i
++) {
731 val
= exponents
[i
<< bsize
>> esize
];
734 exp_power
[j
] = e2
/ n
;
737 exponents
+= n
<< bsize
;
739 /* main freqs and high freqs */
740 exponents
= pwd
->exponents
[ch
];
741 for (j
= -1; j
< n1
; j
++) {
743 n
= pwd
->high_band_start
[bsize
];
745 n
= pwd
->exponent_high_bands
[pwd
->frame_len_bits
746 - pwd
->block_len_bits
][j
];
747 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
748 /* use noise with specified power */
749 mult1
= sqrt(exp_power
[j
]
750 / exp_power
[last_high_band
]);
751 /* XXX: use a table */
752 mult1
*= pow(10, pwd
->high_band_values
[ch
][j
] * 0.05);
753 mult1
/= (pwd
->max_exponent
[ch
] * pwd
->noise_mult
);
755 for (i
= 0; i
< n
; i
++) {
756 noise
= pwd
->noise_table
[pwd
->noise_index
];
757 pwd
->noise_index
= (pwd
->noise_index
+ 1)
758 & (NOISE_TAB_SIZE
- 1);
759 *coefs
++ = noise
* exponents
[
760 i
<< bsize
>> esize
] * mult1
;
762 exponents
+= n
<< bsize
;
764 /* coded values + small noise */
765 for (i
= 0; i
< n
; i
++) {
766 noise
= pwd
->noise_table
[pwd
->noise_index
];
767 pwd
->noise_index
= (pwd
->noise_index
+ 1)
768 & (NOISE_TAB_SIZE
- 1);
769 *coefs
++ = ((*coefs1
++) + noise
) *
770 exponents
[i
<< bsize
>> esize
]
773 exponents
+= n
<< bsize
;
776 /* very high freqs: noise */
777 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
778 mult1
= mult
* exponents
[(-(1 << bsize
)) >> esize
];
779 for (i
= 0; i
< n
; i
++) {
780 *coefs
++ = pwd
->noise_table
[pwd
->noise_index
] * mult1
;
781 pwd
->noise_index
= (pwd
->noise_index
+ 1)
782 & (NOISE_TAB_SIZE
- 1);
788 * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
791 static int wma_decode_block(struct private_wmadec_data
*pwd
)
793 int ret
, n
, v
, ch
, code
, bsize
;
794 int coef_nb_bits
, total_gain
;
795 int nb_coefs
[MAX_CHANNELS
];
796 bool ms_stereo
= false; /* mid/side stereo mode */
798 /* compute current block length */
799 if (pwd
->ahi
.use_variable_block_len
) {
800 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
802 if (pwd
->reset_block_lengths
) {
803 pwd
->reset_block_lengths
= false;
804 v
= get_bits(&pwd
->gb
, n
);
805 if (v
>= pwd
->nb_block_sizes
)
806 return -E_WMA_BLOCK_SIZE
;
807 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
808 v
= get_bits(&pwd
->gb
, n
);
809 if (v
>= pwd
->nb_block_sizes
)
810 return -E_WMA_BLOCK_SIZE
;
811 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
813 /* update block lengths */
814 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
815 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
817 v
= get_bits(&pwd
->gb
, n
);
818 if (v
>= pwd
->nb_block_sizes
)
819 return -E_WMA_BLOCK_SIZE
;
820 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
822 /* fixed block len */
823 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
824 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
825 pwd
->block_len_bits
= pwd
->frame_len_bits
;
828 /* now check if the block length is coherent with the frame length */
829 pwd
->block_len
= 1 << pwd
->block_len_bits
;
830 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
831 return -E_INCOHERENT_BLOCK_LEN
;
833 if (pwd
->ahi
.channels
== 2)
834 ms_stereo
= get_bit(&pwd
->gb
);
836 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
837 int a
= get_bit(&pwd
->gb
);
838 pwd
->channel_coded
[ch
] = a
;
842 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
844 /* if no channel coded, no need to go further */
845 /* XXX: fix potential framing problems */
850 * Read total gain and extract corresponding number of bits for coef
855 int a
= get_bits(&pwd
->gb
, 7);
861 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
863 /* compute number of coefficients */
864 n
= pwd
->coefs_end
[bsize
];
865 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
868 ret
= compute_high_band_values(pwd
, bsize
, nb_coefs
);
872 /* exponents can be reused in short blocks. */
873 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
874 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
875 if (pwd
->channel_coded
[ch
]) {
876 if (pwd
->ahi
.use_exp_vlc
) {
877 ret
= decode_exp_vlc(pwd
, ch
);
881 decode_exp_lsp(pwd
, ch
);
882 pwd
->exponents_bsize
[ch
] = bsize
;
887 /* parse spectral coefficients : just RLE encoding */
888 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
889 struct vlc
*coef_vlc
;
890 int level
, run
, tindex
;
892 const uint16_t *level_table
, *run_table
;
894 if (!pwd
->channel_coded
[ch
])
897 * special VLC tables are used for ms stereo because there is
898 * potentially less energy there
900 tindex
= ch
== 1 && ms_stereo
;
901 coef_vlc
= &pwd
->coef_vlc
[tindex
];
902 run_table
= pwd
->run_table
[tindex
];
903 level_table
= pwd
->level_table
[tindex
];
905 ptr
= &pwd
->coefs1
[ch
][0];
906 eptr
= ptr
+ nb_coefs
[ch
];
907 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
909 code
= get_vlc(&pwd
->gb
, coef_vlc
);
912 if (code
== 1) /* EOB */
914 if (code
== 0) { /* escape */
915 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
916 /* reading block_len_bits would be better */
917 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
918 } else { /* normal code */
919 run
= run_table
[code
];
920 level
= level_table
[code
];
922 if (!get_bit(&pwd
->gb
))
926 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
930 if (ptr
>= eptr
) /* EOB can be omitted */
934 compute_mdct_coefficients(pwd
, bsize
, total_gain
, nb_coefs
);
935 if (ms_stereo
&& pwd
->channel_coded
[1]) {
939 * Nominal case for ms stereo: we do it before mdct.
941 * No need to optimize this case because it should almost never
944 if (!pwd
->channel_coded
[0]) {
945 PARA_NOTICE_LOG("rare ms-stereo\n");
946 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
947 pwd
->channel_coded
[0] = 1;
949 for (i
= 0; i
< pwd
->block_len
; i
++) {
950 a
= pwd
->coefs
[0][i
];
951 b
= pwd
->coefs
[1][i
];
952 pwd
->coefs
[0][i
] = a
+ b
;
953 pwd
->coefs
[1][i
] = a
- b
;
957 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
960 n4
= pwd
->block_len
/ 2;
961 if (pwd
->channel_coded
[ch
])
962 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
963 else if (!(ms_stereo
&& ch
== 1))
964 memset(pwd
->output
, 0, sizeof(pwd
->output
));
966 /* multiply by the window and add in the frame */
967 idx
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
968 wma_window(pwd
, &pwd
->frame_out
[ch
][idx
]);
971 /* update block number */
972 pwd
->block_pos
+= pwd
->block_len
;
973 if (pwd
->block_pos
>= pwd
->frame_len
)
980 * Clip a signed integer value into the -32768,32767 range.
982 * \param a The value to clip.
984 * \return The clipped value.
986 static inline int16_t av_clip_int16(int a
)
988 if ((a
+ 32768) & ~65535)
989 return (a
>> 31) ^ 32767;
994 /* Decode a frame of frame_len samples. */
995 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1001 /* read each block */
1004 ret
= wma_decode_block(pwd
);
1011 /* convert frame to integer */
1012 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1014 iptr
= pwd
->frame_out
[ch
];
1016 for (i
= 0; i
< pwd
->frame_len
; i
++) {
1017 *ptr
= av_clip_int16(lrintf(*iptr
++));
1018 ptr
+= pwd
->ahi
.channels
;
1020 /* prepare for next block */
1021 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1022 pwd
->frame_len
* sizeof(float));
1027 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *out
,
1028 int *out_size
, const uint8_t *in
)
1030 int ret
, in_size
= pwd
->ahi
.packet_size
- WMA_FRAME_SKIP
;
1031 int16_t *samples
= out
;
1033 init_get_bits(&pwd
->gb
, in
, in_size
);
1034 if (pwd
->ahi
.use_bit_reservoir
) {
1035 int i
, nb_frames
, bit_offset
, pos
, len
;
1038 /* read super frame header */
1039 skip_bits(&pwd
->gb
, 4); /* super frame index */
1040 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1041 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1042 ret
= -E_WMA_OUTPUT_SPACE
;
1043 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1044 * sizeof(int16_t) > *out_size
)
1047 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1049 if (pwd
->last_superframe_len
> 0) {
1050 /* add bit_offset bits to last frame */
1051 ret
= -E_WMA_BAD_SUPERFRAME
;
1052 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1053 MAX_CODED_SUPERFRAME_SIZE
)
1055 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1058 *q
++ = get_bits(&pwd
->gb
, 8);
1062 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1064 /* XXX: bit_offset bits into last frame */
1065 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1066 MAX_CODED_SUPERFRAME_SIZE
);
1067 /* skip unused bits */
1068 if (pwd
->last_bitoffset
> 0)
1069 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1071 * This frame is stored in the last superframe and in
1074 ret
= wma_decode_frame(pwd
, samples
);
1077 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1080 /* read each frame starting from bit_offset */
1081 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1082 init_get_bits(&pwd
->gb
, in
+ (pos
>> 3),
1083 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1086 skip_bits(&pwd
->gb
, len
);
1088 pwd
->reset_block_lengths
= true;
1089 for (i
= 0; i
< nb_frames
; i
++) {
1090 ret
= wma_decode_frame(pwd
, samples
);
1093 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1096 /* we copy the end of the frame in the last frame buffer */
1097 pos
= get_bits_count(&pwd
->gb
) +
1098 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1099 pwd
->last_bitoffset
= pos
& 7;
1101 len
= in_size
- pos
;
1102 ret
= -E_WMA_BAD_SUPERFRAME
;
1103 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1105 pwd
->last_superframe_len
= len
;
1106 memcpy(pwd
->last_superframe
, in
+ pos
, len
);
1108 PARA_DEBUG_LOG("not using bit reservoir\n");
1109 ret
= -E_WMA_OUTPUT_SPACE
;
1110 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *out_size
)
1112 /* single frame decode */
1113 ret
= wma_decode_frame(pwd
, samples
);
1116 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1118 PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1119 pwd
->frame_len
, pwd
->block_len
,
1120 (int)((int8_t *)samples
- (int8_t *)out
), pwd
->ahi
.block_align
);
1121 *out_size
= (int8_t *)samples
- (int8_t *)out
;
1122 return pwd
->ahi
.block_align
;
1124 /* reset the bit reservoir on errors */
1125 pwd
->last_superframe_len
= 0;
1129 static void wmadec_close(struct filter_node
*fn
)
1131 struct private_wmadec_data
*pwd
= fn
->private_data
;
1136 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
1137 imdct_end(pwd
->mdct_ctx
[i
]);
1138 if (pwd
->ahi
.use_exp_vlc
)
1139 free_vlc(&pwd
->exp_vlc
);
1140 if (pwd
->use_noise_coding
)
1141 free_vlc(&pwd
->hgain_vlc
);
1142 for (i
= 0; i
< 2; i
++) {
1143 free_vlc(&pwd
->coef_vlc
[i
]);
1144 free(pwd
->run_table
[i
]);
1145 free(pwd
->level_table
[i
]);
1147 free(fn
->private_data
);
1148 fn
->private_data
= NULL
;
1151 static int wmadec_execute(struct btr_node
*btrn
, const char *cmd
, char **result
)
1153 struct filter_node
*fn
= btr_context(btrn
);
1154 struct private_wmadec_data
*pwd
= fn
->private_data
;
1156 return decoder_execute(cmd
, pwd
->ahi
.sample_rate
, pwd
->ahi
.channels
,
1160 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1162 static int wmadec_post_select(__a_unused
struct sched
*s
, void *context
)
1164 struct filter_node
*fn
= context
;
1165 int ret
, converted
, out_size
;
1166 struct private_wmadec_data
*pwd
= fn
->private_data
;
1167 struct btr_node
*btrn
= fn
->btrn
;
1173 ret
= btr_node_status(btrn
, fn
->min_iqs
, BTR_NT_INTERNAL
);
1178 btr_merge(btrn
, fn
->min_iqs
);
1179 len
= btr_next_buffer(btrn
, &in
);
1180 ret
= -E_WMADEC_EOF
;
1181 if (len
< fn
->min_iqs
)
1184 ret
= wma_decode_init(in
, len
, &pwd
);
1188 fn
->min_iqs
+= 4096;
1191 fn
->min_iqs
= 2 * pwd
->ahi
.packet_size
;
1192 fn
->private_data
= pwd
;
1193 converted
= pwd
->ahi
.header_len
;
1196 fn
->min_iqs
= pwd
->ahi
.packet_size
;
1197 if (fn
->min_iqs
> len
)
1199 out_size
= WMA_OUTPUT_BUFFER_SIZE
;
1200 out
= para_malloc(out_size
);
1201 ret
= wma_decode_superframe(pwd
, out
, &out_size
,
1202 (uint8_t *)in
+ WMA_FRAME_SKIP
);
1208 out
= para_realloc(out
, out_size
);
1209 btr_add_output(out
, out_size
, btrn
);
1212 converted
+= pwd
->ahi
.packet_size
;
1214 btr_consume(btrn
, converted
);
1218 btr_remove_node(&fn
->btrn
);
1222 static void wmadec_open(struct filter_node
*fn
)
1224 fn
->private_data
= NULL
;
1228 const struct filter lsg_filter_cmd_com_wmadec_user_data
= {
1229 .open
= wmadec_open
,
1230 .close
= wmadec_close
,
1231 .execute
= wmadec_execute
,
1232 .pre_select
= generic_filter_pre_select
,
1233 .post_select
= wmadec_post_select
,