server: Avoid use of uninitialized memory.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License, see file COPYING.LIB.
9  */
10
11 /** \file wmadec_filter.c paraslash's WMA decoder. */
12
13 /*
14  * This decoder handles Microsoft Windows Media Audio data version 2.
15  */
16
17 #include <math.h>
18 #include <regex.h>
19 #include <sys/select.h>
20
21 #include "para.h"
22 #include "error.h"
23 #include "list.h"
24 #include "string.h"
25 #include "sched.h"
26 #include "buffer_tree.h"
27 #include "filter.h"
28 #include "portable_io.h"
29 #include "bitstream.h"
30 #include "imdct.h"
31 #include "wma.h"
32 #include "wmadata.h"
33
34
35 /* size of blocks */
36 #define BLOCK_MIN_BITS 7
37 #define BLOCK_MAX_BITS 11
38 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
39
40 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
41
42 /* XXX: find exact max size */
43 #define HIGH_BAND_MAX_SIZE 16
44
45 /* XXX: is it a suitable value ? */
46 #define MAX_CODED_SUPERFRAME_SIZE 16384
47
48 #define MAX_CHANNELS 2
49
50 #define NOISE_TAB_SIZE 8192
51
52 #define LSP_POW_BITS 7
53
54 struct private_wmadec_data {
55         /** Information contained in the audio file header. */
56         struct asf_header_info ahi;
57         struct getbit_context gb;
58         /** Whether perceptual noise is added. */
59         int use_noise_coding;
60         /** Depends on number of the bits per second and the frame length. */
61         int byte_offset_bits;
62         /** Only used if ahi->use_exp_vlc is true. */
63         struct vlc exp_vlc;
64         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
65         /** The index of the first coef in high band. */
66         int high_band_start[BLOCK_NB_SIZES];
67         /** Maximal number of coded coefficients. */
68         int coefs_end[BLOCK_NB_SIZES];
69         int exponent_high_sizes[BLOCK_NB_SIZES];
70         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
71         struct vlc hgain_vlc;
72
73         /* coded values in high bands */
74         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
75         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
76
77         /* there are two possible tables for spectral coefficients */
78         struct vlc coef_vlc[2];
79         uint16_t *run_table[2];
80         uint16_t *level_table[2];
81         /** Frame length in samples. */
82         int frame_len;
83         /** log2 of frame_len. */
84         int frame_len_bits;
85         /** Number of block sizes, one if !ahi->use_variable_block_len. */
86         int nb_block_sizes;
87         /* Whether to update block lengths from getbit context. */
88         bool reset_block_lengths;
89         /** log2 of current block length. */
90         int block_len_bits;
91         /** log2 of next block length. */
92         int next_block_len_bits;
93         /** log2 of previous block length. */
94         int prev_block_len_bits;
95         /** Block length in samples. */
96         int block_len;
97         /** Current position in frame. */
98         int block_pos;
99         /** True if channel is coded. */
100         uint8_t channel_coded[MAX_CHANNELS];
101         /** log2 ratio frame/exp. length. */
102         int exponents_bsize[MAX_CHANNELS];
103
104         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float max_exponent[MAX_CHANNELS];
106         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
107         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
108         float output[BLOCK_MAX_SIZE * 2];
109         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
110         float *windows[BLOCK_NB_SIZES];
111         /** Output buffer for one frame and the last for IMDCT windowing. */
112         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
113         /** Last frame info. */
114         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
115         int last_bitoffset;
116         int last_superframe_len;
117         float noise_table[NOISE_TAB_SIZE];
118         int noise_index;
119         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
120         /* lsp_to_curve tables */
121         float lsp_cos_table[BLOCK_MAX_SIZE];
122         float lsp_pow_e_table[256];
123         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
124         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
125 };
126
127 #define EXPVLCBITS 8
128 #define HGAINVLCBITS 9
129 #define VLCBITS 9
130
131 /** \cond sine_winows */
132
133 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
134
135 SINE_WINDOW(128);
136 SINE_WINDOW(256);
137 SINE_WINDOW(512);
138 SINE_WINDOW(1024);
139 SINE_WINDOW(2048);
140 SINE_WINDOW(4096);
141
142 static float *sine_windows[6] = {
143         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
144 };
145 /** \endcond sine_windows */
146
147 /* Generate a sine window. */
148 static void sine_window_init(float *window, int n)
149 {
150         int i;
151
152         for (i = 0; i < n; i++)
153                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
154 }
155
156 static void init_coef_vlc(struct private_wmadec_data *pwd, int sidx, int didx)
157 {
158         const struct coef_vlc_table *src = coef_vlcs + sidx;
159         struct vlc *dst = pwd->coef_vlc + didx;
160         int i, l, j, k, level, n = src->n;
161
162         init_vlc(dst, VLCBITS, n, src->huffbits, src->huffcodes, 4);
163         pwd->run_table[didx] = para_malloc(n * sizeof(uint16_t));
164         pwd->level_table[didx] = para_malloc(n * sizeof(uint16_t));
165         i = 2;
166         level = 1;
167         k = 0;
168         while (i < n) {
169                 l = src->levels[k++];
170                 for (j = 0; j < l; j++) {
171                         pwd->run_table[didx][i] = j;
172                         pwd->level_table[didx][i] = level;
173                         i++;
174                 }
175                 level++;
176         }
177 }
178
179 /* compute the scale factor band sizes for each MDCT block size */
180 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
181         float high_freq)
182 {
183         struct asf_header_info *ahi = &pwd->ahi;
184         int a, b, pos, lpos, k, block_len, i, j, n;
185         const uint8_t *table;
186
187         for (k = 0; k < pwd->nb_block_sizes; k++) {
188                 int exponent_size;
189
190                 block_len = pwd->frame_len >> k;
191                 table = NULL;
192                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
193                 if (a < 3) {
194                         if (ahi->sample_rate >= 44100)
195                                 table = exponent_band_44100[a];
196                         else if (ahi->sample_rate >= 32000)
197                                 table = exponent_band_32000[a];
198                         else if (ahi->sample_rate >= 22050)
199                                 table = exponent_band_22050[a];
200                 }
201                 if (table) {
202                         n = *table++;
203                         for (i = 0; i < n; i++)
204                                 pwd->exponent_bands[k][i] = table[i];
205                         exponent_size = n;
206                 } else {
207                         j = 0;
208                         lpos = 0;
209                         for (i = 0; i < 25; i++) {
210                                 a = wma_critical_freqs[i];
211                                 b = ahi->sample_rate;
212                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
213                                 pos <<= 2;
214                                 if (pos > block_len)
215                                         pos = block_len;
216                                 if (pos > lpos)
217                                         pwd->exponent_bands[k][j++] = pos - lpos;
218                                 if (pos >= block_len)
219                                         break;
220                                 lpos = pos;
221                         }
222                         exponent_size = j;
223                 }
224
225                 /* max number of coefs */
226                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
227                 /* high freq computation */
228                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
229                         / ahi->sample_rate + 0.5);
230                 n = exponent_size;
231                 j = 0;
232                 pos = 0;
233                 for (i = 0; i < n; i++) {
234                         int start, end;
235                         start = pos;
236                         pos += pwd->exponent_bands[k][i];
237                         end = pos;
238                         if (start < pwd->high_band_start[k])
239                                 start = pwd->high_band_start[k];
240                         if (end > pwd->coefs_end[k])
241                                 end = pwd->coefs_end[k];
242                         if (end > start)
243                                 pwd->exponent_high_bands[k][j++] = end - start;
244                 }
245                 pwd->exponent_high_sizes[k] = j;
246         }
247 }
248
249 static int wma_init(struct private_wmadec_data *pwd)
250 {
251         int i;
252         float bps1, high_freq;
253         volatile float bps;
254         int sample_rate1;
255         int coef_vlc_table;
256         struct asf_header_info *ahi = &pwd->ahi;
257         int flags2 = ahi->flags2;
258
259         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
260                 || ahi->channels <= 0 || ahi->channels > 8
261                 || ahi->bit_rate <= 0)
262                 return -E_WMA_BAD_PARAMS;
263
264         /* compute MDCT block size */
265         if (ahi->sample_rate <= 16000)
266                 pwd->frame_len_bits = 9;
267         else if (ahi->sample_rate <= 22050)
268                 pwd->frame_len_bits = 10;
269         else
270                 pwd->frame_len_bits = 11;
271         pwd->frame_len = 1 << pwd->frame_len_bits;
272         if (pwd->ahi.use_variable_block_len) {
273                 int nb_max, nb;
274                 nb = ((flags2 >> 3) & 3) + 1;
275                 if ((ahi->bit_rate / ahi->channels) >= 32000)
276                         nb += 2;
277                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
278                 if (nb > nb_max)
279                         nb = nb_max;
280                 pwd->nb_block_sizes = nb + 1;
281         } else
282                 pwd->nb_block_sizes = 1;
283
284         /* init rate dependent parameters */
285         pwd->use_noise_coding = 1;
286         high_freq = ahi->sample_rate * 0.5;
287
288         /* wma2 rates are normalized */
289         sample_rate1 = ahi->sample_rate;
290         if (sample_rate1 >= 44100)
291                 sample_rate1 = 44100;
292         else if (sample_rate1 >= 22050)
293                 sample_rate1 = 22050;
294         else if (sample_rate1 >= 16000)
295                 sample_rate1 = 16000;
296         else if (sample_rate1 >= 11025)
297                 sample_rate1 = 11025;
298         else if (sample_rate1 >= 8000)
299                 sample_rate1 = 8000;
300
301         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
302         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
303         /*
304          * Compute high frequency value and choose if noise coding should be
305          * activated.
306          */
307         bps1 = bps;
308         if (ahi->channels == 2)
309                 bps1 = bps * 1.6;
310         if (sample_rate1 == 44100) {
311                 if (bps1 >= 0.61)
312                         pwd->use_noise_coding = 0;
313                 else
314                         high_freq = high_freq * 0.4;
315         } else if (sample_rate1 == 22050) {
316                 if (bps1 >= 1.16)
317                         pwd->use_noise_coding = 0;
318                 else if (bps1 >= 0.72)
319                         high_freq = high_freq * 0.7;
320                 else
321                         high_freq = high_freq * 0.6;
322         } else if (sample_rate1 == 16000) {
323                 if (bps > 0.5)
324                         high_freq = high_freq * 0.5;
325                 else
326                         high_freq = high_freq * 0.3;
327         } else if (sample_rate1 == 11025)
328                 high_freq = high_freq * 0.7;
329         else if (sample_rate1 == 8000) {
330                 if (bps <= 0.625)
331                         high_freq = high_freq * 0.5;
332                 else if (bps > 0.75)
333                         pwd->use_noise_coding = 0;
334                 else
335                         high_freq = high_freq * 0.65;
336         } else {
337                 if (bps >= 0.8)
338                         high_freq = high_freq * 0.75;
339                 else if (bps >= 0.6)
340                         high_freq = high_freq * 0.6;
341                 else
342                         high_freq = high_freq * 0.5;
343         }
344         PARA_INFO_LOG("channels=%u sample_rate=%u "
345                 "bitrate=%u block_align=%d\n",
346                 ahi->channels, ahi->sample_rate,
347                 ahi->bit_rate, ahi->block_align);
348         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
349                 "high_freq=%f bitoffset=%d\n",
350                 pwd->frame_len, bps, bps1,
351                 high_freq, pwd->byte_offset_bits);
352         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
353                 pwd->use_noise_coding, pwd->ahi.use_exp_vlc, pwd->nb_block_sizes);
354
355         compute_scale_factor_band_sizes(pwd, high_freq);
356         /* init MDCT windows : simple sinus window */
357         for (i = 0; i < pwd->nb_block_sizes; i++) {
358                 int n;
359                 n = 1 << (pwd->frame_len_bits - i);
360                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
361                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
362         }
363
364         pwd->reset_block_lengths = true;
365
366         if (pwd->use_noise_coding) {
367                 /* init the noise generator */
368                 if (pwd->ahi.use_exp_vlc)
369                         pwd->noise_mult = 0.02;
370                 else
371                         pwd->noise_mult = 0.04;
372
373                 {
374                         unsigned int seed;
375                         float norm;
376                         seed = 1;
377                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
378                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
379                                 seed = seed * 314159 + 1;
380                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
381                         }
382                 }
383         }
384
385         /* choose the VLC tables for the coefficients */
386         coef_vlc_table = 4;
387         if (ahi->sample_rate >= 32000) {
388                 if (bps1 < 0.72)
389                         coef_vlc_table = 0;
390                 else if (bps1 < 1.16)
391                         coef_vlc_table = 2;
392         }
393         init_coef_vlc(pwd, coef_vlc_table, 0);
394         init_coef_vlc(pwd, coef_vlc_table + 1, 1);
395         return 0;
396 }
397
398 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd)
399 {
400         float wdel, a, b;
401         int i, e, m;
402
403         wdel = M_PI / pwd->frame_len;
404         for (i = 0; i < pwd->frame_len; i++)
405                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
406
407         /* tables for x^-0.25 computation */
408         for (i = 0; i < 256; i++) {
409                 e = i - 126;
410                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
411         }
412
413         /* These two tables are needed to avoid two operations in pow_m1_4. */
414         b = 1.0;
415         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
416                 m = (1 << LSP_POW_BITS) + i;
417                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
418                 a = pow(a, -0.25);
419                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
420                 pwd->lsp_pow_m_table2[i] = b - a;
421                 b = a;
422         }
423 }
424
425 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
426 {
427         struct private_wmadec_data *pwd;
428         int ret, i;
429
430         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
431         pwd = para_calloc(sizeof(*pwd));
432         ret = read_asf_header(initial_buf, len, &pwd->ahi);
433         if (ret <= 0) {
434                 free(pwd);
435                 return ret;
436         }
437
438         ret = wma_init(pwd);
439         if (ret < 0)
440                 return ret;
441         /* init MDCT */
442         for (i = 0; i < pwd->nb_block_sizes; i++) {
443                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
444                 if (ret < 0)
445                         return ret;
446         }
447         if (pwd->use_noise_coding) {
448                 PARA_INFO_LOG("using noise coding\n");
449                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
450                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
451                         wma_hgain_huffcodes, 2);
452         }
453
454         if (pwd->ahi.use_exp_vlc) {
455                 PARA_INFO_LOG("using exp_vlc\n");
456                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
457                         wma_scale_huffbits, wma_scale_huffcodes, 4);
458         } else {
459                 PARA_INFO_LOG("using curve\n");
460                 wma_lsp_to_curve_init(pwd);
461         }
462         *result = pwd;
463         return pwd->ahi.header_len;
464 }
465
466 /**
467  * compute x^-0.25 with an exponent and mantissa table. We use linear
468  * interpolation to reduce the mantissa table size at a small speed
469  * expense (linear interpolation approximately doubles the number of
470  * bits of precision).
471  */
472 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
473 {
474         union {
475                 float f;
476                 unsigned int v;
477         } u, t;
478         unsigned int e, m;
479         float a, b;
480
481         u.f = x;
482         e = u.v >> 23;
483         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
484         /* build interpolation scale: 1 <= t < 2. */
485         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
486         a = pwd->lsp_pow_m_table1[m];
487         b = pwd->lsp_pow_m_table2[m];
488         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
489 }
490
491 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
492                 float *out, float *val_max_ptr, int n, float *lsp)
493 {
494         int i, j;
495         float p, q, w, v, val_max;
496
497         val_max = 0;
498         for (i = 0; i < n; i++) {
499                 p = 0.5f;
500                 q = 0.5f;
501                 w = pwd->lsp_cos_table[i];
502                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
503                         q *= w - lsp[j - 1];
504                         p *= w - lsp[j];
505                 }
506                 p *= p * (2.0f - w);
507                 q *= q * (2.0f + w);
508                 v = p + q;
509                 v = pow_m1_4(pwd, v);
510                 if (v > val_max)
511                         val_max = v;
512                 out[i] = v;
513         }
514         *val_max_ptr = val_max;
515 }
516
517 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
518 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
519 {
520         float lsp_coefs[NB_LSP_COEFS];
521         int val, i;
522
523         for (i = 0; i < NB_LSP_COEFS; i++) {
524                 if (i == 0 || i >= 8)
525                         val = get_bits(&pwd->gb, 3);
526                 else
527                         val = get_bits(&pwd->gb, 4);
528                 lsp_coefs[i] = wma_lsp_codebook[i][val];
529         }
530
531         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
532                 pwd->block_len, lsp_coefs);
533 }
534
535 /* Decode exponents coded with VLC codes. */
536 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
537 {
538         int last_exp, n, code;
539         const uint16_t *ptr, *band_ptr;
540         float v, *q, max_scale, *q_end;
541
542         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
543         ptr = band_ptr;
544         q = pwd->exponents[ch];
545         q_end = q + pwd->block_len;
546         max_scale = 0;
547         last_exp = 36;
548
549         while (q < q_end) {
550                 code = get_vlc(&pwd->gb, &pwd->exp_vlc);
551                 if (code < 0)
552                         return code;
553                 /* NOTE: this offset is the same as MPEG4 AAC ! */
554                 last_exp += code - 60;
555                 /* XXX: use a table */
556                 v = pow(10, last_exp * (1.0 / 16.0));
557                 if (v > max_scale)
558                         max_scale = v;
559                 n = *ptr++;
560                 do {
561                         *q++ = v;
562                 } while (--n);
563         }
564         pwd->max_exponent[ch] = max_scale;
565         return 0;
566 }
567
568 /* compute src0 * src1 + src2 */
569 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
570                 const float *src2, int len)
571 {
572         int i;
573
574         for (i = 0; i < len; i++)
575                 dst[i] = src0[i] * src1[i] + src2[i];
576 }
577
578 static inline void vector_mult_reverse(float *dst, const float *src0,
579                 const float *src1, int len)
580 {
581         int i;
582
583         src1 += len - 1;
584         for (i = 0; i < len; i++)
585                 dst[i] = src0[i] * src1[-i];
586 }
587
588 /**
589  * Apply MDCT window and add into output.
590  *
591  * We ensure that when the windows overlap their squared sum
592  * is always 1 (MDCT reconstruction rule).
593  */
594 static void wma_window(struct private_wmadec_data *pwd, float *out)
595 {
596         float *in = pwd->output;
597         int block_len, bsize, n;
598
599         /* left part */
600         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
601                 block_len = pwd->block_len;
602                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
603                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
604         } else {
605                 block_len = 1 << pwd->prev_block_len_bits;
606                 n = (pwd->block_len - block_len) / 2;
607                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
608                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
609                         block_len);
610                 memcpy(out + n + block_len, in + n + block_len,
611                         n * sizeof(float));
612         }
613         out += pwd->block_len;
614         in += pwd->block_len;
615         /* right part */
616         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
617                 block_len = pwd->block_len;
618                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
619                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
620         } else {
621                 block_len = 1 << pwd->next_block_len_bits;
622                 n = (pwd->block_len - block_len) / 2;
623                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
624                 memcpy(out, in, n * sizeof(float));
625                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
626                         block_len);
627                 memset(out + n + block_len, 0, n * sizeof(float));
628         }
629 }
630
631 static int wma_total_gain_to_bits(int total_gain)
632 {
633         if (total_gain < 15)
634                 return 13;
635         else if (total_gain < 32)
636                 return 12;
637         else if (total_gain < 40)
638                 return 11;
639         else if (total_gain < 45)
640                 return 10;
641         else
642                 return 9;
643 }
644
645 static int compute_high_band_values(struct private_wmadec_data *pwd,
646                 int bsize, int nb_coefs[MAX_CHANNELS])
647 {
648         int ch;
649
650         if (!pwd->use_noise_coding)
651                 return 0;
652         for (ch = 0; ch < pwd->ahi.channels; ch++) {
653                 int i, m, a;
654                 if (!pwd->channel_coded[ch])
655                         continue;
656                 m = pwd->exponent_high_sizes[bsize];
657                 for (i = 0; i < m; i++) {
658                         a = get_bit(&pwd->gb);
659                         pwd->high_band_coded[ch][i] = a;
660                         if (!a)
661                                 continue;
662                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
663                 }
664         }
665         for (ch = 0; ch < pwd->ahi.channels; ch++) {
666                 int i, n, val;
667                 if (!pwd->channel_coded[ch])
668                         continue;
669                 n = pwd->exponent_high_sizes[bsize];
670                 val = (int)0x80000000;
671                 for (i = 0; i < n; i++) {
672                         if (!pwd->high_band_coded[ch][i])
673                                 continue;
674                         if (val == (int)0x80000000)
675                                 val = get_bits(&pwd->gb, 7) - 19;
676                         else {
677                                 int code = get_vlc(&pwd->gb, &pwd->hgain_vlc);
678                                 if (code < 0)
679                                         return code;
680                                 val += code - 18;
681                         }
682                         pwd->high_band_values[ch][i] = val;
683                 }
684         }
685         return 1;
686 }
687
688 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
689                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
690 {
691         int ch;
692         float mdct_norm = 1.0 / (pwd->block_len / 2);
693
694         for (ch = 0; ch < pwd->ahi.channels; ch++) {
695                 int16_t *coefs1;
696                 float *coefs, *exponents, mult, mult1, noise;
697                 int i, j, n, n1, last_high_band, esize;
698                 float exp_power[HIGH_BAND_MAX_SIZE];
699
700                 if (!pwd->channel_coded[ch])
701                         continue;
702                 coefs1 = pwd->coefs1[ch];
703                 exponents = pwd->exponents[ch];
704                 esize = pwd->exponents_bsize[ch];
705                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
706                 mult *= mdct_norm;
707                 coefs = pwd->coefs[ch];
708                 if (!pwd->use_noise_coding) {
709                         /* XXX: optimize more */
710                         n = nb_coefs[ch];
711                         for (i = 0; i < n; i++)
712                                 *coefs++ = coefs1[i] *
713                                         exponents[i << bsize >> esize] * mult;
714                         n = pwd->block_len - pwd->coefs_end[bsize];
715                         for (i = 0; i < n; i++)
716                                 *coefs++ = 0.0;
717                         continue;
718                 }
719                 n1 = pwd->exponent_high_sizes[bsize];
720                 /* compute power of high bands */
721                 exponents = pwd->exponents[ch] +
722                         (pwd->high_band_start[bsize] << bsize);
723                 last_high_band = 0; /* avoid warning */
724                 for (j = 0; j < n1; j++) {
725                         n = pwd->exponent_high_bands[
726                                 pwd->frame_len_bits - pwd->block_len_bits][j];
727                         if (pwd->high_band_coded[ch][j]) {
728                                 float e2, val;
729                                 e2 = 0;
730                                 for (i = 0; i < n; i++) {
731                                         val = exponents[i << bsize >> esize];
732                                         e2 += val * val;
733                                 }
734                                 exp_power[j] = e2 / n;
735                                 last_high_band = j;
736                         }
737                         exponents += n << bsize;
738                 }
739                 /* main freqs and high freqs */
740                 exponents = pwd->exponents[ch];
741                 for (j = -1; j < n1; j++) {
742                         if (j < 0)
743                                 n = pwd->high_band_start[bsize];
744                         else
745                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
746                                         - pwd->block_len_bits][j];
747                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
748                                 /* use noise with specified power */
749                                 mult1 = sqrt(exp_power[j]
750                                         / exp_power[last_high_band]);
751                                 /* XXX: use a table */
752                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
753                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
754                                 mult1 *= mdct_norm;
755                                 for (i = 0; i < n; i++) {
756                                         noise = pwd->noise_table[pwd->noise_index];
757                                         pwd->noise_index = (pwd->noise_index + 1)
758                                                 & (NOISE_TAB_SIZE - 1);
759                                         *coefs++ = noise * exponents[
760                                                 i << bsize >> esize] * mult1;
761                                 }
762                                 exponents += n << bsize;
763                         } else {
764                                 /* coded values + small noise */
765                                 for (i = 0; i < n; i++) {
766                                         noise = pwd->noise_table[pwd->noise_index];
767                                         pwd->noise_index = (pwd->noise_index + 1)
768                                                 & (NOISE_TAB_SIZE - 1);
769                                         *coefs++ = ((*coefs1++) + noise) *
770                                                 exponents[i << bsize >> esize]
771                                                 * mult;
772                                 }
773                                 exponents += n << bsize;
774                         }
775                 }
776                 /* very high freqs: noise */
777                 n = pwd->block_len - pwd->coefs_end[bsize];
778                 mult1 = mult * exponents[(-(1 << bsize)) >> esize];
779                 for (i = 0; i < n; i++) {
780                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
781                         pwd->noise_index = (pwd->noise_index + 1)
782                                 & (NOISE_TAB_SIZE - 1);
783                 }
784         }
785 }
786
787 /**
788  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
789  * errors.
790  */
791 static int wma_decode_block(struct private_wmadec_data *pwd)
792 {
793         int ret, n, v, ch, code, bsize;
794         int coef_nb_bits, total_gain;
795         int nb_coefs[MAX_CHANNELS];
796         bool ms_stereo = false; /* mid/side stereo mode */
797
798         /* compute current block length */
799         if (pwd->ahi.use_variable_block_len) {
800                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
801
802                 if (pwd->reset_block_lengths) {
803                         pwd->reset_block_lengths = false;
804                         v = get_bits(&pwd->gb, n);
805                         if (v >= pwd->nb_block_sizes)
806                                 return -E_WMA_BLOCK_SIZE;
807                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
808                         v = get_bits(&pwd->gb, n);
809                         if (v >= pwd->nb_block_sizes)
810                                 return -E_WMA_BLOCK_SIZE;
811                         pwd->block_len_bits = pwd->frame_len_bits - v;
812                 } else {
813                         /* update block lengths */
814                         pwd->prev_block_len_bits = pwd->block_len_bits;
815                         pwd->block_len_bits = pwd->next_block_len_bits;
816                 }
817                 v = get_bits(&pwd->gb, n);
818                 if (v >= pwd->nb_block_sizes)
819                         return -E_WMA_BLOCK_SIZE;
820                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
821         } else {
822                 /* fixed block len */
823                 pwd->next_block_len_bits = pwd->frame_len_bits;
824                 pwd->prev_block_len_bits = pwd->frame_len_bits;
825                 pwd->block_len_bits = pwd->frame_len_bits;
826         }
827
828         /* now check if the block length is coherent with the frame length */
829         pwd->block_len = 1 << pwd->block_len_bits;
830         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
831                 return -E_INCOHERENT_BLOCK_LEN;
832
833         if (pwd->ahi.channels == 2)
834                 ms_stereo = get_bit(&pwd->gb);
835         v = 0;
836         for (ch = 0; ch < pwd->ahi.channels; ch++) {
837                 int a = get_bit(&pwd->gb);
838                 pwd->channel_coded[ch] = a;
839                 v |= a;
840         }
841
842         bsize = pwd->frame_len_bits - pwd->block_len_bits;
843
844         /* if no channel coded, no need to go further */
845         /* XXX: fix potential framing problems */
846         if (!v)
847                 goto next;
848
849         /*
850          * Read total gain and extract corresponding number of bits for coef
851          * escape coding.
852          */
853         total_gain = 1;
854         for (;;) {
855                 int a = get_bits(&pwd->gb, 7);
856                 total_gain += a;
857                 if (a != 127)
858                         break;
859         }
860
861         coef_nb_bits = wma_total_gain_to_bits(total_gain);
862
863         /* compute number of coefficients */
864         n = pwd->coefs_end[bsize];
865         for (ch = 0; ch < pwd->ahi.channels; ch++)
866                 nb_coefs[ch] = n;
867
868         ret = compute_high_band_values(pwd, bsize, nb_coefs);
869         if (ret < 0)
870                 return ret;
871
872         /* exponents can be reused in short blocks. */
873         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
874                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
875                         if (pwd->channel_coded[ch]) {
876                                 if (pwd->ahi.use_exp_vlc) {
877                                         ret = decode_exp_vlc(pwd, ch);
878                                         if (ret < 0)
879                                                 return ret;
880                                 } else
881                                         decode_exp_lsp(pwd, ch);
882                                 pwd->exponents_bsize[ch] = bsize;
883                         }
884                 }
885         }
886
887         /* parse spectral coefficients : just RLE encoding */
888         for (ch = 0; ch < pwd->ahi.channels; ch++) {
889                 struct vlc *coef_vlc;
890                 int level, run, tindex;
891                 int16_t *ptr, *eptr;
892                 const uint16_t *level_table, *run_table;
893
894                 if (!pwd->channel_coded[ch])
895                         continue;
896                 /*
897                  * special VLC tables are used for ms stereo because there is
898                  * potentially less energy there
899                  */
900                 tindex = ch == 1 && ms_stereo;
901                 coef_vlc = &pwd->coef_vlc[tindex];
902                 run_table = pwd->run_table[tindex];
903                 level_table = pwd->level_table[tindex];
904                 /* XXX: optimize */
905                 ptr = &pwd->coefs1[ch][0];
906                 eptr = ptr + nb_coefs[ch];
907                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
908                 for (;;) {
909                         code = get_vlc(&pwd->gb, coef_vlc);
910                         if (code < 0)
911                                 return code;
912                         if (code == 1) /* EOB */
913                                 break;
914                         if (code == 0) { /* escape */
915                                 level = get_bits(&pwd->gb, coef_nb_bits);
916                                 /* reading block_len_bits would be better */
917                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
918                         } else { /* normal code */
919                                 run = run_table[code];
920                                 level = level_table[code];
921                         }
922                         if (!get_bit(&pwd->gb))
923                                 level = -level;
924                         ptr += run;
925                         if (ptr >= eptr) {
926                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
927                                 break;
928                         }
929                         *ptr++ = level;
930                         if (ptr >= eptr) /* EOB can be omitted */
931                                 break;
932                 }
933         }
934         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
935         if (ms_stereo && pwd->channel_coded[1]) {
936                 float a, b;
937                 int i;
938                 /*
939                  * Nominal case for ms stereo: we do it before mdct.
940                  *
941                  * No need to optimize this case because it should almost never
942                  * happen.
943                  */
944                 if (!pwd->channel_coded[0]) {
945                         PARA_NOTICE_LOG("rare ms-stereo\n");
946                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
947                         pwd->channel_coded[0] = 1;
948                 }
949                 for (i = 0; i < pwd->block_len; i++) {
950                         a = pwd->coefs[0][i];
951                         b = pwd->coefs[1][i];
952                         pwd->coefs[0][i] = a + b;
953                         pwd->coefs[1][i] = a - b;
954                 }
955         }
956 next:
957         for (ch = 0; ch < pwd->ahi.channels; ch++) {
958                 int n4, idx;
959
960                 n4 = pwd->block_len / 2;
961                 if (pwd->channel_coded[ch])
962                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
963                 else if (!(ms_stereo && ch == 1))
964                         memset(pwd->output, 0, sizeof(pwd->output));
965
966                 /* multiply by the window and add in the frame */
967                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
968                 wma_window(pwd, &pwd->frame_out[ch][idx]);
969         }
970
971         /* update block number */
972         pwd->block_pos += pwd->block_len;
973         if (pwd->block_pos >= pwd->frame_len)
974                 return 1;
975         else
976                 return 0;
977 }
978
979 /*
980  * Clip a signed integer value into the -32768,32767 range.
981  *
982  * \param a The value to clip.
983  *
984  * \return The clipped value.
985  */
986 static inline int16_t av_clip_int16(int a)
987 {
988         if ((a + 32768) & ~65535)
989                 return (a >> 31) ^ 32767;
990         else
991                 return a;
992 }
993
994 /* Decode a frame of frame_len samples. */
995 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
996 {
997         int ret, i, ch;
998         int16_t *ptr;
999         float *iptr;
1000
1001         /* read each block */
1002         pwd->block_pos = 0;
1003         for (;;) {
1004                 ret = wma_decode_block(pwd);
1005                 if (ret < 0)
1006                         return ret;
1007                 if (ret)
1008                         break;
1009         }
1010
1011         /* convert frame to integer */
1012         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1013                 ptr = samples + ch;
1014                 iptr = pwd->frame_out[ch];
1015
1016                 for (i = 0; i < pwd->frame_len; i++) {
1017                         *ptr = av_clip_int16(lrintf(*iptr++));
1018                         ptr += pwd->ahi.channels;
1019                 }
1020                 /* prepare for next block */
1021                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1022                         pwd->frame_len * sizeof(float));
1023         }
1024         return 0;
1025 }
1026
1027 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *out,
1028                 int *out_size, const uint8_t *in)
1029 {
1030         int ret, in_size = pwd->ahi.packet_size - WMA_FRAME_SKIP;
1031         int16_t *samples = out;
1032
1033         init_get_bits(&pwd->gb, in, in_size);
1034         if (pwd->ahi.use_bit_reservoir) {
1035                 int i, nb_frames, bit_offset, pos, len;
1036                 uint8_t *q;
1037
1038                 /* read super frame header */
1039                 skip_bits(&pwd->gb, 4); /* super frame index */
1040                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1041                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1042                 ret = -E_WMA_OUTPUT_SPACE;
1043                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1044                                 * sizeof(int16_t) > *out_size)
1045                         goto fail;
1046
1047                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1048
1049                 if (pwd->last_superframe_len > 0) {
1050                         /* add bit_offset bits to last frame */
1051                         ret = -E_WMA_BAD_SUPERFRAME;
1052                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1053                                         MAX_CODED_SUPERFRAME_SIZE)
1054                                 goto fail;
1055                         q = pwd->last_superframe + pwd->last_superframe_len;
1056                         len = bit_offset;
1057                         while (len > 7) {
1058                                 *q++ = get_bits(&pwd->gb, 8);
1059                                 len -= 8;
1060                         }
1061                         if (len > 0)
1062                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1063
1064                         /* XXX: bit_offset bits into last frame */
1065                         init_get_bits(&pwd->gb, pwd->last_superframe,
1066                                 MAX_CODED_SUPERFRAME_SIZE);
1067                         /* skip unused bits */
1068                         if (pwd->last_bitoffset > 0)
1069                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1070                         /*
1071                          * This frame is stored in the last superframe and in
1072                          * the current one.
1073                          */
1074                         ret = wma_decode_frame(pwd, samples);
1075                         if (ret < 0)
1076                                 goto fail;
1077                         samples += pwd->ahi.channels * pwd->frame_len;
1078                 }
1079
1080                 /* read each frame starting from bit_offset */
1081                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1082                 init_get_bits(&pwd->gb, in + (pos >> 3),
1083                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1084                 len = pos & 7;
1085                 if (len > 0)
1086                         skip_bits(&pwd->gb, len);
1087
1088                 pwd->reset_block_lengths = true;
1089                 for (i = 0; i < nb_frames; i++) {
1090                         ret = wma_decode_frame(pwd, samples);
1091                         if (ret < 0)
1092                                 goto fail;
1093                         samples += pwd->ahi.channels * pwd->frame_len;
1094                 }
1095
1096                 /* we copy the end of the frame in the last frame buffer */
1097                 pos = get_bits_count(&pwd->gb) +
1098                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1099                 pwd->last_bitoffset = pos & 7;
1100                 pos >>= 3;
1101                 len = in_size - pos;
1102                 ret = -E_WMA_BAD_SUPERFRAME;
1103                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1104                         goto fail;
1105                 pwd->last_superframe_len = len;
1106                 memcpy(pwd->last_superframe, in + pos, len);
1107         } else {
1108                 PARA_DEBUG_LOG("not using bit reservoir\n");
1109                 ret = -E_WMA_OUTPUT_SPACE;
1110                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *out_size)
1111                         goto fail;
1112                 /* single frame decode */
1113                 ret = wma_decode_frame(pwd, samples);
1114                 if (ret < 0)
1115                         goto fail;
1116                 samples += pwd->ahi.channels * pwd->frame_len;
1117         }
1118         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1119                 pwd->frame_len, pwd->block_len,
1120                 (int)((int8_t *)samples - (int8_t *)out), pwd->ahi.block_align);
1121         *out_size = (int8_t *)samples - (int8_t *)out;
1122         return pwd->ahi.block_align;
1123 fail:
1124         /* reset the bit reservoir on errors */
1125         pwd->last_superframe_len = 0;
1126         return ret;
1127 }
1128
1129 static void wmadec_close(struct filter_node *fn)
1130 {
1131         struct private_wmadec_data *pwd = fn->private_data;
1132         int i;
1133
1134         if (!pwd)
1135                 return;
1136         for (i = 0; i < pwd->nb_block_sizes; i++)
1137                 imdct_end(pwd->mdct_ctx[i]);
1138         if (pwd->ahi.use_exp_vlc)
1139                 free_vlc(&pwd->exp_vlc);
1140         if (pwd->use_noise_coding)
1141                 free_vlc(&pwd->hgain_vlc);
1142         for (i = 0; i < 2; i++) {
1143                 free_vlc(&pwd->coef_vlc[i]);
1144                 free(pwd->run_table[i]);
1145                 free(pwd->level_table[i]);
1146         }
1147         free(fn->private_data);
1148         fn->private_data = NULL;
1149 }
1150
1151 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1152 {
1153         struct filter_node *fn = btr_context(btrn);
1154         struct private_wmadec_data *pwd = fn->private_data;
1155
1156         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1157                 result);
1158 }
1159
1160 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1161
1162 static int wmadec_post_select(__a_unused struct sched *s, void *context)
1163 {
1164         struct filter_node *fn = context;
1165         int ret, converted, out_size;
1166         struct private_wmadec_data *pwd = fn->private_data;
1167         struct btr_node *btrn = fn->btrn;
1168         size_t len;
1169         char *in, *out;
1170
1171 next_buffer:
1172         converted = 0;
1173         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1174         if (ret < 0)
1175                 goto err;
1176         if (ret == 0)
1177                 return 0;
1178         btr_merge(btrn, fn->min_iqs);
1179         len = btr_next_buffer(btrn, &in);
1180         ret = -E_WMADEC_EOF;
1181         if (len < fn->min_iqs)
1182                 goto err;
1183         if (!pwd) {
1184                 ret = wma_decode_init(in, len, &pwd);
1185                 if (ret < 0)
1186                         goto err;
1187                 if (ret == 0) {
1188                         fn->min_iqs += 4096;
1189                         goto next_buffer;
1190                 }
1191                 fn->min_iqs = 2 * pwd->ahi.packet_size;
1192                 fn->private_data = pwd;
1193                 converted = pwd->ahi.header_len;
1194                 goto success;
1195         }
1196         fn->min_iqs = pwd->ahi.packet_size;
1197         if (fn->min_iqs > len)
1198                 goto success;
1199         out_size = WMA_OUTPUT_BUFFER_SIZE;
1200         out = para_malloc(out_size);
1201         ret = wma_decode_superframe(pwd, out, &out_size,
1202                 (uint8_t *)in + WMA_FRAME_SKIP);
1203         if (ret < 0) {
1204                 free(out);
1205                 goto err;
1206         }
1207         if (out_size > 0) {
1208                 out = para_realloc(out, out_size);
1209                 btr_add_output(out, out_size, btrn);
1210         } else
1211                 free(out);
1212         converted += pwd->ahi.packet_size;
1213 success:
1214         btr_consume(btrn, converted);
1215         return 0;
1216 err:
1217         assert(ret < 0);
1218         btr_remove_node(&fn->btrn);
1219         return ret;
1220 }
1221
1222 static void wmadec_open(struct filter_node *fn)
1223 {
1224         fn->private_data = NULL;
1225         fn->min_iqs = 4096;
1226 }
1227
1228 const struct filter lsg_filter_cmd_com_wmadec_user_data = {
1229         .open = wmadec_open,
1230         .close = wmadec_close,
1231         .execute = wmadec_execute,
1232         .pre_select = generic_filter_pre_select,
1233         .post_select = wmadec_post_select,
1234 };