2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
22 #include <sys/select.h>
30 #include "buffer_tree.h"
32 #include "bitstream.h"
39 #define BLOCK_MIN_BITS 7
40 #define BLOCK_MAX_BITS 11
41 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
43 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
45 /* XXX: find exact max size */
46 #define HIGH_BAND_MAX_SIZE 16
48 /* XXX: is it a suitable value ? */
49 #define MAX_CODED_SUPERFRAME_SIZE 16384
51 #define MAX_CHANNELS 2
53 #define NOISE_TAB_SIZE 8192
55 #define LSP_POW_BITS 7
57 struct private_wmadec_data
{
58 /** Information contained in the audio file header. */
59 struct asf_header_info ahi
;
60 struct getbit_context gb
;
61 /** Whether perceptual noise is added. */
63 /** Depends on number of the bits per second and the frame length. */
65 /** Only used if ahi->use_exp_vlc is true. */
67 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
68 /** The index of the first coef in high band. */
69 int high_band_start
[BLOCK_NB_SIZES
];
70 /** Maximal number of coded coefficients. */
71 int coefs_end
[BLOCK_NB_SIZES
];
72 int exponent_high_sizes
[BLOCK_NB_SIZES
];
73 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
76 /* coded values in high bands */
77 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
78 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
80 /* there are two possible tables for spectral coefficients */
81 struct vlc coef_vlc
[2];
82 uint16_t *run_table
[2];
83 uint16_t *level_table
[2];
84 const struct coef_vlc_table
*coef_vlcs
[2];
85 /** Frame length in samples. */
87 /** log2 of frame_len. */
89 /** Number of block sizes, one if !ahi->use_variable_block_len. */
91 /* Whether to update block lengths from getbit context. */
92 bool reset_block_lengths
;
93 /** log2 of current block length. */
95 /** log2 of next block length. */
96 int next_block_len_bits
;
97 /** log2 of previous block length. */
98 int prev_block_len_bits
;
99 /** Block length in samples. */
101 /** Current position in frame. */
103 /** True if mid/side stereo mode. */
105 /** True if channel is coded. */
106 uint8_t channel_coded
[MAX_CHANNELS
];
107 /** log2 ratio frame/exp. length. */
108 int exponents_bsize
[MAX_CHANNELS
];
110 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
111 float max_exponent
[MAX_CHANNELS
];
112 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
113 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
114 float output
[BLOCK_MAX_SIZE
* 2];
115 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
116 float *windows
[BLOCK_NB_SIZES
];
117 /** Output buffer for one frame and the last for IMDCT windowing. */
118 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
119 /** Last frame info. */
120 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
122 int last_superframe_len
;
123 float noise_table
[NOISE_TAB_SIZE
];
125 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
126 /* lsp_to_curve tables */
127 float lsp_cos_table
[BLOCK_MAX_SIZE
];
128 float lsp_pow_e_table
[256];
129 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
130 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
134 #define HGAINVLCBITS 9
137 /** \cond sine_winows */
139 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
148 static float *sine_windows
[6] = {
149 sine_128
, sine_256
, sine_512
, sine_1024
, sine_2048
, sine_4096
151 /** \endcond sine_windows */
153 /* Generate a sine window. */
154 static void sine_window_init(float *window
, int n
)
158 for (i
= 0; i
< n
; i
++)
159 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
162 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
166 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
167 imdct_end(pwd
->mdct_ctx
[i
]);
168 if (pwd
->ahi
.use_exp_vlc
)
169 free_vlc(&pwd
->exp_vlc
);
170 if (pwd
->use_noise_coding
)
171 free_vlc(&pwd
->hgain_vlc
);
172 for (i
= 0; i
< 2; i
++) {
173 free_vlc(&pwd
->coef_vlc
[i
]);
174 free(pwd
->run_table
[i
]);
175 free(pwd
->level_table
[i
]);
179 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
180 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
182 int n
= vlc_table
->n
;
183 const uint8_t *table_bits
= vlc_table
->huffbits
;
184 const uint32_t *table_codes
= vlc_table
->huffcodes
;
185 const uint16_t *levels_table
= vlc_table
->levels
;
186 uint16_t *run_table
, *level_table
;
187 int i
, l
, j
, k
, level
;
189 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
191 run_table
= para_malloc(n
* sizeof(uint16_t));
192 level_table
= para_malloc(n
* sizeof(uint16_t));
197 l
= levels_table
[k
++];
198 for (j
= 0; j
< l
; j
++) {
200 level_table
[i
] = level
;
205 *prun_table
= run_table
;
206 *plevel_table
= level_table
;
209 /* compute the scale factor band sizes for each MDCT block size */
210 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
213 struct asf_header_info
*ahi
= &pwd
->ahi
;
214 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
215 const uint8_t *table
;
217 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
220 block_len
= pwd
->frame_len
>> k
;
222 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
224 if (ahi
->sample_rate
>= 44100)
225 table
= exponent_band_44100
[a
];
226 else if (ahi
->sample_rate
>= 32000)
227 table
= exponent_band_32000
[a
];
228 else if (ahi
->sample_rate
>= 22050)
229 table
= exponent_band_22050
[a
];
233 for (i
= 0; i
< n
; i
++)
234 pwd
->exponent_bands
[k
][i
] = table
[i
];
239 for (i
= 0; i
< 25; i
++) {
240 a
= wma_critical_freqs
[i
];
241 b
= ahi
->sample_rate
;
242 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
247 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
248 if (pos
>= block_len
)
255 /* max number of coefs */
256 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
257 /* high freq computation */
258 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
259 / ahi
->sample_rate
+ 0.5);
263 for (i
= 0; i
< n
; i
++) {
266 pos
+= pwd
->exponent_bands
[k
][i
];
268 if (start
< pwd
->high_band_start
[k
])
269 start
= pwd
->high_band_start
[k
];
270 if (end
> pwd
->coefs_end
[k
])
271 end
= pwd
->coefs_end
[k
];
273 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
275 pwd
->exponent_high_sizes
[k
] = j
;
279 static int wma_init(struct private_wmadec_data
*pwd
)
282 float bps1
, high_freq
;
286 struct asf_header_info
*ahi
= &pwd
->ahi
;
287 int flags2
= ahi
->flags2
;
289 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
290 || ahi
->channels
<= 0 || ahi
->channels
> 8
291 || ahi
->bit_rate
<= 0)
292 return -E_WMA_BAD_PARAMS
;
294 /* compute MDCT block size */
295 if (ahi
->sample_rate
<= 16000)
296 pwd
->frame_len_bits
= 9;
297 else if (ahi
->sample_rate
<= 22050)
298 pwd
->frame_len_bits
= 10;
300 pwd
->frame_len_bits
= 11;
301 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
302 if (pwd
->ahi
.use_variable_block_len
) {
304 nb
= ((flags2
>> 3) & 3) + 1;
305 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
307 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
310 pwd
->nb_block_sizes
= nb
+ 1;
312 pwd
->nb_block_sizes
= 1;
314 /* init rate dependent parameters */
315 pwd
->use_noise_coding
= 1;
316 high_freq
= ahi
->sample_rate
* 0.5;
318 /* wma2 rates are normalized */
319 sample_rate1
= ahi
->sample_rate
;
320 if (sample_rate1
>= 44100)
321 sample_rate1
= 44100;
322 else if (sample_rate1
>= 22050)
323 sample_rate1
= 22050;
324 else if (sample_rate1
>= 16000)
325 sample_rate1
= 16000;
326 else if (sample_rate1
>= 11025)
327 sample_rate1
= 11025;
328 else if (sample_rate1
>= 8000)
331 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
332 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
334 * Compute high frequency value and choose if noise coding should be
338 if (ahi
->channels
== 2)
340 if (sample_rate1
== 44100) {
342 pwd
->use_noise_coding
= 0;
344 high_freq
= high_freq
* 0.4;
345 } else if (sample_rate1
== 22050) {
347 pwd
->use_noise_coding
= 0;
348 else if (bps1
>= 0.72)
349 high_freq
= high_freq
* 0.7;
351 high_freq
= high_freq
* 0.6;
352 } else if (sample_rate1
== 16000) {
354 high_freq
= high_freq
* 0.5;
356 high_freq
= high_freq
* 0.3;
357 } else if (sample_rate1
== 11025)
358 high_freq
= high_freq
* 0.7;
359 else if (sample_rate1
== 8000) {
361 high_freq
= high_freq
* 0.5;
363 pwd
->use_noise_coding
= 0;
365 high_freq
= high_freq
* 0.65;
368 high_freq
= high_freq
* 0.75;
370 high_freq
= high_freq
* 0.6;
372 high_freq
= high_freq
* 0.5;
374 PARA_INFO_LOG("channels=%d sample_rate=%d "
375 "bitrate=%d block_align=%d\n",
376 ahi
->channels
, ahi
->sample_rate
,
377 ahi
->bit_rate
, ahi
->block_align
);
378 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
379 "high_freq=%f bitoffset=%d\n",
380 pwd
->frame_len
, bps
, bps1
,
381 high_freq
, pwd
->byte_offset_bits
);
382 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
383 pwd
->use_noise_coding
, pwd
->ahi
.use_exp_vlc
, pwd
->nb_block_sizes
);
385 compute_scale_factor_band_sizes(pwd
, high_freq
);
386 /* init MDCT windows : simple sinus window */
387 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
389 n
= 1 << (pwd
->frame_len_bits
- i
);
390 sine_window_init(sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
391 pwd
->windows
[i
] = sine_windows
[pwd
->frame_len_bits
- i
- 7];
394 pwd
->reset_block_lengths
= true;
396 if (pwd
->use_noise_coding
) {
397 /* init the noise generator */
398 if (pwd
->ahi
.use_exp_vlc
)
399 pwd
->noise_mult
= 0.02;
401 pwd
->noise_mult
= 0.04;
407 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
408 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
409 seed
= seed
* 314159 + 1;
410 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
415 /* choose the VLC tables for the coefficients */
417 if (ahi
->sample_rate
>= 32000) {
420 else if (bps1
< 1.16)
423 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
424 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
425 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
427 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
432 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
)
437 wdel
= M_PI
/ pwd
->frame_len
;
438 for (i
= 0; i
< pwd
->frame_len
; i
++)
439 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
441 /* tables for x^-0.25 computation */
442 for (i
= 0; i
< 256; i
++) {
444 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
447 /* These two tables are needed to avoid two operations in pow_m1_4. */
449 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
450 m
= (1 << LSP_POW_BITS
) + i
;
451 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
453 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
454 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
459 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
461 struct private_wmadec_data
*pwd
;
464 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
465 pwd
= para_calloc(sizeof(*pwd
));
466 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
476 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
477 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
481 if (pwd
->use_noise_coding
) {
482 PARA_INFO_LOG("using noise coding\n");
483 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
484 sizeof(wma_hgain_huffbits
), wma_hgain_huffbits
,
485 wma_hgain_huffcodes
, 2);
488 if (pwd
->ahi
.use_exp_vlc
) {
489 PARA_INFO_LOG("using exp_vlc\n");
490 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
, sizeof(wma_scale_huffbits
),
491 wma_scale_huffbits
, wma_scale_huffcodes
, 4);
493 PARA_INFO_LOG("using curve\n");
494 wma_lsp_to_curve_init(pwd
);
497 return pwd
->ahi
.header_len
;
501 * compute x^-0.25 with an exponent and mantissa table. We use linear
502 * interpolation to reduce the mantissa table size at a small speed
503 * expense (linear interpolation approximately doubles the number of
504 * bits of precision).
506 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
517 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
518 /* build interpolation scale: 1 <= t < 2. */
519 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
520 a
= pwd
->lsp_pow_m_table1
[m
];
521 b
= pwd
->lsp_pow_m_table2
[m
];
522 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
525 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
526 float *out
, float *val_max_ptr
, int n
, float *lsp
)
529 float p
, q
, w
, v
, val_max
;
532 for (i
= 0; i
< n
; i
++) {
535 w
= pwd
->lsp_cos_table
[i
];
536 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
543 v
= pow_m1_4(pwd
, v
);
548 *val_max_ptr
= val_max
;
551 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
552 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
554 float lsp_coefs
[NB_LSP_COEFS
];
557 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
558 if (i
== 0 || i
>= 8)
559 val
= get_bits(&pwd
->gb
, 3);
561 val
= get_bits(&pwd
->gb
, 4);
562 lsp_coefs
[i
] = wma_lsp_codebook
[i
][val
];
565 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
566 pwd
->block_len
, lsp_coefs
);
569 /* Decode exponents coded with VLC codes. */
570 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
572 int last_exp
, n
, code
;
573 const uint16_t *ptr
, *band_ptr
;
574 float v
, *q
, max_scale
, *q_end
;
576 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
578 q
= pwd
->exponents
[ch
];
579 q_end
= q
+ pwd
->block_len
;
584 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
);
587 /* NOTE: this offset is the same as MPEG4 AAC ! */
588 last_exp
+= code
- 60;
589 /* XXX: use a table */
590 v
= pow(10, last_exp
* (1.0 / 16.0));
598 pwd
->max_exponent
[ch
] = max_scale
;
602 /* compute src0 * src1 + src2 */
603 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
604 const float *src2
, int len
)
608 for (i
= 0; i
< len
; i
++)
609 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
612 static inline void vector_mult_reverse(float *dst
, const float *src0
,
613 const float *src1
, int len
)
618 for (i
= 0; i
< len
; i
++)
619 dst
[i
] = src0
[i
] * src1
[-i
];
623 * Apply MDCT window and add into output.
625 * We ensure that when the windows overlap their squared sum
626 * is always 1 (MDCT reconstruction rule).
628 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
630 float *in
= pwd
->output
;
631 int block_len
, bsize
, n
;
634 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
635 block_len
= pwd
->block_len
;
636 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
637 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
639 block_len
= 1 << pwd
->prev_block_len_bits
;
640 n
= (pwd
->block_len
- block_len
) / 2;
641 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
642 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
644 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
647 out
+= pwd
->block_len
;
648 in
+= pwd
->block_len
;
650 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
651 block_len
= pwd
->block_len
;
652 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
653 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
655 block_len
= 1 << pwd
->next_block_len_bits
;
656 n
= (pwd
->block_len
- block_len
) / 2;
657 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
658 memcpy(out
, in
, n
* sizeof(float));
659 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
661 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
665 static int wma_total_gain_to_bits(int total_gain
)
669 else if (total_gain
< 32)
671 else if (total_gain
< 40)
673 else if (total_gain
< 45)
679 static int compute_high_band_values(struct private_wmadec_data
*pwd
,
680 int bsize
, int nb_coefs
[MAX_CHANNELS
])
684 if (!pwd
->use_noise_coding
)
686 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
688 if (!pwd
->channel_coded
[ch
])
690 m
= pwd
->exponent_high_sizes
[bsize
];
691 for (i
= 0; i
< m
; i
++) {
692 a
= get_bit(&pwd
->gb
);
693 pwd
->high_band_coded
[ch
][i
] = a
;
696 nb_coefs
[ch
] -= pwd
->exponent_high_bands
[bsize
][i
];
699 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
701 if (!pwd
->channel_coded
[ch
])
703 n
= pwd
->exponent_high_sizes
[bsize
];
704 val
= (int)0x80000000;
705 for (i
= 0; i
< n
; i
++) {
706 if (!pwd
->high_band_coded
[ch
][i
])
708 if (val
== (int)0x80000000)
709 val
= get_bits(&pwd
->gb
, 7) - 19;
711 int code
= get_vlc(&pwd
->gb
,
712 pwd
->hgain_vlc
.table
, HGAINVLCBITS
);
717 pwd
->high_band_values
[ch
][i
] = val
;
723 static void compute_mdct_coefficients(struct private_wmadec_data
*pwd
,
724 int bsize
, int total_gain
, int nb_coefs
[MAX_CHANNELS
])
727 float mdct_norm
= 1.0 / (pwd
->block_len
/ 2);
729 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
731 float *coefs
, *exponents
, mult
, mult1
, noise
;
732 int i
, j
, n
, n1
, last_high_band
, esize
;
733 float exp_power
[HIGH_BAND_MAX_SIZE
];
735 if (!pwd
->channel_coded
[ch
])
737 coefs1
= pwd
->coefs1
[ch
];
738 exponents
= pwd
->exponents
[ch
];
739 esize
= pwd
->exponents_bsize
[ch
];
740 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
742 coefs
= pwd
->coefs
[ch
];
743 if (!pwd
->use_noise_coding
) {
744 /* XXX: optimize more */
746 for (i
= 0; i
< n
; i
++)
747 *coefs
++ = coefs1
[i
] *
748 exponents
[i
<< bsize
>> esize
] * mult
;
749 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
750 for (i
= 0; i
< n
; i
++)
754 n1
= pwd
->exponent_high_sizes
[bsize
];
755 /* compute power of high bands */
756 exponents
= pwd
->exponents
[ch
] +
757 (pwd
->high_band_start
[bsize
] << bsize
);
758 last_high_band
= 0; /* avoid warning */
759 for (j
= 0; j
< n1
; j
++) {
760 n
= pwd
->exponent_high_bands
[
761 pwd
->frame_len_bits
- pwd
->block_len_bits
][j
];
762 if (pwd
->high_band_coded
[ch
][j
]) {
765 for (i
= 0; i
< n
; i
++) {
766 val
= exponents
[i
<< bsize
>> esize
];
769 exp_power
[j
] = e2
/ n
;
772 exponents
+= n
<< bsize
;
774 /* main freqs and high freqs */
775 exponents
= pwd
->exponents
[ch
];
776 for (j
= -1; j
< n1
; j
++) {
778 n
= pwd
->high_band_start
[bsize
];
780 n
= pwd
->exponent_high_bands
[pwd
->frame_len_bits
781 - pwd
->block_len_bits
][j
];
782 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
783 /* use noise with specified power */
784 mult1
= sqrt(exp_power
[j
]
785 / exp_power
[last_high_band
]);
786 /* XXX: use a table */
787 mult1
*= pow(10, pwd
->high_band_values
[ch
][j
] * 0.05);
788 mult1
/= (pwd
->max_exponent
[ch
] * pwd
->noise_mult
);
790 for (i
= 0; i
< n
; i
++) {
791 noise
= pwd
->noise_table
[pwd
->noise_index
];
792 pwd
->noise_index
= (pwd
->noise_index
+ 1)
793 & (NOISE_TAB_SIZE
- 1);
794 *coefs
++ = noise
* exponents
[
795 i
<< bsize
>> esize
] * mult1
;
797 exponents
+= n
<< bsize
;
799 /* coded values + small noise */
800 for (i
= 0; i
< n
; i
++) {
801 noise
= pwd
->noise_table
[pwd
->noise_index
];
802 pwd
->noise_index
= (pwd
->noise_index
+ 1)
803 & (NOISE_TAB_SIZE
- 1);
804 *coefs
++ = ((*coefs1
++) + noise
) *
805 exponents
[i
<< bsize
>> esize
]
808 exponents
+= n
<< bsize
;
811 /* very high freqs: noise */
812 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
813 mult1
= mult
* exponents
[(-(1 << bsize
)) >> esize
];
814 for (i
= 0; i
< n
; i
++) {
815 *coefs
++ = pwd
->noise_table
[pwd
->noise_index
] * mult1
;
816 pwd
->noise_index
= (pwd
->noise_index
+ 1)
817 & (NOISE_TAB_SIZE
- 1);
823 * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
826 static int wma_decode_block(struct private_wmadec_data
*pwd
)
828 int ret
, n
, v
, ch
, code
, bsize
;
829 int coef_nb_bits
, total_gain
;
830 int nb_coefs
[MAX_CHANNELS
];
832 /* compute current block length */
833 if (pwd
->ahi
.use_variable_block_len
) {
834 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
836 if (pwd
->reset_block_lengths
) {
837 pwd
->reset_block_lengths
= false;
838 v
= get_bits(&pwd
->gb
, n
);
839 if (v
>= pwd
->nb_block_sizes
)
840 return -E_WMA_BLOCK_SIZE
;
841 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
842 v
= get_bits(&pwd
->gb
, n
);
843 if (v
>= pwd
->nb_block_sizes
)
844 return -E_WMA_BLOCK_SIZE
;
845 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
847 /* update block lengths */
848 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
849 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
851 v
= get_bits(&pwd
->gb
, n
);
852 if (v
>= pwd
->nb_block_sizes
)
853 return -E_WMA_BLOCK_SIZE
;
854 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
856 /* fixed block len */
857 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
858 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
859 pwd
->block_len_bits
= pwd
->frame_len_bits
;
862 /* now check if the block length is coherent with the frame length */
863 pwd
->block_len
= 1 << pwd
->block_len_bits
;
864 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
865 return -E_INCOHERENT_BLOCK_LEN
;
867 if (pwd
->ahi
.channels
== 2)
868 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
870 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
871 int a
= get_bit(&pwd
->gb
);
872 pwd
->channel_coded
[ch
] = a
;
876 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
878 /* if no channel coded, no need to go further */
879 /* XXX: fix potential framing problems */
884 * Read total gain and extract corresponding number of bits for coef
889 int a
= get_bits(&pwd
->gb
, 7);
895 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
897 /* compute number of coefficients */
898 n
= pwd
->coefs_end
[bsize
];
899 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
902 ret
= compute_high_band_values(pwd
, bsize
, nb_coefs
);
906 /* exponents can be reused in short blocks. */
907 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
908 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
909 if (pwd
->channel_coded
[ch
]) {
910 if (pwd
->ahi
.use_exp_vlc
) {
911 ret
= decode_exp_vlc(pwd
, ch
);
915 decode_exp_lsp(pwd
, ch
);
916 pwd
->exponents_bsize
[ch
] = bsize
;
921 /* parse spectral coefficients : just RLE encoding */
922 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
923 struct vlc
*coef_vlc
;
924 int level
, run
, tindex
;
926 const uint16_t *level_table
, *run_table
;
928 if (!pwd
->channel_coded
[ch
])
931 * special VLC tables are used for ms stereo because there is
932 * potentially less energy there
934 tindex
= (ch
== 1 && pwd
->ms_stereo
);
935 coef_vlc
= &pwd
->coef_vlc
[tindex
];
936 run_table
= pwd
->run_table
[tindex
];
937 level_table
= pwd
->level_table
[tindex
];
939 ptr
= &pwd
->coefs1
[ch
][0];
940 eptr
= ptr
+ nb_coefs
[ch
];
941 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
943 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
, VLCBITS
);
946 if (code
== 1) /* EOB */
948 if (code
== 0) { /* escape */
949 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
950 /* reading block_len_bits would be better */
951 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
952 } else { /* normal code */
953 run
= run_table
[code
];
954 level
= level_table
[code
];
956 if (!get_bit(&pwd
->gb
))
960 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
964 if (ptr
>= eptr
) /* EOB can be omitted */
968 compute_mdct_coefficients(pwd
, bsize
, total_gain
, nb_coefs
);
969 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
973 * Nominal case for ms stereo: we do it before mdct.
975 * No need to optimize this case because it should almost never
978 if (!pwd
->channel_coded
[0]) {
979 PARA_NOTICE_LOG("rare ms-stereo\n");
980 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
981 pwd
->channel_coded
[0] = 1;
983 for (i
= 0; i
< pwd
->block_len
; i
++) {
984 a
= pwd
->coefs
[0][i
];
985 b
= pwd
->coefs
[1][i
];
986 pwd
->coefs
[0][i
] = a
+ b
;
987 pwd
->coefs
[1][i
] = a
- b
;
991 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
994 n4
= pwd
->block_len
/ 2;
995 if (pwd
->channel_coded
[ch
])
996 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
997 else if (!(pwd
->ms_stereo
&& ch
== 1))
998 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1000 /* multiply by the window and add in the frame */
1001 idx
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1002 wma_window(pwd
, &pwd
->frame_out
[ch
][idx
]);
1005 /* update block number */
1006 pwd
->block_pos
+= pwd
->block_len
;
1007 if (pwd
->block_pos
>= pwd
->frame_len
)
1014 * Clip a signed integer value into the -32768,32767 range.
1016 * \param a The value to clip.
1018 * \return The clipped value.
1020 static inline int16_t av_clip_int16(int a
)
1022 if ((a
+ 32768) & ~65535)
1023 return (a
>> 31) ^ 32767;
1028 /* Decode a frame of frame_len samples. */
1029 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1031 int ret
, i
, n
, ch
, incr
;
1035 /* read each block */
1038 ret
= wma_decode_block(pwd
);
1045 /* convert frame to integer */
1047 incr
= pwd
->ahi
.channels
;
1048 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1050 iptr
= pwd
->frame_out
[ch
];
1052 for (i
= 0; i
< n
; i
++) {
1053 *ptr
= av_clip_int16(lrintf(*iptr
++));
1056 /* prepare for next block */
1057 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1058 pwd
->frame_len
* sizeof(float));
1063 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1064 int *data_size
, const uint8_t *buf
, int buf_size
)
1069 if (buf_size
== 0) {
1070 pwd
->last_superframe_len
= 0;
1073 if (buf_size
< pwd
->ahi
.block_align
)
1075 buf_size
= pwd
->ahi
.block_align
;
1077 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1078 if (pwd
->ahi
.use_bit_reservoir
) {
1079 int i
, nb_frames
, bit_offset
, pos
, len
;
1082 /* read super frame header */
1083 skip_bits(&pwd
->gb
, 4); /* super frame index */
1084 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1085 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1086 ret
= -E_WMA_OUTPUT_SPACE
;
1087 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1088 * sizeof(int16_t) > *data_size
)
1091 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1093 if (pwd
->last_superframe_len
> 0) {
1094 /* add bit_offset bits to last frame */
1095 ret
= -E_WMA_BAD_SUPERFRAME
;
1096 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1097 MAX_CODED_SUPERFRAME_SIZE
)
1099 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1102 *q
++ = get_bits(&pwd
->gb
, 8);
1106 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1108 /* XXX: bit_offset bits into last frame */
1109 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1110 MAX_CODED_SUPERFRAME_SIZE
);
1111 /* skip unused bits */
1112 if (pwd
->last_bitoffset
> 0)
1113 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1115 * This frame is stored in the last superframe and in
1118 ret
= wma_decode_frame(pwd
, samples
);
1121 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1124 /* read each frame starting from bit_offset */
1125 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1126 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1127 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1130 skip_bits(&pwd
->gb
, len
);
1132 pwd
->reset_block_lengths
= true;
1133 for (i
= 0; i
< nb_frames
; i
++) {
1134 ret
= wma_decode_frame(pwd
, samples
);
1137 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1140 /* we copy the end of the frame in the last frame buffer */
1141 pos
= get_bits_count(&pwd
->gb
) +
1142 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1143 pwd
->last_bitoffset
= pos
& 7;
1145 len
= buf_size
- pos
;
1146 ret
= -E_WMA_BAD_SUPERFRAME
;
1147 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1149 pwd
->last_superframe_len
= len
;
1150 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1152 PARA_DEBUG_LOG("not using bit reservoir\n");
1153 ret
= -E_WMA_OUTPUT_SPACE
;
1154 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1156 /* single frame decode */
1157 ret
= wma_decode_frame(pwd
, samples
);
1160 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1162 PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1163 pwd
->frame_len
, pwd
->block_len
,
1164 (int)((int8_t *)samples
- (int8_t *)data
), pwd
->ahi
.block_align
);
1165 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1166 return pwd
->ahi
.block_align
;
1168 /* reset the bit reservoir on errors */
1169 pwd
->last_superframe_len
= 0;
1173 static void wmadec_close(struct filter_node
*fn
)
1175 struct private_wmadec_data
*pwd
= fn
->private_data
;
1179 wmadec_cleanup(pwd
);
1180 free(fn
->private_data
);
1181 fn
->private_data
= NULL
;
1184 static int wmadec_execute(struct btr_node
*btrn
, const char *cmd
, char **result
)
1186 struct filter_node
*fn
= btr_context(btrn
);
1187 struct private_wmadec_data
*pwd
= fn
->private_data
;
1189 return decoder_execute(cmd
, pwd
->ahi
.sample_rate
, pwd
->ahi
.channels
,
1193 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1195 static int wmadec_post_select(__a_unused
struct sched
*s
, void *context
)
1197 struct filter_node
*fn
= context
;
1198 int ret
, converted
, out_size
;
1199 struct private_wmadec_data
*pwd
= fn
->private_data
;
1200 struct btr_node
*btrn
= fn
->btrn
;
1206 ret
= btr_node_status(btrn
, fn
->min_iqs
, BTR_NT_INTERNAL
);
1211 btr_merge(btrn
, fn
->min_iqs
);
1212 len
= btr_next_buffer(btrn
, (char **)&in
);
1213 ret
= -E_WMADEC_EOF
;
1214 if (len
< fn
->min_iqs
)
1217 ret
= wma_decode_init(in
, len
, &pwd
);
1221 fn
->min_iqs
+= 4096;
1224 fn
->min_iqs
= 2 * pwd
->ahi
.packet_size
;
1225 fn
->private_data
= pwd
;
1226 converted
= pwd
->ahi
.header_len
;
1229 fn
->min_iqs
= pwd
->ahi
.packet_size
;
1230 if (fn
->min_iqs
> len
)
1232 out_size
= WMA_OUTPUT_BUFFER_SIZE
;
1233 out
= para_malloc(out_size
);
1234 ret
= wma_decode_superframe(pwd
, out
, &out_size
,
1235 (uint8_t *)in
+ WMA_FRAME_SKIP
, len
- WMA_FRAME_SKIP
);
1241 out
= para_realloc(out
, out_size
);
1242 btr_add_output(out
, out_size
, btrn
);
1245 converted
+= pwd
->ahi
.packet_size
;
1247 btr_consume(btrn
, converted
);
1251 btr_remove_node(&fn
->btrn
);
1255 static void wmadec_open(struct filter_node
*fn
)
1257 fn
->private_data
= NULL
;
1262 * The init function of the wma decoder.
1264 * \param f Its fields are filled in by the function.
1266 void wmadec_filter_init(struct filter
*f
)
1268 f
->open
= wmadec_open
;
1269 f
->close
= wmadec_close
;
1270 f
->execute
= wmadec_execute
;
1271 f
->pre_select
= generic_filter_pre_select
;
1272 f
->post_select
= wmadec_post_select
;