NEWS update.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27 #include <sys/select.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "imdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         struct asf_header_info ahi;
63         struct getbit_context gb;
64         /** Whether to use the bit reservoir. */
65         int use_bit_reservoir;
66         /** Whether to use variable block length. */
67         int use_variable_block_len;
68         /** Whether to use exponent coding. */
69         int use_exp_vlc;
70         /** Whether perceptual noise is added. */
71         int use_noise_coding;
72         int byte_offset_bits;
73         struct vlc exp_vlc;
74         int exponent_sizes[BLOCK_NB_SIZES];
75         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
76         /** The index of the first coef in high band. */
77         int high_band_start[BLOCK_NB_SIZES];
78         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
79         int exponent_high_sizes[BLOCK_NB_SIZES];
80         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
81         struct vlc hgain_vlc;
82
83         /* coded values in high bands */
84         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
85         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
86
87         /* there are two possible tables for spectral coefficients */
88         struct vlc coef_vlc[2];
89         uint16_t *run_table[2];
90         uint16_t *level_table[2];
91         const struct coef_vlc_table *coef_vlcs[2];
92         /* frame info */
93         int frame_len;          ///< frame length in samples
94         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
95         /** Number of block sizes. */
96         int nb_block_sizes;
97         /* block info */
98         int reset_block_lengths;
99         int block_len_bits;     ///< log2 of current block length
100         int next_block_len_bits;        ///< log2 of next block length
101         int prev_block_len_bits;        ///< log2 of prev block length
102         int block_len;          ///< block length in samples
103         int block_pos;          ///< current position in frame
104         uint8_t ms_stereo;      ///< true if mid/side stereo mode
105         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
106         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
107         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
108         float max_exponent[MAX_CHANNELS];
109         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
110         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
111         float output[BLOCK_MAX_SIZE * 2];
112         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
113         float *windows[BLOCK_NB_SIZES];
114         /* output buffer for one frame and the last for IMDCT windowing */
115         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
116         /* last frame info */
117         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
118         int last_bitoffset;
119         int last_superframe_len;
120         float noise_table[NOISE_TAB_SIZE];
121         int noise_index;
122         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
123         /* lsp_to_curve tables */
124         float lsp_cos_table[BLOCK_MAX_SIZE];
125         float lsp_pow_e_table[256];
126         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
127         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
128 };
129
130 #define EXPVLCBITS 8
131 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
132
133 #define HGAINVLCBITS 9
134 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
135
136 #define VLCBITS 9
137 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
138
139 #define SINE_WINDOW(x) float sine_ ## x[x] __aligned(16)
140
141 SINE_WINDOW(128);
142 SINE_WINDOW(256);
143 SINE_WINDOW(512);
144 SINE_WINDOW(1024);
145 SINE_WINDOW(2048);
146 SINE_WINDOW(4096);
147
148 static float *sine_windows[6] = {
149         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
150 };
151
152 /* Generate a sine window. */
153 static void sine_window_init(float *window, int n)
154 {
155         int i;
156
157         for (i = 0; i < n; i++)
158                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
159 }
160
161 static void wmadec_cleanup(struct private_wmadec_data *pwd)
162 {
163         int i;
164
165         for (i = 0; i < pwd->nb_block_sizes; i++)
166                 imdct_end(pwd->mdct_ctx[i]);
167         if (pwd->use_exp_vlc)
168                 free_vlc(&pwd->exp_vlc);
169         if (pwd->use_noise_coding)
170                 free_vlc(&pwd->hgain_vlc);
171         for (i = 0; i < 2; i++) {
172                 free_vlc(&pwd->coef_vlc[i]);
173                 free(pwd->run_table[i]);
174                 free(pwd->level_table[i]);
175         }
176 }
177
178 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
179                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
180 {
181         int n = vlc_table->n;
182         const uint8_t *table_bits = vlc_table->huffbits;
183         const uint32_t *table_codes = vlc_table->huffcodes;
184         const uint16_t *levels_table = vlc_table->levels;
185         uint16_t *run_table, *level_table;
186         int i, l, j, k, level;
187
188         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
189
190         run_table = para_malloc(n * sizeof(uint16_t));
191         level_table = para_malloc(n * sizeof(uint16_t));
192         i = 2;
193         level = 1;
194         k = 0;
195         while (i < n) {
196                 l = levels_table[k++];
197                 for (j = 0; j < l; j++) {
198                         run_table[i] = j;
199                         level_table[i] = level;
200                         i++;
201                 }
202                 level++;
203         }
204         *prun_table = run_table;
205         *plevel_table = level_table;
206 }
207
208 /* compute the scale factor band sizes for each MDCT block size */
209 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
210         float high_freq)
211 {
212         struct asf_header_info *ahi = &pwd->ahi;
213         int a, b, pos, lpos, k, block_len, i, j, n;
214         const uint8_t *table;
215
216         for (k = 0; k < pwd->nb_block_sizes; k++) {
217                 block_len = pwd->frame_len >> k;
218
219                 table = NULL;
220                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
221                 if (a < 3) {
222                         if (ahi->sample_rate >= 44100)
223                                 table = exponent_band_44100[a];
224                         else if (ahi->sample_rate >= 32000)
225                                 table = exponent_band_32000[a];
226                         else if (ahi->sample_rate >= 22050)
227                                 table = exponent_band_22050[a];
228                 }
229                 if (table) {
230                         n = *table++;
231                         for (i = 0; i < n; i++)
232                                 pwd->exponent_bands[k][i] = table[i];
233                         pwd->exponent_sizes[k] = n;
234                 } else {
235                         j = 0;
236                         lpos = 0;
237                         for (i = 0; i < 25; i++) {
238                                 a = wma_critical_freqs[i];
239                                 b = ahi->sample_rate;
240                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
241                                 pos <<= 2;
242                                 if (pos > block_len)
243                                         pos = block_len;
244                                 if (pos > lpos)
245                                         pwd->exponent_bands[k][j++] = pos - lpos;
246                                 if (pos >= block_len)
247                                         break;
248                                 lpos = pos;
249                         }
250                         pwd->exponent_sizes[k] = j;
251                 }
252
253                 /* max number of coefs */
254                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
255                 /* high freq computation */
256                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
257                         / ahi->sample_rate + 0.5);
258                 n = pwd->exponent_sizes[k];
259                 j = 0;
260                 pos = 0;
261                 for (i = 0; i < n; i++) {
262                         int start, end;
263                         start = pos;
264                         pos += pwd->exponent_bands[k][i];
265                         end = pos;
266                         if (start < pwd->high_band_start[k])
267                                 start = pwd->high_band_start[k];
268                         if (end > pwd->coefs_end[k])
269                                 end = pwd->coefs_end[k];
270                         if (end > start)
271                                 pwd->exponent_high_bands[k][j++] = end - start;
272                 }
273                 pwd->exponent_high_sizes[k] = j;
274         }
275 }
276
277 static int wma_init(struct private_wmadec_data *pwd)
278 {
279         int i;
280         float bps1, high_freq;
281         volatile float bps;
282         int sample_rate1;
283         int coef_vlc_table;
284         struct asf_header_info *ahi = &pwd->ahi;
285         int flags2 = ahi->flags2;
286
287         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
288                 || ahi->channels <= 0 || ahi->channels > 8
289                 || ahi->bit_rate <= 0)
290                 return -E_WMA_BAD_PARAMS;
291
292         /* compute MDCT block size */
293         if (ahi->sample_rate <= 16000)
294                 pwd->frame_len_bits = 9;
295         else if (ahi->sample_rate <= 22050)
296                 pwd->frame_len_bits = 10;
297         else
298                 pwd->frame_len_bits = 11;
299         pwd->frame_len = 1 << pwd->frame_len_bits;
300         if (pwd->use_variable_block_len) {
301                 int nb_max, nb;
302                 nb = ((flags2 >> 3) & 3) + 1;
303                 if ((ahi->bit_rate / ahi->channels) >= 32000)
304                         nb += 2;
305                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
306                 if (nb > nb_max)
307                         nb = nb_max;
308                 pwd->nb_block_sizes = nb + 1;
309         } else
310                 pwd->nb_block_sizes = 1;
311
312         /* init rate dependent parameters */
313         pwd->use_noise_coding = 1;
314         high_freq = ahi->sample_rate * 0.5;
315
316         /* wma2 rates are normalized */
317         sample_rate1 = ahi->sample_rate;
318         if (sample_rate1 >= 44100)
319                 sample_rate1 = 44100;
320         else if (sample_rate1 >= 22050)
321                 sample_rate1 = 22050;
322         else if (sample_rate1 >= 16000)
323                 sample_rate1 = 16000;
324         else if (sample_rate1 >= 11025)
325                 sample_rate1 = 11025;
326         else if (sample_rate1 >= 8000)
327                 sample_rate1 = 8000;
328
329         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
330         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
331         /*
332          * Compute high frequency value and choose if noise coding should be
333          * activated.
334          */
335         bps1 = bps;
336         if (ahi->channels == 2)
337                 bps1 = bps * 1.6;
338         if (sample_rate1 == 44100) {
339                 if (bps1 >= 0.61)
340                         pwd->use_noise_coding = 0;
341                 else
342                         high_freq = high_freq * 0.4;
343         } else if (sample_rate1 == 22050) {
344                 if (bps1 >= 1.16)
345                         pwd->use_noise_coding = 0;
346                 else if (bps1 >= 0.72)
347                         high_freq = high_freq * 0.7;
348                 else
349                         high_freq = high_freq * 0.6;
350         } else if (sample_rate1 == 16000) {
351                 if (bps > 0.5)
352                         high_freq = high_freq * 0.5;
353                 else
354                         high_freq = high_freq * 0.3;
355         } else if (sample_rate1 == 11025)
356                 high_freq = high_freq * 0.7;
357         else if (sample_rate1 == 8000) {
358                 if (bps <= 0.625)
359                         high_freq = high_freq * 0.5;
360                 else if (bps > 0.75)
361                         pwd->use_noise_coding = 0;
362                 else
363                         high_freq = high_freq * 0.65;
364         } else {
365                 if (bps >= 0.8)
366                         high_freq = high_freq * 0.75;
367                 else if (bps >= 0.6)
368                         high_freq = high_freq * 0.6;
369                 else
370                         high_freq = high_freq * 0.5;
371         }
372         PARA_INFO_LOG("channels=%d sample_rate=%d "
373                 "bitrate=%d block_align=%d\n",
374                 ahi->channels, ahi->sample_rate,
375                 ahi->bit_rate, ahi->block_align);
376         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
377                 "high_freq=%f bitoffset=%d\n",
378                 pwd->frame_len, bps, bps1,
379                 high_freq, pwd->byte_offset_bits);
380         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
381                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
382
383         compute_scale_factor_band_sizes(pwd, high_freq);
384         /* init MDCT windows : simple sinus window */
385         for (i = 0; i < pwd->nb_block_sizes; i++) {
386                 int n;
387                 n = 1 << (pwd->frame_len_bits - i);
388                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
389                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
390         }
391
392         pwd->reset_block_lengths = 1;
393
394         if (pwd->use_noise_coding) {
395                 /* init the noise generator */
396                 if (pwd->use_exp_vlc)
397                         pwd->noise_mult = 0.02;
398                 else
399                         pwd->noise_mult = 0.04;
400
401                 {
402                         unsigned int seed;
403                         float norm;
404                         seed = 1;
405                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
406                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
407                                 seed = seed * 314159 + 1;
408                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
409                         }
410                 }
411         }
412
413         /* choose the VLC tables for the coefficients */
414         coef_vlc_table = 2;
415         if (ahi->sample_rate >= 32000) {
416                 if (bps1 < 0.72)
417                         coef_vlc_table = 0;
418                 else if (bps1 < 1.16)
419                         coef_vlc_table = 1;
420         }
421         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
422         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
423         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
424                 pwd->coef_vlcs[0]);
425         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
426                 pwd->coef_vlcs[1]);
427         return 0;
428 }
429
430 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
431 {
432         float wdel, a, b;
433         int i, e, m;
434
435         wdel = M_PI / frame_len;
436         for (i = 0; i < frame_len; i++)
437                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
438
439         /* tables for x^-0.25 computation */
440         for (i = 0; i < 256; i++) {
441                 e = i - 126;
442                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
443         }
444
445         /* These two tables are needed to avoid two operations in pow_m1_4. */
446         b = 1.0;
447         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
448                 m = (1 << LSP_POW_BITS) + i;
449                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
450                 a = pow(a, -0.25);
451                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
452                 pwd->lsp_pow_m_table2[i] = b - a;
453                 b = a;
454         }
455 }
456
457 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
458 {
459         struct private_wmadec_data *pwd;
460         int ret, i;
461
462         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
463         pwd = para_calloc(sizeof(*pwd));
464         ret = read_asf_header(initial_buf, len, &pwd->ahi);
465         if (ret <= 0) {
466                 free(pwd);
467                 return ret;
468         }
469
470         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
471         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
472         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
473
474         ret = wma_init(pwd);
475         if (ret < 0)
476                 return ret;
477         /* init MDCT */
478         for (i = 0; i < pwd->nb_block_sizes; i++) {
479                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
480                 if (ret < 0)
481                         return ret;
482         }
483         if (pwd->use_noise_coding) {
484                 PARA_INFO_LOG("using noise coding\n");
485                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
486                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
487                         wma_hgain_huffcodes, 2);
488         }
489
490         if (pwd->use_exp_vlc) {
491                 PARA_INFO_LOG("using exp_vlc\n");
492                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
493                 sizeof(wma_scale_huffbits), wma_scale_huffbits,
494                 wma_scale_huffcodes, 4);
495         } else {
496                 PARA_INFO_LOG("using curve\n");
497                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
498         }
499         *result = pwd;
500         return pwd->ahi.header_len;
501 }
502
503 /**
504  * compute x^-0.25 with an exponent and mantissa table. We use linear
505  * interpolation to reduce the mantissa table size at a small speed
506  * expense (linear interpolation approximately doubles the number of
507  * bits of precision).
508  */
509 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
510 {
511         union {
512                 float f;
513                 unsigned int v;
514         } u, t;
515         unsigned int e, m;
516         float a, b;
517
518         u.f = x;
519         e = u.v >> 23;
520         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
521         /* build interpolation scale: 1 <= t < 2. */
522         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
523         a = pwd->lsp_pow_m_table1[m];
524         b = pwd->lsp_pow_m_table2[m];
525         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
526 }
527
528 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
529                 float *out, float *val_max_ptr, int n, float *lsp)
530 {
531         int i, j;
532         float p, q, w, v, val_max;
533
534         val_max = 0;
535         for (i = 0; i < n; i++) {
536                 p = 0.5f;
537                 q = 0.5f;
538                 w = pwd->lsp_cos_table[i];
539                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
540                         q *= w - lsp[j - 1];
541                         p *= w - lsp[j];
542                 }
543                 p *= p * (2.0f - w);
544                 q *= q * (2.0f + w);
545                 v = p + q;
546                 v = pow_m1_4(pwd, v);
547                 if (v > val_max)
548                         val_max = v;
549                 out[i] = v;
550         }
551         *val_max_ptr = val_max;
552 }
553
554 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
555 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
556 {
557         float lsp_coefs[NB_LSP_COEFS];
558         int val, i;
559
560         for (i = 0; i < NB_LSP_COEFS; i++) {
561                 if (i == 0 || i >= 8)
562                         val = get_bits(&pwd->gb, 3);
563                 else
564                         val = get_bits(&pwd->gb, 4);
565                 lsp_coefs[i] = wma_lsp_codebook[i][val];
566         }
567
568         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
569                 pwd->block_len, lsp_coefs);
570 }
571
572 /* Decode exponents coded with VLC codes. */
573 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
574 {
575         int last_exp, n, code;
576         const uint16_t *ptr, *band_ptr;
577         float v, *q, max_scale, *q_end;
578
579         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
580         ptr = band_ptr;
581         q = pwd->exponents[ch];
582         q_end = q + pwd->block_len;
583         max_scale = 0;
584         last_exp = 36;
585
586         while (q < q_end) {
587                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
588                 if (code < 0)
589                         return code;
590                 /* NOTE: this offset is the same as MPEG4 AAC ! */
591                 last_exp += code - 60;
592                 /* XXX: use a table */
593                 v = pow(10, last_exp * (1.0 / 16.0));
594                 if (v > max_scale)
595                         max_scale = v;
596                 n = *ptr++;
597                 do {
598                         *q++ = v;
599                 } while (--n);
600         }
601         pwd->max_exponent[ch] = max_scale;
602         return 0;
603 }
604
605 /* compute src0 * src1 + src2 */
606 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
607                 const float *src2, int len)
608 {
609         int i;
610
611         for (i = 0; i < len; i++)
612                 dst[i] = src0[i] * src1[i] + src2[i];
613 }
614
615 static inline void vector_mult_reverse(float *dst, const float *src0,
616                 const float *src1, int len)
617 {
618         int i;
619
620         src1 += len - 1;
621         for (i = 0; i < len; i++)
622                 dst[i] = src0[i] * src1[-i];
623 }
624
625 /**
626  * Apply MDCT window and add into output.
627  *
628  * We ensure that when the windows overlap their squared sum
629  * is always 1 (MDCT reconstruction rule).
630  */
631 static void wma_window(struct private_wmadec_data *pwd, float *out)
632 {
633         float *in = pwd->output;
634         int block_len, bsize, n;
635
636         /* left part */
637         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
638                 block_len = pwd->block_len;
639                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
640                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
641         } else {
642                 block_len = 1 << pwd->prev_block_len_bits;
643                 n = (pwd->block_len - block_len) / 2;
644                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
645                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
646                         block_len);
647                 memcpy(out + n + block_len, in + n + block_len,
648                         n * sizeof(float));
649         }
650         out += pwd->block_len;
651         in += pwd->block_len;
652         /* right part */
653         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
654                 block_len = pwd->block_len;
655                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
656                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
657         } else {
658                 block_len = 1 << pwd->next_block_len_bits;
659                 n = (pwd->block_len - block_len) / 2;
660                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
661                 memcpy(out, in, n * sizeof(float));
662                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
663                         block_len);
664                 memset(out + n + block_len, 0, n * sizeof(float));
665         }
666 }
667
668 static int wma_total_gain_to_bits(int total_gain)
669 {
670         if (total_gain < 15)
671                 return 13;
672         else if (total_gain < 32)
673                 return 12;
674         else if (total_gain < 40)
675                 return 11;
676         else if (total_gain < 45)
677                 return 10;
678         else
679                 return 9;
680 }
681
682 static int compute_high_band_values(struct private_wmadec_data *pwd,
683                 int bsize, int nb_coefs[MAX_CHANNELS])
684 {
685         int ch;
686
687         if (!pwd->use_noise_coding)
688                 return 0;
689         for (ch = 0; ch < pwd->ahi.channels; ch++) {
690                 int i, m, a;
691                 if (!pwd->channel_coded[ch])
692                         continue;
693                 m = pwd->exponent_high_sizes[bsize];
694                 for (i = 0; i < m; i++) {
695                         a = get_bit(&pwd->gb);
696                         pwd->high_band_coded[ch][i] = a;
697                         if (!a)
698                                 continue;
699                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
700                 }
701         }
702         for (ch = 0; ch < pwd->ahi.channels; ch++) {
703                 int i, n, val;
704                 if (!pwd->channel_coded[ch])
705                         continue;
706                 n = pwd->exponent_high_sizes[bsize];
707                 val = (int)0x80000000;
708                 for (i = 0; i < n; i++) {
709                         if (!pwd->high_band_coded[ch][i])
710                                 continue;
711                         if (val == (int)0x80000000)
712                                 val = get_bits(&pwd->gb, 7) - 19;
713                         else {
714                                 int code = get_vlc(&pwd->gb,
715                                         pwd->hgain_vlc.table, HGAINVLCBITS,
716                                         HGAINMAX);
717                                 if (code < 0)
718                                         return code;
719                                 val += code - 18;
720                         }
721                         pwd->high_band_values[ch][i] = val;
722                 }
723         }
724         return 1;
725 }
726
727 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
728                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
729 {
730         int ch;
731         float mdct_norm = 1.0 / (pwd->block_len / 2);
732
733         for (ch = 0; ch < pwd->ahi.channels; ch++) {
734                 int16_t *coefs1;
735                 float *coefs, *exponents, mult, mult1, noise;
736                 int i, j, n, n1, last_high_band, esize;
737                 float exp_power[HIGH_BAND_MAX_SIZE];
738
739                 if (!pwd->channel_coded[ch])
740                         continue;
741                 coefs1 = pwd->coefs1[ch];
742                 exponents = pwd->exponents[ch];
743                 esize = pwd->exponents_bsize[ch];
744                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
745                 mult *= mdct_norm;
746                 coefs = pwd->coefs[ch];
747                 if (!pwd->use_noise_coding) {
748                         /* XXX: optimize more */
749                         n = nb_coefs[ch];
750                         for (i = 0; i < n; i++)
751                                 *coefs++ = coefs1[i] *
752                                         exponents[i << bsize >> esize] * mult;
753                         n = pwd->block_len - pwd->coefs_end[bsize];
754                         for (i = 0; i < n; i++)
755                                 *coefs++ = 0.0;
756                         continue;
757                 }
758                 mult1 = mult;
759                 n1 = pwd->exponent_high_sizes[bsize];
760                 /* compute power of high bands */
761                 exponents = pwd->exponents[ch] +
762                         (pwd->high_band_start[bsize] << bsize);
763                 last_high_band = 0; /* avoid warning */
764                 for (j = 0; j < n1; j++) {
765                         n = pwd->exponent_high_bands[
766                                 pwd->frame_len_bits - pwd->block_len_bits][j];
767                         if (pwd->high_band_coded[ch][j]) {
768                                 float e2, val;
769                                 e2 = 0;
770                                 for (i = 0; i < n; i++) {
771                                         val = exponents[i << bsize >> esize];
772                                         e2 += val * val;
773                                 }
774                                 exp_power[j] = e2 / n;
775                                 last_high_band = j;
776                         }
777                         exponents += n << bsize;
778                 }
779                 /* main freqs and high freqs */
780                 exponents = pwd->exponents[ch];
781                 for (j = -1; j < n1; j++) {
782                         if (j < 0)
783                                 n = pwd->high_band_start[bsize];
784                         else
785                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
786                                         - pwd->block_len_bits][j];
787                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
788                                 /* use noise with specified power */
789                                 mult1 = sqrt(exp_power[j]
790                                         / exp_power[last_high_band]);
791                                 /* XXX: use a table */
792                                 mult1 = mult1 * pow(10,
793                                         pwd->high_band_values[ch][j] * 0.05);
794                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
795                                 mult1 *= mdct_norm;
796                                 for (i = 0; i < n; i++) {
797                                         noise = pwd->noise_table[pwd->noise_index];
798                                         pwd->noise_index = (pwd->noise_index + 1)
799                                                 & (NOISE_TAB_SIZE - 1);
800                                         *coefs++ = noise * exponents[
801                                                 i << bsize >> esize] * mult1;
802                                 }
803                                 exponents += n << bsize;
804                         } else {
805                                 /* coded values + small noise */
806                                 for (i = 0; i < n; i++) {
807                                         noise = pwd->noise_table[pwd->noise_index];
808                                         pwd->noise_index = (pwd->noise_index + 1)
809                                                 & (NOISE_TAB_SIZE - 1);
810                                         *coefs++ = ((*coefs1++) + noise) *
811                                                 exponents[i << bsize >> esize]
812                                                 * mult;
813                                 }
814                                 exponents += n << bsize;
815                         }
816                 }
817                 /* very high freqs: noise */
818                 n = pwd->block_len - pwd->coefs_end[bsize];
819                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
820                 for (i = 0; i < n; i++) {
821                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
822                         pwd->noise_index = (pwd->noise_index + 1)
823                                 & (NOISE_TAB_SIZE - 1);
824                 }
825         }
826 }
827
828 /**
829  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
830  * errors.
831  */
832 static int wma_decode_block(struct private_wmadec_data *pwd)
833 {
834         int ret, n, v, ch, code, bsize;
835         int coef_nb_bits, total_gain;
836         int nb_coefs[MAX_CHANNELS];
837
838         /* compute current block length */
839         if (pwd->use_variable_block_len) {
840                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
841
842                 if (pwd->reset_block_lengths) {
843                         pwd->reset_block_lengths = 0;
844                         v = get_bits(&pwd->gb, n);
845                         if (v >= pwd->nb_block_sizes)
846                                 return -E_WMA_BLOCK_SIZE;
847                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
848                         v = get_bits(&pwd->gb, n);
849                         if (v >= pwd->nb_block_sizes)
850                                 return -E_WMA_BLOCK_SIZE;
851                         pwd->block_len_bits = pwd->frame_len_bits - v;
852                 } else {
853                         /* update block lengths */
854                         pwd->prev_block_len_bits = pwd->block_len_bits;
855                         pwd->block_len_bits = pwd->next_block_len_bits;
856                 }
857                 v = get_bits(&pwd->gb, n);
858                 if (v >= pwd->nb_block_sizes)
859                         return -E_WMA_BLOCK_SIZE;
860                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
861         } else {
862                 /* fixed block len */
863                 pwd->next_block_len_bits = pwd->frame_len_bits;
864                 pwd->prev_block_len_bits = pwd->frame_len_bits;
865                 pwd->block_len_bits = pwd->frame_len_bits;
866         }
867
868         /* now check if the block length is coherent with the frame length */
869         pwd->block_len = 1 << pwd->block_len_bits;
870         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
871                 return -E_INCOHERENT_BLOCK_LEN;
872
873         if (pwd->ahi.channels == 2)
874                 pwd->ms_stereo = get_bit(&pwd->gb);
875         v = 0;
876         for (ch = 0; ch < pwd->ahi.channels; ch++) {
877                 int a = get_bit(&pwd->gb);
878                 pwd->channel_coded[ch] = a;
879                 v |= a;
880         }
881
882         bsize = pwd->frame_len_bits - pwd->block_len_bits;
883
884         /* if no channel coded, no need to go further */
885         /* XXX: fix potential framing problems */
886         if (!v)
887                 goto next;
888
889         /*
890          * Read total gain and extract corresponding number of bits for coef
891          * escape coding.
892          */
893         total_gain = 1;
894         for (;;) {
895                 int a = get_bits(&pwd->gb, 7);
896                 total_gain += a;
897                 if (a != 127)
898                         break;
899         }
900
901         coef_nb_bits = wma_total_gain_to_bits(total_gain);
902
903         /* compute number of coefficients */
904         n = pwd->coefs_end[bsize];
905         for (ch = 0; ch < pwd->ahi.channels; ch++)
906                 nb_coefs[ch] = n;
907
908         ret = compute_high_band_values(pwd, bsize, nb_coefs);
909         if (ret < 0)
910                 return ret;
911
912         /* exponents can be reused in short blocks. */
913         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
914                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
915                         if (pwd->channel_coded[ch]) {
916                                 if (pwd->use_exp_vlc) {
917                                         ret = decode_exp_vlc(pwd, ch);
918                                         if (ret < 0)
919                                                 return ret;
920                                 } else
921                                         decode_exp_lsp(pwd, ch);
922                                 pwd->exponents_bsize[ch] = bsize;
923                         }
924                 }
925         }
926
927         /* parse spectral coefficients : just RLE encoding */
928         for (ch = 0; ch < pwd->ahi.channels; ch++) {
929                 struct vlc *coef_vlc;
930                 int level, run, tindex;
931                 int16_t *ptr, *eptr;
932                 const uint16_t *level_table, *run_table;
933
934                 if (!pwd->channel_coded[ch])
935                         continue;
936                 /*
937                  * special VLC tables are used for ms stereo because there is
938                  * potentially less energy there
939                  */
940                 tindex = (ch == 1 && pwd->ms_stereo);
941                 coef_vlc = &pwd->coef_vlc[tindex];
942                 run_table = pwd->run_table[tindex];
943                 level_table = pwd->level_table[tindex];
944                 /* XXX: optimize */
945                 ptr = &pwd->coefs1[ch][0];
946                 eptr = ptr + nb_coefs[ch];
947                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
948                 for (;;) {
949                         code = get_vlc(&pwd->gb, coef_vlc->table,
950                                 VLCBITS, VLCMAX);
951                         if (code < 0)
952                                 return code;
953                         if (code == 1) /* EOB */
954                                 break;
955                         if (code == 0) { /* escape */
956                                 level = get_bits(&pwd->gb, coef_nb_bits);
957                                 /* reading block_len_bits would be better */
958                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
959                         } else { /* normal code */
960                                 run = run_table[code];
961                                 level = level_table[code];
962                         }
963                         if (!get_bit(&pwd->gb))
964                                 level = -level;
965                         ptr += run;
966                         if (ptr >= eptr) {
967                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
968                                 break;
969                         }
970                         *ptr++ = level;
971                         if (ptr >= eptr) /* EOB can be omitted */
972                                 break;
973                 }
974         }
975         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
976         if (pwd->ms_stereo && pwd->channel_coded[1]) {
977                 float a, b;
978                 int i;
979                 /*
980                  * Nominal case for ms stereo: we do it before mdct.
981                  *
982                  * No need to optimize this case because it should almost never
983                  * happen.
984                  */
985                 if (!pwd->channel_coded[0]) {
986                         PARA_NOTICE_LOG("rare ms-stereo\n");
987                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
988                         pwd->channel_coded[0] = 1;
989                 }
990                 for (i = 0; i < pwd->block_len; i++) {
991                         a = pwd->coefs[0][i];
992                         b = pwd->coefs[1][i];
993                         pwd->coefs[0][i] = a + b;
994                         pwd->coefs[1][i] = a - b;
995                 }
996         }
997 next:
998         for (ch = 0; ch < pwd->ahi.channels; ch++) {
999                 int n4, index;
1000
1001                 n = pwd->block_len;
1002                 n4 = pwd->block_len / 2;
1003                 if (pwd->channel_coded[ch])
1004                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1005                 else if (!(pwd->ms_stereo && ch == 1))
1006                         memset(pwd->output, 0, sizeof(pwd->output));
1007
1008                 /* multiply by the window and add in the frame */
1009                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1010                 wma_window(pwd, &pwd->frame_out[ch][index]);
1011         }
1012
1013         /* update block number */
1014         pwd->block_pos += pwd->block_len;
1015         if (pwd->block_pos >= pwd->frame_len)
1016                 return 1;
1017         else
1018                 return 0;
1019 }
1020
1021 /*
1022  * Clip a signed integer value into the -32768,32767 range.
1023  *
1024  * \param a The value to clip.
1025  *
1026  * \return The clipped value.
1027  */
1028 static inline int16_t av_clip_int16(int a)
1029 {
1030         if ((a + 32768) & ~65535)
1031                 return (a >> 31) ^ 32767;
1032         else
1033                 return a;
1034 }
1035
1036 /* Decode a frame of frame_len samples. */
1037 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1038 {
1039         int ret, i, n, ch, incr;
1040         int16_t *ptr;
1041         float *iptr;
1042
1043         /* read each block */
1044         pwd->block_pos = 0;
1045         for (;;) {
1046                 ret = wma_decode_block(pwd);
1047                 if (ret < 0)
1048                         return ret;
1049                 if (ret)
1050                         break;
1051         }
1052
1053         /* convert frame to integer */
1054         n = pwd->frame_len;
1055         incr = pwd->ahi.channels;
1056         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1057                 ptr = samples + ch;
1058                 iptr = pwd->frame_out[ch];
1059
1060                 for (i = 0; i < n; i++) {
1061                         *ptr = av_clip_int16(lrintf(*iptr++));
1062                         ptr += incr;
1063                 }
1064                 /* prepare for next block */
1065                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1066                         pwd->frame_len * sizeof(float));
1067         }
1068         return 0;
1069 }
1070
1071 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1072                 int *data_size, const uint8_t *buf, int buf_size)
1073 {
1074         int ret;
1075         int16_t *samples;
1076
1077         if (buf_size == 0) {
1078                 pwd->last_superframe_len = 0;
1079                 return 0;
1080         }
1081         if (buf_size < pwd->ahi.block_align)
1082                 return 0;
1083         buf_size = pwd->ahi.block_align;
1084         samples = data;
1085         init_get_bits(&pwd->gb, buf, buf_size);
1086         if (pwd->use_bit_reservoir) {
1087                 int i, nb_frames, bit_offset, pos, len;
1088                 uint8_t *q;
1089
1090                 /* read super frame header */
1091                 skip_bits(&pwd->gb, 4); /* super frame index */
1092                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1093                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1094                 ret = -E_WMA_OUTPUT_SPACE;
1095                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1096                                 * sizeof(int16_t) > *data_size)
1097                         goto fail;
1098
1099                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1100
1101                 if (pwd->last_superframe_len > 0) {
1102                         /* add bit_offset bits to last frame */
1103                         ret = -E_WMA_BAD_SUPERFRAME;
1104                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1105                                         MAX_CODED_SUPERFRAME_SIZE)
1106                                 goto fail;
1107                         q = pwd->last_superframe + pwd->last_superframe_len;
1108                         len = bit_offset;
1109                         while (len > 7) {
1110                                 *q++ = get_bits(&pwd->gb, 8);
1111                                 len -= 8;
1112                         }
1113                         if (len > 0)
1114                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1115
1116                         /* XXX: bit_offset bits into last frame */
1117                         init_get_bits(&pwd->gb, pwd->last_superframe,
1118                                 MAX_CODED_SUPERFRAME_SIZE);
1119                         /* skip unused bits */
1120                         if (pwd->last_bitoffset > 0)
1121                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1122                         /*
1123                          * This frame is stored in the last superframe and in
1124                          * the current one.
1125                          */
1126                         ret = wma_decode_frame(pwd, samples);
1127                         if (ret < 0)
1128                                 goto fail;
1129                         samples += pwd->ahi.channels * pwd->frame_len;
1130                 }
1131
1132                 /* read each frame starting from bit_offset */
1133                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1134                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1135                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1136                 len = pos & 7;
1137                 if (len > 0)
1138                         skip_bits(&pwd->gb, len);
1139
1140                 pwd->reset_block_lengths = 1;
1141                 for (i = 0; i < nb_frames; i++) {
1142                         ret = wma_decode_frame(pwd, samples);
1143                         if (ret < 0)
1144                                 goto fail;
1145                         samples += pwd->ahi.channels * pwd->frame_len;
1146                 }
1147
1148                 /* we copy the end of the frame in the last frame buffer */
1149                 pos = get_bits_count(&pwd->gb) +
1150                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1151                 pwd->last_bitoffset = pos & 7;
1152                 pos >>= 3;
1153                 len = buf_size - pos;
1154                 ret = -E_WMA_BAD_SUPERFRAME;
1155                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1156                         goto fail;
1157                 pwd->last_superframe_len = len;
1158                 memcpy(pwd->last_superframe, buf + pos, len);
1159         } else {
1160                 PARA_DEBUG_LOG("not using bit reservoir\n");
1161                 ret = -E_WMA_OUTPUT_SPACE;
1162                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1163                         goto fail;
1164                 /* single frame decode */
1165                 ret = wma_decode_frame(pwd, samples);
1166                 if (ret < 0)
1167                         goto fail;
1168                 samples += pwd->ahi.channels * pwd->frame_len;
1169         }
1170         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %zd, eaten: %d\n",
1171                 pwd->frame_len, pwd->block_len,
1172                 (int8_t *) samples - (int8_t *) data, pwd->ahi.block_align);
1173         *data_size = (int8_t *)samples - (int8_t *)data;
1174         return pwd->ahi.block_align;
1175 fail:
1176         /* reset the bit reservoir on errors */
1177         pwd->last_superframe_len = 0;
1178         return ret;
1179 }
1180
1181 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1182                 struct filter_node *fn)
1183 {
1184         int ret, converted = 0;
1185         struct private_wmadec_data *pwd = fn->private_data;
1186
1187         if (len <= WMA_FRAME_SKIP)
1188                 return 0;
1189         if (!pwd) {
1190                 ret = wma_decode_init(inbuffer, len, &pwd);
1191                 if (ret <= 0)
1192                         return ret;
1193                 fn->private_data = pwd;
1194                 fn->fc->channels = pwd->ahi.channels;
1195                 fn->fc->samplerate = pwd->ahi.sample_rate;
1196                 return pwd->ahi.header_len;
1197         }
1198         for (;;) {
1199                 int out_size;
1200                 if (converted + WMA_FRAME_SKIP + pwd->ahi.block_align > len)
1201                         break;
1202                 out_size = fn->bufsize - fn->loaded;
1203                 if (out_size < 128 * 1024)
1204                         break;
1205                 ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1206                         &out_size, (uint8_t *)inbuffer + converted + WMA_FRAME_SKIP,
1207                         len - WMA_FRAME_SKIP);
1208                 if (ret < 0)
1209                         return ret;
1210                 fn->loaded += out_size;
1211                 converted += ret + WMA_FRAME_SKIP;
1212         }
1213         return converted;
1214 }
1215
1216 static void wmadec_close(struct filter_node *fn)
1217 {
1218         struct private_wmadec_data *pwd = fn->private_data;
1219
1220         if (!pwd)
1221                 return;
1222         wmadec_cleanup(pwd);
1223         free(fn->buf);
1224         fn->buf = NULL;
1225         free(fn->private_data);
1226         fn->private_data = NULL;
1227 }
1228
1229 static void wmadec_open(struct filter_node *fn)
1230 {
1231         fn->bufsize = 1024 * 1024;
1232         fn->buf = para_malloc(fn->bufsize);
1233         fn->private_data = NULL;
1234         fn->loaded = 0;
1235 }
1236
1237 /**
1238  * The init function of the wma decoder.
1239  *
1240  * \param f Its fields are filled in by the function.
1241  */
1242 void wmadec_filter_init(struct filter *f)
1243 {
1244         f->open = wmadec_open;
1245         f->close = wmadec_close;
1246         f->convert = wmadec_convert;
1247 }