2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
27 #include <sys/select.h>
35 #include "buffer_tree.h"
37 #include "bitstream.h"
44 #define BLOCK_MIN_BITS 7
45 #define BLOCK_MAX_BITS 11
46 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
48 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
50 /* XXX: find exact max size */
51 #define HIGH_BAND_MAX_SIZE 16
53 /* XXX: is it a suitable value ? */
54 #define MAX_CODED_SUPERFRAME_SIZE 16384
56 #define MAX_CHANNELS 2
58 #define NOISE_TAB_SIZE 8192
60 #define LSP_POW_BITS 7
62 struct private_wmadec_data
{
63 /** Information contained in the audio file header. */
64 struct asf_header_info ahi
;
65 struct getbit_context gb
;
66 /** Whether to use the bit reservoir. */
67 int use_bit_reservoir
;
68 /** Whether to use variable block length. */
69 int use_variable_block_len
;
70 /** Whether to use exponent coding. */
72 /** Whether perceptual noise is added. */
74 /** Depends on number of the bits per second and the frame length. */
76 /** Only used if use_exp_vlc is true. */
78 int exponent_sizes
[BLOCK_NB_SIZES
];
79 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
80 /** The index of the first coef in high band. */
81 int high_band_start
[BLOCK_NB_SIZES
];
82 /** Maximal number of coded coefficients. */
83 int coefs_end
[BLOCK_NB_SIZES
];
84 int exponent_high_sizes
[BLOCK_NB_SIZES
];
85 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
88 /* coded values in high bands */
89 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
90 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
92 /* there are two possible tables for spectral coefficients */
93 struct vlc coef_vlc
[2];
94 uint16_t *run_table
[2];
95 uint16_t *level_table
[2];
96 const struct coef_vlc_table
*coef_vlcs
[2];
97 /** Frame length in samples. */
99 /** log2 of frame_len. */
101 /** Number of block sizes. */
104 int reset_block_lengths
;
105 /** log2 of current block length. */
107 /** log2 of next block length. */
108 int next_block_len_bits
;
109 /** log2 of previous block length. */
110 int prev_block_len_bits
;
111 /** Block length in samples. */
113 /** Current position in frame. */
115 /** True if mid/side stereo mode. */
117 /** True if channel is coded. */
118 uint8_t channel_coded
[MAX_CHANNELS
];
119 /** log2 ratio frame/exp. length. */
120 int exponents_bsize
[MAX_CHANNELS
];
122 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
123 float max_exponent
[MAX_CHANNELS
];
124 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
125 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
126 float output
[BLOCK_MAX_SIZE
* 2];
127 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
128 float *windows
[BLOCK_NB_SIZES
];
129 /** Output buffer for one frame and the last for IMDCT windowing. */
130 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
131 /** Last frame info. */
132 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
134 int last_superframe_len
;
135 float noise_table
[NOISE_TAB_SIZE
];
137 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
138 /* lsp_to_curve tables */
139 float lsp_cos_table
[BLOCK_MAX_SIZE
];
140 float lsp_pow_e_table
[256];
141 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
142 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
146 #define EXPMAX DIV_ROUND_UP(19, EXPVLCBITS)
148 #define HGAINVLCBITS 9
149 #define HGAINMAX DIV_ROUND_UP(13, HGAINVLCBITS)
152 #define VLCMAX DIV_ROUND_UP(22, VLCBITS)
154 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
163 static float *sine_windows
[6] = {
164 sine_128
, sine_256
, sine_512
, sine_1024
, sine_2048
, sine_4096
167 /* Generate a sine window. */
168 static void sine_window_init(float *window
, int n
)
172 for (i
= 0; i
< n
; i
++)
173 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
176 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
180 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
181 imdct_end(pwd
->mdct_ctx
[i
]);
182 if (pwd
->use_exp_vlc
)
183 free_vlc(&pwd
->exp_vlc
);
184 if (pwd
->use_noise_coding
)
185 free_vlc(&pwd
->hgain_vlc
);
186 for (i
= 0; i
< 2; i
++) {
187 free_vlc(&pwd
->coef_vlc
[i
]);
188 free(pwd
->run_table
[i
]);
189 free(pwd
->level_table
[i
]);
193 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
194 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
196 int n
= vlc_table
->n
;
197 const uint8_t *table_bits
= vlc_table
->huffbits
;
198 const uint32_t *table_codes
= vlc_table
->huffcodes
;
199 const uint16_t *levels_table
= vlc_table
->levels
;
200 uint16_t *run_table
, *level_table
;
201 int i
, l
, j
, k
, level
;
203 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
205 run_table
= para_malloc(n
* sizeof(uint16_t));
206 level_table
= para_malloc(n
* sizeof(uint16_t));
211 l
= levels_table
[k
++];
212 for (j
= 0; j
< l
; j
++) {
214 level_table
[i
] = level
;
219 *prun_table
= run_table
;
220 *plevel_table
= level_table
;
223 /* compute the scale factor band sizes for each MDCT block size */
224 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
227 struct asf_header_info
*ahi
= &pwd
->ahi
;
228 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
229 const uint8_t *table
;
231 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
232 block_len
= pwd
->frame_len
>> k
;
235 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
237 if (ahi
->sample_rate
>= 44100)
238 table
= exponent_band_44100
[a
];
239 else if (ahi
->sample_rate
>= 32000)
240 table
= exponent_band_32000
[a
];
241 else if (ahi
->sample_rate
>= 22050)
242 table
= exponent_band_22050
[a
];
246 for (i
= 0; i
< n
; i
++)
247 pwd
->exponent_bands
[k
][i
] = table
[i
];
248 pwd
->exponent_sizes
[k
] = n
;
252 for (i
= 0; i
< 25; i
++) {
253 a
= wma_critical_freqs
[i
];
254 b
= ahi
->sample_rate
;
255 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
260 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
261 if (pos
>= block_len
)
265 pwd
->exponent_sizes
[k
] = j
;
268 /* max number of coefs */
269 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
270 /* high freq computation */
271 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
272 / ahi
->sample_rate
+ 0.5);
273 n
= pwd
->exponent_sizes
[k
];
276 for (i
= 0; i
< n
; i
++) {
279 pos
+= pwd
->exponent_bands
[k
][i
];
281 if (start
< pwd
->high_band_start
[k
])
282 start
= pwd
->high_band_start
[k
];
283 if (end
> pwd
->coefs_end
[k
])
284 end
= pwd
->coefs_end
[k
];
286 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
288 pwd
->exponent_high_sizes
[k
] = j
;
292 static int wma_init(struct private_wmadec_data
*pwd
)
295 float bps1
, high_freq
;
299 struct asf_header_info
*ahi
= &pwd
->ahi
;
300 int flags2
= ahi
->flags2
;
302 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
303 || ahi
->channels
<= 0 || ahi
->channels
> 8
304 || ahi
->bit_rate
<= 0)
305 return -E_WMA_BAD_PARAMS
;
307 /* compute MDCT block size */
308 if (ahi
->sample_rate
<= 16000)
309 pwd
->frame_len_bits
= 9;
310 else if (ahi
->sample_rate
<= 22050)
311 pwd
->frame_len_bits
= 10;
313 pwd
->frame_len_bits
= 11;
314 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
315 if (pwd
->use_variable_block_len
) {
317 nb
= ((flags2
>> 3) & 3) + 1;
318 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
320 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
323 pwd
->nb_block_sizes
= nb
+ 1;
325 pwd
->nb_block_sizes
= 1;
327 /* init rate dependent parameters */
328 pwd
->use_noise_coding
= 1;
329 high_freq
= ahi
->sample_rate
* 0.5;
331 /* wma2 rates are normalized */
332 sample_rate1
= ahi
->sample_rate
;
333 if (sample_rate1
>= 44100)
334 sample_rate1
= 44100;
335 else if (sample_rate1
>= 22050)
336 sample_rate1
= 22050;
337 else if (sample_rate1
>= 16000)
338 sample_rate1
= 16000;
339 else if (sample_rate1
>= 11025)
340 sample_rate1
= 11025;
341 else if (sample_rate1
>= 8000)
344 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
345 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
347 * Compute high frequency value and choose if noise coding should be
351 if (ahi
->channels
== 2)
353 if (sample_rate1
== 44100) {
355 pwd
->use_noise_coding
= 0;
357 high_freq
= high_freq
* 0.4;
358 } else if (sample_rate1
== 22050) {
360 pwd
->use_noise_coding
= 0;
361 else if (bps1
>= 0.72)
362 high_freq
= high_freq
* 0.7;
364 high_freq
= high_freq
* 0.6;
365 } else if (sample_rate1
== 16000) {
367 high_freq
= high_freq
* 0.5;
369 high_freq
= high_freq
* 0.3;
370 } else if (sample_rate1
== 11025)
371 high_freq
= high_freq
* 0.7;
372 else if (sample_rate1
== 8000) {
374 high_freq
= high_freq
* 0.5;
376 pwd
->use_noise_coding
= 0;
378 high_freq
= high_freq
* 0.65;
381 high_freq
= high_freq
* 0.75;
383 high_freq
= high_freq
* 0.6;
385 high_freq
= high_freq
* 0.5;
387 PARA_INFO_LOG("channels=%d sample_rate=%d "
388 "bitrate=%d block_align=%d\n",
389 ahi
->channels
, ahi
->sample_rate
,
390 ahi
->bit_rate
, ahi
->block_align
);
391 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
392 "high_freq=%f bitoffset=%d\n",
393 pwd
->frame_len
, bps
, bps1
,
394 high_freq
, pwd
->byte_offset_bits
);
395 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
396 pwd
->use_noise_coding
, pwd
->use_exp_vlc
, pwd
->nb_block_sizes
);
398 compute_scale_factor_band_sizes(pwd
, high_freq
);
399 /* init MDCT windows : simple sinus window */
400 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
402 n
= 1 << (pwd
->frame_len_bits
- i
);
403 sine_window_init(sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
404 pwd
->windows
[i
] = sine_windows
[pwd
->frame_len_bits
- i
- 7];
407 pwd
->reset_block_lengths
= 1;
409 if (pwd
->use_noise_coding
) {
410 /* init the noise generator */
411 if (pwd
->use_exp_vlc
)
412 pwd
->noise_mult
= 0.02;
414 pwd
->noise_mult
= 0.04;
420 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
421 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
422 seed
= seed
* 314159 + 1;
423 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
428 /* choose the VLC tables for the coefficients */
430 if (ahi
->sample_rate
>= 32000) {
433 else if (bps1
< 1.16)
436 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
437 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
438 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
440 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
445 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
450 wdel
= M_PI
/ frame_len
;
451 for (i
= 0; i
< frame_len
; i
++)
452 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
454 /* tables for x^-0.25 computation */
455 for (i
= 0; i
< 256; i
++) {
457 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
460 /* These two tables are needed to avoid two operations in pow_m1_4. */
462 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
463 m
= (1 << LSP_POW_BITS
) + i
;
464 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
466 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
467 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
472 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
474 struct private_wmadec_data
*pwd
;
477 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
478 pwd
= para_calloc(sizeof(*pwd
));
479 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
485 pwd
->use_exp_vlc
= pwd
->ahi
.flags2
& 0x0001;
486 pwd
->use_bit_reservoir
= pwd
->ahi
.flags2
& 0x0002;
487 pwd
->use_variable_block_len
= pwd
->ahi
.flags2
& 0x0004;
493 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
494 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
498 if (pwd
->use_noise_coding
) {
499 PARA_INFO_LOG("using noise coding\n");
500 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
501 sizeof(wma_hgain_huffbits
), wma_hgain_huffbits
,
502 wma_hgain_huffcodes
, 2);
505 if (pwd
->use_exp_vlc
) {
506 PARA_INFO_LOG("using exp_vlc\n");
507 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
, sizeof(wma_scale_huffbits
),
508 wma_scale_huffbits
, wma_scale_huffcodes
, 4);
510 PARA_INFO_LOG("using curve\n");
511 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
514 return pwd
->ahi
.header_len
;
518 * compute x^-0.25 with an exponent and mantissa table. We use linear
519 * interpolation to reduce the mantissa table size at a small speed
520 * expense (linear interpolation approximately doubles the number of
521 * bits of precision).
523 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
534 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
535 /* build interpolation scale: 1 <= t < 2. */
536 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
537 a
= pwd
->lsp_pow_m_table1
[m
];
538 b
= pwd
->lsp_pow_m_table2
[m
];
539 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
542 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
543 float *out
, float *val_max_ptr
, int n
, float *lsp
)
546 float p
, q
, w
, v
, val_max
;
549 for (i
= 0; i
< n
; i
++) {
552 w
= pwd
->lsp_cos_table
[i
];
553 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
560 v
= pow_m1_4(pwd
, v
);
565 *val_max_ptr
= val_max
;
568 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
569 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
571 float lsp_coefs
[NB_LSP_COEFS
];
574 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
575 if (i
== 0 || i
>= 8)
576 val
= get_bits(&pwd
->gb
, 3);
578 val
= get_bits(&pwd
->gb
, 4);
579 lsp_coefs
[i
] = wma_lsp_codebook
[i
][val
];
582 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
583 pwd
->block_len
, lsp_coefs
);
586 /* Decode exponents coded with VLC codes. */
587 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
589 int last_exp
, n
, code
;
590 const uint16_t *ptr
, *band_ptr
;
591 float v
, *q
, max_scale
, *q_end
;
593 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
595 q
= pwd
->exponents
[ch
];
596 q_end
= q
+ pwd
->block_len
;
601 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
604 /* NOTE: this offset is the same as MPEG4 AAC ! */
605 last_exp
+= code
- 60;
606 /* XXX: use a table */
607 v
= pow(10, last_exp
* (1.0 / 16.0));
615 pwd
->max_exponent
[ch
] = max_scale
;
619 /* compute src0 * src1 + src2 */
620 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
621 const float *src2
, int len
)
625 for (i
= 0; i
< len
; i
++)
626 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
629 static inline void vector_mult_reverse(float *dst
, const float *src0
,
630 const float *src1
, int len
)
635 for (i
= 0; i
< len
; i
++)
636 dst
[i
] = src0
[i
] * src1
[-i
];
640 * Apply MDCT window and add into output.
642 * We ensure that when the windows overlap their squared sum
643 * is always 1 (MDCT reconstruction rule).
645 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
647 float *in
= pwd
->output
;
648 int block_len
, bsize
, n
;
651 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
652 block_len
= pwd
->block_len
;
653 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
654 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
656 block_len
= 1 << pwd
->prev_block_len_bits
;
657 n
= (pwd
->block_len
- block_len
) / 2;
658 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
659 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
661 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
664 out
+= pwd
->block_len
;
665 in
+= pwd
->block_len
;
667 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
668 block_len
= pwd
->block_len
;
669 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
670 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
672 block_len
= 1 << pwd
->next_block_len_bits
;
673 n
= (pwd
->block_len
- block_len
) / 2;
674 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
675 memcpy(out
, in
, n
* sizeof(float));
676 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
678 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
682 static int wma_total_gain_to_bits(int total_gain
)
686 else if (total_gain
< 32)
688 else if (total_gain
< 40)
690 else if (total_gain
< 45)
696 static int compute_high_band_values(struct private_wmadec_data
*pwd
,
697 int bsize
, int nb_coefs
[MAX_CHANNELS
])
701 if (!pwd
->use_noise_coding
)
703 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
705 if (!pwd
->channel_coded
[ch
])
707 m
= pwd
->exponent_high_sizes
[bsize
];
708 for (i
= 0; i
< m
; i
++) {
709 a
= get_bit(&pwd
->gb
);
710 pwd
->high_band_coded
[ch
][i
] = a
;
713 nb_coefs
[ch
] -= pwd
->exponent_high_bands
[bsize
][i
];
716 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
718 if (!pwd
->channel_coded
[ch
])
720 n
= pwd
->exponent_high_sizes
[bsize
];
721 val
= (int)0x80000000;
722 for (i
= 0; i
< n
; i
++) {
723 if (!pwd
->high_band_coded
[ch
][i
])
725 if (val
== (int)0x80000000)
726 val
= get_bits(&pwd
->gb
, 7) - 19;
728 int code
= get_vlc(&pwd
->gb
,
729 pwd
->hgain_vlc
.table
, HGAINVLCBITS
,
735 pwd
->high_band_values
[ch
][i
] = val
;
741 static void compute_mdct_coefficients(struct private_wmadec_data
*pwd
,
742 int bsize
, int total_gain
, int nb_coefs
[MAX_CHANNELS
])
745 float mdct_norm
= 1.0 / (pwd
->block_len
/ 2);
747 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
749 float *coefs
, *exponents
, mult
, mult1
, noise
;
750 int i
, j
, n
, n1
, last_high_band
, esize
;
751 float exp_power
[HIGH_BAND_MAX_SIZE
];
753 if (!pwd
->channel_coded
[ch
])
755 coefs1
= pwd
->coefs1
[ch
];
756 exponents
= pwd
->exponents
[ch
];
757 esize
= pwd
->exponents_bsize
[ch
];
758 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
760 coefs
= pwd
->coefs
[ch
];
761 if (!pwd
->use_noise_coding
) {
762 /* XXX: optimize more */
764 for (i
= 0; i
< n
; i
++)
765 *coefs
++ = coefs1
[i
] *
766 exponents
[i
<< bsize
>> esize
] * mult
;
767 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
768 for (i
= 0; i
< n
; i
++)
772 n1
= pwd
->exponent_high_sizes
[bsize
];
773 /* compute power of high bands */
774 exponents
= pwd
->exponents
[ch
] +
775 (pwd
->high_band_start
[bsize
] << bsize
);
776 last_high_band
= 0; /* avoid warning */
777 for (j
= 0; j
< n1
; j
++) {
778 n
= pwd
->exponent_high_bands
[
779 pwd
->frame_len_bits
- pwd
->block_len_bits
][j
];
780 if (pwd
->high_band_coded
[ch
][j
]) {
783 for (i
= 0; i
< n
; i
++) {
784 val
= exponents
[i
<< bsize
>> esize
];
787 exp_power
[j
] = e2
/ n
;
790 exponents
+= n
<< bsize
;
792 /* main freqs and high freqs */
793 exponents
= pwd
->exponents
[ch
];
794 for (j
= -1; j
< n1
; j
++) {
796 n
= pwd
->high_band_start
[bsize
];
798 n
= pwd
->exponent_high_bands
[pwd
->frame_len_bits
799 - pwd
->block_len_bits
][j
];
800 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
801 /* use noise with specified power */
802 mult1
= sqrt(exp_power
[j
]
803 / exp_power
[last_high_band
]);
804 /* XXX: use a table */
805 mult1
*= pow(10, pwd
->high_band_values
[ch
][j
] * 0.05);
806 mult1
/= (pwd
->max_exponent
[ch
] * pwd
->noise_mult
);
808 for (i
= 0; i
< n
; i
++) {
809 noise
= pwd
->noise_table
[pwd
->noise_index
];
810 pwd
->noise_index
= (pwd
->noise_index
+ 1)
811 & (NOISE_TAB_SIZE
- 1);
812 *coefs
++ = noise
* exponents
[
813 i
<< bsize
>> esize
] * mult1
;
815 exponents
+= n
<< bsize
;
817 /* coded values + small noise */
818 for (i
= 0; i
< n
; i
++) {
819 noise
= pwd
->noise_table
[pwd
->noise_index
];
820 pwd
->noise_index
= (pwd
->noise_index
+ 1)
821 & (NOISE_TAB_SIZE
- 1);
822 *coefs
++ = ((*coefs1
++) + noise
) *
823 exponents
[i
<< bsize
>> esize
]
826 exponents
+= n
<< bsize
;
829 /* very high freqs: noise */
830 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
831 mult1
= mult
* exponents
[((-1 << bsize
)) >> esize
];
832 for (i
= 0; i
< n
; i
++) {
833 *coefs
++ = pwd
->noise_table
[pwd
->noise_index
] * mult1
;
834 pwd
->noise_index
= (pwd
->noise_index
+ 1)
835 & (NOISE_TAB_SIZE
- 1);
841 * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
844 static int wma_decode_block(struct private_wmadec_data
*pwd
)
846 int ret
, n
, v
, ch
, code
, bsize
;
847 int coef_nb_bits
, total_gain
;
848 int nb_coefs
[MAX_CHANNELS
];
850 /* compute current block length */
851 if (pwd
->use_variable_block_len
) {
852 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
854 if (pwd
->reset_block_lengths
) {
855 pwd
->reset_block_lengths
= 0;
856 v
= get_bits(&pwd
->gb
, n
);
857 if (v
>= pwd
->nb_block_sizes
)
858 return -E_WMA_BLOCK_SIZE
;
859 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
860 v
= get_bits(&pwd
->gb
, n
);
861 if (v
>= pwd
->nb_block_sizes
)
862 return -E_WMA_BLOCK_SIZE
;
863 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
865 /* update block lengths */
866 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
867 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
869 v
= get_bits(&pwd
->gb
, n
);
870 if (v
>= pwd
->nb_block_sizes
)
871 return -E_WMA_BLOCK_SIZE
;
872 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
874 /* fixed block len */
875 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
876 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
877 pwd
->block_len_bits
= pwd
->frame_len_bits
;
880 /* now check if the block length is coherent with the frame length */
881 pwd
->block_len
= 1 << pwd
->block_len_bits
;
882 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
883 return -E_INCOHERENT_BLOCK_LEN
;
885 if (pwd
->ahi
.channels
== 2)
886 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
888 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
889 int a
= get_bit(&pwd
->gb
);
890 pwd
->channel_coded
[ch
] = a
;
894 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
896 /* if no channel coded, no need to go further */
897 /* XXX: fix potential framing problems */
902 * Read total gain and extract corresponding number of bits for coef
907 int a
= get_bits(&pwd
->gb
, 7);
913 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
915 /* compute number of coefficients */
916 n
= pwd
->coefs_end
[bsize
];
917 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
920 ret
= compute_high_band_values(pwd
, bsize
, nb_coefs
);
924 /* exponents can be reused in short blocks. */
925 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
926 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
927 if (pwd
->channel_coded
[ch
]) {
928 if (pwd
->use_exp_vlc
) {
929 ret
= decode_exp_vlc(pwd
, ch
);
933 decode_exp_lsp(pwd
, ch
);
934 pwd
->exponents_bsize
[ch
] = bsize
;
939 /* parse spectral coefficients : just RLE encoding */
940 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
941 struct vlc
*coef_vlc
;
942 int level
, run
, tindex
;
944 const uint16_t *level_table
, *run_table
;
946 if (!pwd
->channel_coded
[ch
])
949 * special VLC tables are used for ms stereo because there is
950 * potentially less energy there
952 tindex
= (ch
== 1 && pwd
->ms_stereo
);
953 coef_vlc
= &pwd
->coef_vlc
[tindex
];
954 run_table
= pwd
->run_table
[tindex
];
955 level_table
= pwd
->level_table
[tindex
];
957 ptr
= &pwd
->coefs1
[ch
][0];
958 eptr
= ptr
+ nb_coefs
[ch
];
959 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
961 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
,
965 if (code
== 1) /* EOB */
967 if (code
== 0) { /* escape */
968 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
969 /* reading block_len_bits would be better */
970 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
971 } else { /* normal code */
972 run
= run_table
[code
];
973 level
= level_table
[code
];
975 if (!get_bit(&pwd
->gb
))
979 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
983 if (ptr
>= eptr
) /* EOB can be omitted */
987 compute_mdct_coefficients(pwd
, bsize
, total_gain
, nb_coefs
);
988 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
992 * Nominal case for ms stereo: we do it before mdct.
994 * No need to optimize this case because it should almost never
997 if (!pwd
->channel_coded
[0]) {
998 PARA_NOTICE_LOG("rare ms-stereo\n");
999 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
1000 pwd
->channel_coded
[0] = 1;
1002 for (i
= 0; i
< pwd
->block_len
; i
++) {
1003 a
= pwd
->coefs
[0][i
];
1004 b
= pwd
->coefs
[1][i
];
1005 pwd
->coefs
[0][i
] = a
+ b
;
1006 pwd
->coefs
[1][i
] = a
- b
;
1010 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1013 n4
= pwd
->block_len
/ 2;
1014 if (pwd
->channel_coded
[ch
])
1015 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1016 else if (!(pwd
->ms_stereo
&& ch
== 1))
1017 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1019 /* multiply by the window and add in the frame */
1020 idx
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1021 wma_window(pwd
, &pwd
->frame_out
[ch
][idx
]);
1024 /* update block number */
1025 pwd
->block_pos
+= pwd
->block_len
;
1026 if (pwd
->block_pos
>= pwd
->frame_len
)
1033 * Clip a signed integer value into the -32768,32767 range.
1035 * \param a The value to clip.
1037 * \return The clipped value.
1039 static inline int16_t av_clip_int16(int a
)
1041 if ((a
+ 32768) & ~65535)
1042 return (a
>> 31) ^ 32767;
1047 /* Decode a frame of frame_len samples. */
1048 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1050 int ret
, i
, n
, ch
, incr
;
1054 /* read each block */
1057 ret
= wma_decode_block(pwd
);
1064 /* convert frame to integer */
1066 incr
= pwd
->ahi
.channels
;
1067 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1069 iptr
= pwd
->frame_out
[ch
];
1071 for (i
= 0; i
< n
; i
++) {
1072 *ptr
= av_clip_int16(lrintf(*iptr
++));
1075 /* prepare for next block */
1076 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1077 pwd
->frame_len
* sizeof(float));
1082 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1083 int *data_size
, const uint8_t *buf
, int buf_size
)
1088 if (buf_size
== 0) {
1089 pwd
->last_superframe_len
= 0;
1092 if (buf_size
< pwd
->ahi
.block_align
)
1094 buf_size
= pwd
->ahi
.block_align
;
1096 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1097 if (pwd
->use_bit_reservoir
) {
1098 int i
, nb_frames
, bit_offset
, pos
, len
;
1101 /* read super frame header */
1102 skip_bits(&pwd
->gb
, 4); /* super frame index */
1103 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1104 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1105 ret
= -E_WMA_OUTPUT_SPACE
;
1106 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1107 * sizeof(int16_t) > *data_size
)
1110 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1112 if (pwd
->last_superframe_len
> 0) {
1113 /* add bit_offset bits to last frame */
1114 ret
= -E_WMA_BAD_SUPERFRAME
;
1115 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1116 MAX_CODED_SUPERFRAME_SIZE
)
1118 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1121 *q
++ = get_bits(&pwd
->gb
, 8);
1125 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1127 /* XXX: bit_offset bits into last frame */
1128 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1129 MAX_CODED_SUPERFRAME_SIZE
);
1130 /* skip unused bits */
1131 if (pwd
->last_bitoffset
> 0)
1132 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1134 * This frame is stored in the last superframe and in
1137 ret
= wma_decode_frame(pwd
, samples
);
1140 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1143 /* read each frame starting from bit_offset */
1144 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1145 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1146 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1149 skip_bits(&pwd
->gb
, len
);
1151 pwd
->reset_block_lengths
= 1;
1152 for (i
= 0; i
< nb_frames
; i
++) {
1153 ret
= wma_decode_frame(pwd
, samples
);
1156 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1159 /* we copy the end of the frame in the last frame buffer */
1160 pos
= get_bits_count(&pwd
->gb
) +
1161 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1162 pwd
->last_bitoffset
= pos
& 7;
1164 len
= buf_size
- pos
;
1165 ret
= -E_WMA_BAD_SUPERFRAME
;
1166 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1168 pwd
->last_superframe_len
= len
;
1169 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1171 PARA_DEBUG_LOG("not using bit reservoir\n");
1172 ret
= -E_WMA_OUTPUT_SPACE
;
1173 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1175 /* single frame decode */
1176 ret
= wma_decode_frame(pwd
, samples
);
1179 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1181 PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1182 pwd
->frame_len
, pwd
->block_len
,
1183 (int)((int8_t *)samples
- (int8_t *)data
), pwd
->ahi
.block_align
);
1184 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1185 return pwd
->ahi
.block_align
;
1187 /* reset the bit reservoir on errors */
1188 pwd
->last_superframe_len
= 0;
1192 static void wmadec_close(struct filter_node
*fn
)
1194 struct private_wmadec_data
*pwd
= fn
->private_data
;
1198 wmadec_cleanup(pwd
);
1199 free(fn
->private_data
);
1200 fn
->private_data
= NULL
;
1203 static int wmadec_execute(struct btr_node
*btrn
, const char *cmd
, char **result
)
1205 struct filter_node
*fn
= btr_context(btrn
);
1206 struct private_wmadec_data
*pwd
= fn
->private_data
;
1208 return decoder_execute(cmd
, pwd
->ahi
.sample_rate
, pwd
->ahi
.channels
,
1212 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1214 static void wmadec_post_select(__a_unused
struct sched
*s
, struct task
*t
)
1216 struct filter_node
*fn
= container_of(t
, struct filter_node
, task
);
1218 struct private_wmadec_data
*pwd
= fn
->private_data
;
1219 struct btr_node
*btrn
= fn
->btrn
;
1226 ret
= btr_node_status(btrn
, fn
->min_iqs
, BTR_NT_INTERNAL
);
1231 btr_merge(btrn
, fn
->min_iqs
);
1232 len
= btr_next_buffer(btrn
, (char **)&in
);
1233 ret
= -E_WMADEC_EOF
;
1234 if (len
< fn
->min_iqs
)
1237 ret
= wma_decode_init(in
, len
, &pwd
);
1241 fn
->min_iqs
+= 4096;
1244 fn
->min_iqs
= 2 * (WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
);
1245 fn
->private_data
= pwd
;
1246 converted
= pwd
->ahi
.header_len
;
1249 fn
->min_iqs
= WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
;
1252 int out_size
= WMA_OUTPUT_BUFFER_SIZE
;
1253 if (converted
+ fn
->min_iqs
> len
)
1255 out
= para_malloc(WMA_OUTPUT_BUFFER_SIZE
);
1256 ret
= wma_decode_superframe(pwd
, out
,
1257 &out_size
, (uint8_t *)in
+ converted
+ WMA_FRAME_SKIP
,
1258 len
- WMA_FRAME_SKIP
);
1263 btr_add_output(out
, out_size
, btrn
);
1264 converted
+= ret
+ WMA_FRAME_SKIP
;
1267 btr_consume(btrn
, converted
);
1272 btr_remove_node(btrn
);
1275 static void wmadec_open(struct filter_node
*fn
)
1277 fn
->private_data
= NULL
;
1282 * The init function of the wma decoder.
1284 * \param f Its fields are filled in by the function.
1286 void wmadec_filter_init(struct filter
*f
)
1288 f
->open
= wmadec_open
;
1289 f
->close
= wmadec_close
;
1290 f
->execute
= wmadec_execute
;
1291 f
->pre_select
= generic_filter_pre_select
;
1292 f
->post_select
= wmadec_post_select
;