]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
Kill unused pwd->int_table.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27
28 #include "para.h"
29 #include "error.h"
30 #include "list.h"
31 #include "ggo.h"
32 #include "string.h"
33 #include "sched.h"
34 #include "filter.h"
35 #include "bitstream.h"
36 #include "imdct.h"
37 #include "wma.h"
38 #include "wmadata.h"
39
40
41 /* size of blocks */
42 #define BLOCK_MIN_BITS 7
43 #define BLOCK_MAX_BITS 11
44 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
45
46 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
47
48 /* XXX: find exact max size */
49 #define HIGH_BAND_MAX_SIZE 16
50
51 /* XXX: is it a suitable value ? */
52 #define MAX_CODED_SUPERFRAME_SIZE 16384
53
54 #define MAX_CHANNELS 2
55
56 #define NOISE_TAB_SIZE 8192
57
58 #define LSP_POW_BITS 7
59
60 struct private_wmadec_data {
61         struct asf_header_info ahi;
62         struct getbit_context gb;
63         int use_bit_reservoir;
64         int use_variable_block_len;
65         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
66         int use_noise_coding;   ///< true if perceptual noise is added
67         int byte_offset_bits;
68         struct vlc exp_vlc;
69         int exponent_sizes[BLOCK_NB_SIZES];
70         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
71         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
72         int coefs_start;        ///< first coded coef
73         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
74         int exponent_high_sizes[BLOCK_NB_SIZES];
75         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
76         struct vlc hgain_vlc;
77
78         /* coded values in high bands */
79         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
80         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81
82         /* there are two possible tables for spectral coefficients */
83         struct vlc coef_vlc[2];
84         uint16_t *run_table[2];
85         uint16_t *level_table[2];
86         const struct coef_vlc_table *coef_vlcs[2];
87         /* frame info */
88         int frame_len;          ///< frame length in samples
89         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
90         int nb_block_sizes;     ///< number of block sizes
91         /* block info */
92         int reset_block_lengths;
93         int block_len_bits;     ///< log2 of current block length
94         int next_block_len_bits;        ///< log2 of next block length
95         int prev_block_len_bits;        ///< log2 of prev block length
96         int block_len;          ///< block length in samples
97         int block_pos;          ///< current position in frame
98         uint8_t ms_stereo;      ///< true if mid/side stereo mode
99         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
100         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
101         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
102         float max_exponent[MAX_CHANNELS];
103         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
104         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float output[BLOCK_MAX_SIZE * 2];
106         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
107         float *windows[BLOCK_NB_SIZES];
108         /* output buffer for one frame and the last for IMDCT windowing */
109         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
110         /* last frame info */
111         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
112         int last_bitoffset;
113         int last_superframe_len;
114         float noise_table[NOISE_TAB_SIZE];
115         int noise_index;
116         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
117         /* lsp_to_curve tables */
118         float lsp_cos_table[BLOCK_MAX_SIZE];
119         float lsp_pow_e_table[256];
120         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
121         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
122 };
123
124 #define EXPVLCBITS 8
125 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
126
127 #define HGAINVLCBITS 9
128 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
129
130 #define VLCBITS 9
131 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
132
133 DECLARE_ALIGNED(16, float, ff_sine_128[128]);
134 DECLARE_ALIGNED(16, float, ff_sine_256[256]);
135 DECLARE_ALIGNED(16, float, ff_sine_512[512]);
136 DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
137 DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
138 DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
139
140 static float *ff_sine_windows[6] = {
141         ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024,
142         ff_sine_2048, ff_sine_4096
143 };
144
145 /* Generate a sine window. */
146 static void sine_window_init(float *window, int n)
147 {
148         int i;
149
150         for (i = 0; i < n; i++)
151                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
152 }
153
154 static void wmadec_cleanup(struct private_wmadec_data *pwd)
155 {
156         int i;
157
158         for (i = 0; i < pwd->nb_block_sizes; i++)
159                 imdct_end(pwd->mdct_ctx[i]);
160         if (pwd->use_exp_vlc)
161                 free_vlc(&pwd->exp_vlc);
162         if (pwd->use_noise_coding)
163                 free_vlc(&pwd->hgain_vlc);
164         for (i = 0; i < 2; i++) {
165                 free_vlc(&pwd->coef_vlc[i]);
166                 free(pwd->run_table[i]);
167                 free(pwd->level_table[i]);
168         }
169 }
170
171 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
172                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
173 {
174         int n = vlc_table->n;
175         const uint8_t *table_bits = vlc_table->huffbits;
176         const uint32_t *table_codes = vlc_table->huffcodes;
177         const uint16_t *levels_table = vlc_table->levels;
178         uint16_t *run_table, *level_table;
179         int i, l, j, k, level;
180
181         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
182
183         run_table = para_malloc(n * sizeof(uint16_t));
184         level_table = para_malloc(n * sizeof(uint16_t));
185         i = 2;
186         level = 1;
187         k = 0;
188         while (i < n) {
189                 l = levels_table[k++];
190                 for (j = 0; j < l; j++) {
191                         run_table[i] = j;
192                         level_table[i] = level;
193                         i++;
194                 }
195                 level++;
196         }
197         *prun_table = run_table;
198         *plevel_table = level_table;
199 }
200
201 /* compute the scale factor band sizes for each MDCT block size */
202 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
203         float high_freq)
204 {
205         struct asf_header_info *ahi = &pwd->ahi;
206         int a, b, pos, lpos, k, block_len, i, j, n;
207         const uint8_t *table;
208
209         pwd->coefs_start = 0;
210         for (k = 0; k < pwd->nb_block_sizes; k++) {
211                 block_len = pwd->frame_len >> k;
212
213                 table = NULL;
214                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
215                 if (a < 3) {
216                         if (ahi->sample_rate >= 44100)
217                                 table = exponent_band_44100[a];
218                         else if (ahi->sample_rate >= 32000)
219                                 table = exponent_band_32000[a];
220                         else if (ahi->sample_rate >= 22050)
221                                 table = exponent_band_22050[a];
222                 }
223                 if (table) {
224                         n = *table++;
225                         for (i = 0; i < n; i++)
226                                 pwd->exponent_bands[k][i] = table[i];
227                         pwd->exponent_sizes[k] = n;
228                 } else {
229                         j = 0;
230                         lpos = 0;
231                         for (i = 0; i < 25; i++) {
232                                 a = wma_critical_freqs[i];
233                                 b = ahi->sample_rate;
234                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
235                                 pos <<= 2;
236                                 if (pos > block_len)
237                                         pos = block_len;
238                                 if (pos > lpos)
239                                         pwd->exponent_bands[k][j++] = pos - lpos;
240                                 if (pos >= block_len)
241                                         break;
242                                 lpos = pos;
243                         }
244                         pwd->exponent_sizes[k] = j;
245                 }
246
247                 /* max number of coefs */
248                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
249                 /* high freq computation */
250                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
251                         / ahi->sample_rate + 0.5);
252                 n = pwd->exponent_sizes[k];
253                 j = 0;
254                 pos = 0;
255                 for (i = 0; i < n; i++) {
256                         int start, end;
257                         start = pos;
258                         pos += pwd->exponent_bands[k][i];
259                         end = pos;
260                         if (start < pwd->high_band_start[k])
261                                 start = pwd->high_band_start[k];
262                         if (end > pwd->coefs_end[k])
263                                 end = pwd->coefs_end[k];
264                         if (end > start)
265                                 pwd->exponent_high_bands[k][j++] = end - start;
266                 }
267                 pwd->exponent_high_sizes[k] = j;
268         }
269 }
270
271 static int wma_init(struct private_wmadec_data *pwd)
272 {
273         int i;
274         float bps1, high_freq;
275         volatile float bps;
276         int sample_rate1;
277         int coef_vlc_table;
278         struct asf_header_info *ahi = &pwd->ahi;
279         int flags2 = ahi->flags2;
280
281         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
282                 || ahi->channels <= 0 || ahi->channels > 8
283                 || ahi->bit_rate <= 0)
284                 return -E_WMA_BAD_PARAMS;
285
286         /* compute MDCT block size */
287         if (ahi->sample_rate <= 16000) {
288                 pwd->frame_len_bits = 9;
289         } else if (ahi->sample_rate <= 22050) {
290                 pwd->frame_len_bits = 10;
291         } else {
292                 pwd->frame_len_bits = 11;
293         }
294         pwd->frame_len = 1 << pwd->frame_len_bits;
295         if (pwd->use_variable_block_len) {
296                 int nb_max, nb;
297                 nb = ((flags2 >> 3) & 3) + 1;
298                 if ((ahi->bit_rate / ahi->channels) >= 32000)
299                         nb += 2;
300                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
301                 if (nb > nb_max)
302                         nb = nb_max;
303                 pwd->nb_block_sizes = nb + 1;
304         } else
305                 pwd->nb_block_sizes = 1;
306
307         /* init rate dependent parameters */
308         pwd->use_noise_coding = 1;
309         high_freq = ahi->sample_rate * 0.5;
310
311         /* wma2 rates are normalized */
312         sample_rate1 = ahi->sample_rate;
313         if (sample_rate1 >= 44100)
314                 sample_rate1 = 44100;
315         else if (sample_rate1 >= 22050)
316                 sample_rate1 = 22050;
317         else if (sample_rate1 >= 16000)
318                 sample_rate1 = 16000;
319         else if (sample_rate1 >= 11025)
320                 sample_rate1 = 11025;
321         else if (sample_rate1 >= 8000)
322                 sample_rate1 = 8000;
323
324         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
325         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
326         /*
327          * Compute high frequency value and choose if noise coding should be
328          * activated.
329          */
330         bps1 = bps;
331         if (ahi->channels == 2)
332                 bps1 = bps * 1.6;
333         if (sample_rate1 == 44100) {
334                 if (bps1 >= 0.61)
335                         pwd->use_noise_coding = 0;
336                 else
337                         high_freq = high_freq * 0.4;
338         } else if (sample_rate1 == 22050) {
339                 if (bps1 >= 1.16)
340                         pwd->use_noise_coding = 0;
341                 else if (bps1 >= 0.72)
342                         high_freq = high_freq * 0.7;
343                 else
344                         high_freq = high_freq * 0.6;
345         } else if (sample_rate1 == 16000) {
346                 if (bps > 0.5)
347                         high_freq = high_freq * 0.5;
348                 else
349                         high_freq = high_freq * 0.3;
350         } else if (sample_rate1 == 11025) {
351                 high_freq = high_freq * 0.7;
352         } else if (sample_rate1 == 8000) {
353                 if (bps <= 0.625) {
354                         high_freq = high_freq * 0.5;
355                 } else if (bps > 0.75) {
356                         pwd->use_noise_coding = 0;
357                 } else {
358                         high_freq = high_freq * 0.65;
359                 }
360         } else {
361                 if (bps >= 0.8) {
362                         high_freq = high_freq * 0.75;
363                 } else if (bps >= 0.6) {
364                         high_freq = high_freq * 0.6;
365                 } else {
366                         high_freq = high_freq * 0.5;
367                 }
368         }
369         PARA_INFO_LOG("channels=%d sample_rate=%d "
370                 "bitrate=%d block_align=%d\n",
371                 ahi->channels, ahi->sample_rate,
372                 ahi->bit_rate, ahi->block_align);
373         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
374                 "high_freq=%f bitoffset=%d\n",
375                 pwd->frame_len, bps, bps1,
376                 high_freq, pwd->byte_offset_bits);
377         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
378                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
379
380         compute_scale_factor_band_sizes(pwd, high_freq);
381         /* init MDCT windows : simple sinus window */
382         for (i = 0; i < pwd->nb_block_sizes; i++) {
383                 int n;
384                 n = 1 << (pwd->frame_len_bits - i);
385                 sine_window_init(ff_sine_windows[pwd->frame_len_bits - i - 7], n);
386                 pwd->windows[i] = ff_sine_windows[pwd->frame_len_bits - i - 7];
387         }
388
389         pwd->reset_block_lengths = 1;
390
391         if (pwd->use_noise_coding) {
392                 /* init the noise generator */
393                 if (pwd->use_exp_vlc)
394                         pwd->noise_mult = 0.02;
395                 else
396                         pwd->noise_mult = 0.04;
397
398                 {
399                         unsigned int seed;
400                         float norm;
401                         seed = 1;
402                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
403                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
404                                 seed = seed * 314159 + 1;
405                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
406                         }
407                 }
408         }
409
410         /* choose the VLC tables for the coefficients */
411         coef_vlc_table = 2;
412         if (ahi->sample_rate >= 32000) {
413                 if (bps1 < 0.72)
414                         coef_vlc_table = 0;
415                 else if (bps1 < 1.16)
416                         coef_vlc_table = 1;
417         }
418         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
419         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
420         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
421                 pwd->coef_vlcs[0]);
422         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
423                 pwd->coef_vlcs[1]);
424         return 0;
425 }
426
427 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
428 {
429         float wdel, a, b;
430         int i, e, m;
431
432         wdel = M_PI / frame_len;
433         for (i = 0; i < frame_len; i++)
434                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
435
436         /* tables for x^-0.25 computation */
437         for (i = 0; i < 256; i++) {
438                 e = i - 126;
439                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
440         }
441
442         /* These two tables are needed to avoid two operations in pow_m1_4. */
443         b = 1.0;
444         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
445                 m = (1 << LSP_POW_BITS) + i;
446                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
447                 a = pow(a, -0.25);
448                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
449                 pwd->lsp_pow_m_table2[i] = b - a;
450                 b = a;
451         }
452 }
453
454 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
455 {
456         struct private_wmadec_data *pwd;
457         int ret, i;
458
459         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
460         pwd = para_calloc(sizeof(*pwd));
461         ret = read_asf_header(initial_buf, len, &pwd->ahi);
462         if (ret <= 0) {
463                 free(pwd);
464                 return ret;
465         }
466
467         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
468         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
469         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
470
471         ret = wma_init(pwd);
472         if (ret < 0)
473                 return ret;
474         /* init MDCT */
475         for (i = 0; i < pwd->nb_block_sizes; i++) {
476                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
477                 if (ret < 0)
478                         return ret;
479         }
480         if (pwd->use_noise_coding) {
481                 PARA_INFO_LOG("using noise coding\n");
482                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
483                         sizeof(ff_wma_hgain_huffbits), ff_wma_hgain_huffbits,
484                         ff_wma_hgain_huffcodes, 2);
485         }
486
487         if (pwd->use_exp_vlc) {
488                 PARA_INFO_LOG("using exp_vlc\n");
489                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
490                 sizeof(ff_wma_scale_huffbits), ff_wma_scale_huffbits,
491                 ff_wma_scale_huffcodes, 4);
492         } else {
493                 PARA_INFO_LOG("using curve\n");
494                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
495         }
496         *result = pwd;
497         return pwd->ahi.header_len;
498 }
499
500 /**
501  * compute x^-0.25 with an exponent and mantissa table. We use linear
502  * interpolation to reduce the mantissa table size at a small speed
503  * expense (linear interpolation approximately doubles the number of
504  * bits of precision).
505  */
506 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
507 {
508         union {
509                 float f;
510                 unsigned int v;
511         } u, t;
512         unsigned int e, m;
513         float a, b;
514
515         u.f = x;
516         e = u.v >> 23;
517         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
518         /* build interpolation scale: 1 <= t < 2. */
519         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
520         a = pwd->lsp_pow_m_table1[m];
521         b = pwd->lsp_pow_m_table2[m];
522         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
523 }
524
525 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
526                 float *out, float *val_max_ptr, int n, float *lsp)
527 {
528         int i, j;
529         float p, q, w, v, val_max;
530
531         val_max = 0;
532         for (i = 0; i < n; i++) {
533                 p = 0.5f;
534                 q = 0.5f;
535                 w = pwd->lsp_cos_table[i];
536                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
537                         q *= w - lsp[j - 1];
538                         p *= w - lsp[j];
539                 }
540                 p *= p * (2.0f - w);
541                 q *= q * (2.0f + w);
542                 v = p + q;
543                 v = pow_m1_4(pwd, v);
544                 if (v > val_max)
545                         val_max = v;
546                 out[i] = v;
547         }
548         *val_max_ptr = val_max;
549 }
550
551 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
552 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
553 {
554         float lsp_coefs[NB_LSP_COEFS];
555         int val, i;
556
557         for (i = 0; i < NB_LSP_COEFS; i++) {
558                 if (i == 0 || i >= 8)
559                         val = get_bits(&pwd->gb, 3);
560                 else
561                         val = get_bits(&pwd->gb, 4);
562                 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
563         }
564
565         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
566                 pwd->block_len, lsp_coefs);
567 }
568
569 /* Decode exponents coded with VLC codes. */
570 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
571 {
572         int last_exp, n, code;
573         const uint16_t *ptr, *band_ptr;
574         float v, *q, max_scale, *q_end;
575
576         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
577         ptr = band_ptr;
578         q = pwd->exponents[ch];
579         q_end = q + pwd->block_len;
580         max_scale = 0;
581         last_exp = 36;
582
583         while (q < q_end) {
584                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
585                 if (code < 0)
586                         return -1;
587                 /* NOTE: this offset is the same as MPEG4 AAC ! */
588                 last_exp += code - 60;
589                 /* XXX: use a table */
590                 v = pow(10, last_exp * (1.0 / 16.0));
591                 if (v > max_scale)
592                         max_scale = v;
593                 n = *ptr++;
594                 do {
595                         *q++ = v;
596                 } while (--n);
597         }
598         pwd->max_exponent[ch] = max_scale;
599         return 0;
600 }
601
602 /* compute src0 * src1 + src2 */
603 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
604                 const float *src2, int len)
605 {
606         int i;
607
608         for (i = 0; i < len; i++)
609                 dst[i] = src0[i] * src1[i] + src2[i];
610 }
611
612 static inline void vector_mult_reverse(float *dst, const float *src0,
613                 const float *src1, int len)
614 {
615         int i;
616
617         src1 += len - 1;
618         for (i = 0; i < len; i++)
619                 dst[i] = src0[i] * src1[-i];
620 }
621
622 /**
623  * Apply MDCT window and add into output.
624  *
625  * We ensure that when the windows overlap their squared sum
626  * is always 1 (MDCT reconstruction rule).
627  */
628 static void wma_window(struct private_wmadec_data *pwd, float *out)
629 {
630         float *in = pwd->output;
631         int block_len, bsize, n;
632
633         /* left part */
634         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
635                 block_len = pwd->block_len;
636                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
637                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
638         } else {
639                 block_len = 1 << pwd->prev_block_len_bits;
640                 n = (pwd->block_len - block_len) / 2;
641                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
642                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
643                         block_len);
644                 memcpy(out + n + block_len, in + n + block_len,
645                         n * sizeof(float));
646         }
647         out += pwd->block_len;
648         in += pwd->block_len;
649         /* right part */
650         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
651                 block_len = pwd->block_len;
652                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
653                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
654         } else {
655                 block_len = 1 << pwd->next_block_len_bits;
656                 n = (pwd->block_len - block_len) / 2;
657                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
658                 memcpy(out, in, n * sizeof(float));
659                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
660                         block_len);
661                 memset(out + n + block_len, 0, n * sizeof(float));
662         }
663 }
664
665 static int wma_total_gain_to_bits(int total_gain)
666 {
667         if (total_gain < 15)
668                 return 13;
669         else if (total_gain < 32)
670                 return 12;
671         else if (total_gain < 40)
672                 return 11;
673         else if (total_gain < 45)
674                 return 10;
675         else
676                 return 9;
677 }
678
679 /**
680  * @return 0 if OK. 1 if last block of frame. return -1 if
681  * unrecorrable error.
682  */
683 static int wma_decode_block(struct private_wmadec_data *pwd)
684 {
685         int n, v, ch, code, bsize;
686         int coef_nb_bits, total_gain;
687         int nb_coefs[MAX_CHANNELS];
688         float mdct_norm;
689
690         /* compute current block length */
691         if (pwd->use_variable_block_len) {
692                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
693
694                 if (pwd->reset_block_lengths) {
695                         pwd->reset_block_lengths = 0;
696                         v = get_bits(&pwd->gb, n);
697                         if (v >= pwd->nb_block_sizes)
698                                 return -1;
699                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
700                         v = get_bits(&pwd->gb, n);
701                         if (v >= pwd->nb_block_sizes)
702                                 return -1;
703                         pwd->block_len_bits = pwd->frame_len_bits - v;
704                 } else {
705                         /* update block lengths */
706                         pwd->prev_block_len_bits = pwd->block_len_bits;
707                         pwd->block_len_bits = pwd->next_block_len_bits;
708                 }
709                 v = get_bits(&pwd->gb, n);
710                 if (v >= pwd->nb_block_sizes)
711                         return -1;
712                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
713         } else {
714                 /* fixed block len */
715                 pwd->next_block_len_bits = pwd->frame_len_bits;
716                 pwd->prev_block_len_bits = pwd->frame_len_bits;
717                 pwd->block_len_bits = pwd->frame_len_bits;
718         }
719
720         /* now check if the block length is coherent with the frame length */
721         pwd->block_len = 1 << pwd->block_len_bits;
722         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
723                 return -E_INCOHERENT_BLOCK_LEN;
724
725         if (pwd->ahi.channels == 2)
726                 pwd->ms_stereo = get_bit(&pwd->gb);
727         v = 0;
728         for (ch = 0; ch < pwd->ahi.channels; ch++) {
729                 int a = get_bit(&pwd->gb);
730                 pwd->channel_coded[ch] = a;
731                 v |= a;
732         }
733
734         bsize = pwd->frame_len_bits - pwd->block_len_bits;
735
736         /* if no channel coded, no need to go further */
737         /* XXX: fix potential framing problems */
738         if (!v)
739                 goto next;
740
741         /* read total gain and extract corresponding number of bits for
742            coef escape coding */
743         total_gain = 1;
744         for (;;) {
745                 int a = get_bits(&pwd->gb, 7);
746                 total_gain += a;
747                 if (a != 127)
748                         break;
749         }
750
751         coef_nb_bits = wma_total_gain_to_bits(total_gain);
752
753         /* compute number of coefficients */
754         n = pwd->coefs_end[bsize] - pwd->coefs_start;
755         for (ch = 0; ch < pwd->ahi.channels; ch++)
756                 nb_coefs[ch] = n;
757
758         /* complex coding */
759         if (pwd->use_noise_coding) {
760                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
761                         if (pwd->channel_coded[ch]) {
762                                 int i, m, a;
763                                 m = pwd->exponent_high_sizes[bsize];
764                                 for (i = 0; i < m; i++) {
765                                         a = get_bit(&pwd->gb);
766                                         pwd->high_band_coded[ch][i] = a;
767                                         /* if noise coding, the coefficients are not transmitted */
768                                         if (a)
769                                                 nb_coefs[ch] -=
770                                                     pwd->
771                                                     exponent_high_bands[bsize]
772                                                     [i];
773                                 }
774                         }
775                 }
776                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
777                         if (pwd->channel_coded[ch]) {
778                                 int i, val;
779
780                                 n = pwd->exponent_high_sizes[bsize];
781                                 val = (int) 0x80000000;
782                                 for (i = 0; i < n; i++) {
783                                         if (pwd->high_band_coded[ch][i]) {
784                                                 if (val == (int) 0x80000000) {
785                                                         val =
786                                                             get_bits(&pwd->gb,
787                                                                      7) - 19;
788                                                 } else {
789                                                         code =
790                                                             get_vlc(&pwd->gb,
791                                                                      pwd->
792                                                                      hgain_vlc.
793                                                                      table,
794                                                                      HGAINVLCBITS,
795                                                                      HGAINMAX);
796                                                         if (code < 0)
797                                                                 return -1;
798                                                         val += code - 18;
799                                                 }
800                                                 pwd->high_band_values[ch][i] =
801                                                     val;
802                                         }
803                                 }
804                         }
805                 }
806         }
807
808         /* exponents can be reused in short blocks. */
809         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
810                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
811                         if (pwd->channel_coded[ch]) {
812                                 if (pwd->use_exp_vlc) {
813                                         if (decode_exp_vlc(pwd, ch) < 0)
814                                                 return -1;
815                                 } else {
816                                         decode_exp_lsp(pwd, ch);
817                                 }
818                                 pwd->exponents_bsize[ch] = bsize;
819                         }
820                 }
821         }
822
823         /* parse spectral coefficients : just RLE encoding */
824         for (ch = 0; ch < pwd->ahi.channels; ch++) {
825                 if (pwd->channel_coded[ch]) {
826                         struct vlc *coef_vlc;
827                         int level, run, sign, tindex;
828                         int16_t *ptr, *eptr;
829                         const uint16_t *level_table, *run_table;
830
831                         /* special VLC tables are used for ms stereo because
832                            there is potentially less energy there */
833                         tindex = (ch == 1 && pwd->ms_stereo);
834                         coef_vlc = &pwd->coef_vlc[tindex];
835                         run_table = pwd->run_table[tindex];
836                         level_table = pwd->level_table[tindex];
837                         /* XXX: optimize */
838                         ptr = &pwd->coefs1[ch][0];
839                         eptr = ptr + nb_coefs[ch];
840                         memset(ptr, 0, pwd->block_len * sizeof(int16_t));
841                         for (;;) {
842                                 code =
843                                     get_vlc(&pwd->gb, coef_vlc->table, VLCBITS,
844                                              VLCMAX);
845                                 if (code < 0)
846                                         return -1;
847                                 if (code == 1) {
848                                         /* EOB */
849                                         break;
850                                 } else if (code == 0) {
851                                         /* escape */
852                                         level = get_bits(&pwd->gb, coef_nb_bits);
853                                         /* NOTE: this is rather suboptimal. reading
854                                            block_len_bits would be better */
855                                         run =
856                                             get_bits(&pwd->gb, pwd->frame_len_bits);
857                                 } else {
858                                         /* normal code */
859                                         run = run_table[code];
860                                         level = level_table[code];
861                                 }
862                                 sign = get_bit(&pwd->gb);
863                                 if (!sign)
864                                         level = -level;
865                                 ptr += run;
866                                 if (ptr >= eptr) {
867                                         PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
868                                         break;
869                                 }
870                                 *ptr++ = level;
871                                 /* NOTE: EOB can be omitted */
872                                 if (ptr >= eptr)
873                                         break;
874                         }
875                 }
876         }
877
878         /* normalize */
879         {
880                 int n4 = pwd->block_len / 2;
881                 mdct_norm = 1.0 / (float) n4;
882         }
883
884         /* finally compute the MDCT coefficients */
885         for (ch = 0; ch < pwd->ahi.channels; ch++) {
886                 if (pwd->channel_coded[ch]) {
887                         int16_t *coefs1;
888                         float *coefs, *exponents, mult, mult1, noise;
889                         int i, j, n1, last_high_band, esize;
890                         float exp_power[HIGH_BAND_MAX_SIZE];
891
892                         coefs1 = pwd->coefs1[ch];
893                         exponents = pwd->exponents[ch];
894                         esize = pwd->exponents_bsize[ch];
895                         mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
896                         mult *= mdct_norm;
897                         coefs = pwd->coefs[ch];
898                         if (pwd->use_noise_coding) {
899                                 mult1 = mult;
900                                 /* very low freqs : noise */
901                                 for (i = 0; i < pwd->coefs_start; i++) {
902                                         *coefs++ =
903                                             pwd->noise_table[pwd->noise_index] *
904                                             exponents[i << bsize >> esize] *
905                                             mult1;
906                                         pwd->noise_index =
907                                             (pwd->noise_index +
908                                              1) & (NOISE_TAB_SIZE - 1);
909                                 }
910
911                                 n1 = pwd->exponent_high_sizes[bsize];
912
913                                 /* compute power of high bands */
914                                 exponents = pwd->exponents[ch] +
915                                     (pwd->high_band_start[bsize] << bsize);
916                                 last_high_band = 0;     /* avoid warning */
917                                 for (j = 0; j < n1; j++) {
918                                         n = pwd->exponent_high_bands[pwd->
919                                                                    frame_len_bits
920                                                                    -
921                                                                    pwd->
922                                                                    block_len_bits]
923                                             [j];
924                                         if (pwd->high_band_coded[ch][j]) {
925                                                 float e2, val;
926                                                 e2 = 0;
927                                                 for (i = 0; i < n; i++) {
928                                                         val = exponents[i << bsize
929                                                                       >> esize];
930                                                         e2 += val * val;
931                                                 }
932                                                 exp_power[j] = e2 / n;
933                                                 last_high_band = j;
934                                         }
935                                         exponents += n << bsize;
936                                 }
937
938                                 /* main freqs and high freqs */
939                                 exponents =
940                                     pwd->exponents[ch] +
941                                     (pwd->coefs_start << bsize);
942                                 for (j = -1; j < n1; j++) {
943                                         if (j < 0) {
944                                                 n = pwd->high_band_start[bsize] -
945                                                     pwd->coefs_start;
946                                         } else {
947                                                 n = pwd->exponent_high_bands[pwd->
948                                                                            frame_len_bits
949                                                                            -
950                                                                            pwd->
951                                                                            block_len_bits]
952                                                     [j];
953                                         }
954                                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
955                                                 /* use noise with specified power */
956                                                 mult1 =
957                                                     sqrt(exp_power[j] /
958                                                          exp_power
959                                                          [last_high_band]);
960                                                 /* XXX: use a table */
961                                                 mult1 =
962                                                     mult1 * pow(10,
963                                                                 pwd->
964                                                                 high_band_values
965                                                                 [ch][j] * 0.05);
966                                                 mult1 =
967                                                     mult1 /
968                                                     (pwd->max_exponent[ch] *
969                                                      pwd->noise_mult);
970                                                 mult1 *= mdct_norm;
971                                                 for (i = 0; i < n; i++) {
972                                                         noise =
973                                                             pwd->noise_table[pwd->
974                                                                            noise_index];
975                                                         pwd->noise_index =
976                                                             (pwd->noise_index +
977                                                              1) &
978                                                             (NOISE_TAB_SIZE -
979                                                              1);
980                                                         *coefs++ =
981                                                             noise *
982                                                             exponents[i << bsize
983                                                                       >> esize]
984                                                             * mult1;
985                                                 }
986                                                 exponents += n << bsize;
987                                         } else {
988                                                 /* coded values + small noise */
989                                                 for (i = 0; i < n; i++) {
990                                                         noise =
991                                                             pwd->noise_table[pwd->
992                                                                            noise_index];
993                                                         pwd->noise_index =
994                                                             (pwd->noise_index +
995                                                              1) &
996                                                             (NOISE_TAB_SIZE -
997                                                              1);
998                                                         *coefs++ =
999                                                             ((*coefs1++) +
1000                                                              noise) *
1001                                                             exponents[i << bsize
1002                                                                       >> esize]
1003                                                             * mult;
1004                                                 }
1005                                                 exponents += n << bsize;
1006                                         }
1007                                 }
1008
1009                                 /* very high freqs : noise */
1010                                 n = pwd->block_len - pwd->coefs_end[bsize];
1011                                 mult1 =
1012                                     mult * exponents[((-1 << bsize)) >> esize];
1013                                 for (i = 0; i < n; i++) {
1014                                         *coefs++ =
1015                                             pwd->noise_table[pwd->noise_index] *
1016                                             mult1;
1017                                         pwd->noise_index =
1018                                             (pwd->noise_index +
1019                                              1) & (NOISE_TAB_SIZE - 1);
1020                                 }
1021                         } else {
1022                                 /* XXX: optimize more */
1023                                 for (i = 0; i < pwd->coefs_start; i++)
1024                                         *coefs++ = 0.0;
1025                                 n = nb_coefs[ch];
1026                                 for (i = 0; i < n; i++) {
1027                                         *coefs++ =
1028                                             coefs1[i] *
1029                                             exponents[i << bsize >> esize] *
1030                                             mult;
1031                                 }
1032                                 n = pwd->block_len - pwd->coefs_end[bsize];
1033                                 for (i = 0; i < n; i++)
1034                                         *coefs++ = 0.0;
1035                         }
1036                 }
1037         }
1038
1039         if (pwd->ms_stereo && pwd->channel_coded[1]) {
1040                 float a, b;
1041                 int i;
1042
1043                 /*
1044                  * Nominal case for ms stereo: we do it before mdct.
1045                  *
1046                  * No need to optimize this case because it should almost never
1047                  * happen.
1048                  */
1049                 if (!pwd->channel_coded[0]) {
1050                         PARA_NOTICE_LOG("rare ms-stereo\n");
1051                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
1052                         pwd->channel_coded[0] = 1;
1053                 }
1054                 for (i = 0; i < pwd->block_len; i++) {
1055                         a = pwd->coefs[0][i];
1056                         b = pwd->coefs[1][i];
1057                         pwd->coefs[0][i] = a + b;
1058                         pwd->coefs[1][i] = a - b;
1059                 }
1060         }
1061
1062 next:
1063         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1064                 int n4, index;
1065
1066                 n = pwd->block_len;
1067                 n4 = pwd->block_len / 2;
1068                 if (pwd->channel_coded[ch])
1069                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1070                 else if (!(pwd->ms_stereo && ch == 1))
1071                         memset(pwd->output, 0, sizeof(pwd->output));
1072
1073                 /* multiply by the window and add in the frame */
1074                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1075                 wma_window(pwd, &pwd->frame_out[ch][index]);
1076         }
1077
1078         /* update block number */
1079         pwd->block_pos += pwd->block_len;
1080         if (pwd->block_pos >= pwd->frame_len)
1081                 return 1;
1082         else
1083                 return 0;
1084 }
1085
1086 /*
1087  * Clip a signed integer value into the -32768,32767 range.
1088  *
1089  * \param a The value to clip.
1090  *
1091  * \return The clipped value.
1092  */
1093 static inline int16_t av_clip_int16(int a)
1094 {
1095         if ((a + 32768) & ~65535)
1096                 return (a >> 31) ^ 32767;
1097         else
1098                 return a;
1099 }
1100
1101 /* Decode a frame of frame_len samples. */
1102 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1103 {
1104         int ret, i, n, ch, incr;
1105         int16_t *ptr;
1106         float *iptr;
1107
1108         /* read each block */
1109         pwd->block_pos = 0;
1110         for (;;) {
1111                 ret = wma_decode_block(pwd);
1112                 if (ret < 0)
1113                         return -1;
1114                 if (ret)
1115                         break;
1116         }
1117
1118         /* convert frame to integer */
1119         n = pwd->frame_len;
1120         incr = pwd->ahi.channels;
1121         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1122                 ptr = samples + ch;
1123                 iptr = pwd->frame_out[ch];
1124
1125                 for (i = 0; i < n; i++) {
1126                         *ptr = av_clip_int16(lrintf(*iptr++));
1127                         ptr += incr;
1128                 }
1129                 /* prepare for next block */
1130                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1131                         pwd->frame_len * sizeof(float));
1132         }
1133         return 0;
1134 }
1135
1136 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1137                 int *data_size, const uint8_t *buf, int buf_size)
1138 {
1139         int ret;
1140         int16_t *samples;
1141         static int frame_count;
1142
1143         if (buf_size == 0) {
1144                 pwd->last_superframe_len = 0;
1145                 return 0;
1146         }
1147         if (buf_size < pwd->ahi.block_align)
1148                 return 0;
1149         buf_size = pwd->ahi.block_align;
1150         samples = data;
1151         init_get_bits(&pwd->gb, buf, buf_size);
1152         if (pwd->use_bit_reservoir) {
1153                 int i, nb_frames, bit_offset, pos, len;
1154                 uint8_t *q;
1155
1156                 /* read super frame header */
1157                 skip_bits(&pwd->gb, 4); /* super frame index */
1158                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1159                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1160                 ret = -E_WMA_OUTPUT_SPACE;
1161                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1162                                 * sizeof(int16_t) > *data_size)
1163                         goto fail;
1164
1165                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1166
1167                 if (pwd->last_superframe_len > 0) {
1168                         /* add bit_offset bits to last frame */
1169                         ret = -E_WMA_BAD_SUPERFRAME;
1170                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1171                                         MAX_CODED_SUPERFRAME_SIZE)
1172                                 goto fail;
1173                         q = pwd->last_superframe + pwd->last_superframe_len;
1174                         len = bit_offset;
1175                         while (len > 7) {
1176                                 *q++ = get_bits(&pwd->gb, 8);
1177                                 len -= 8;
1178                         }
1179                         if (len > 0)
1180                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1181
1182                         /* XXX: bit_offset bits into last frame */
1183                         init_get_bits(&pwd->gb, pwd->last_superframe,
1184                                 MAX_CODED_SUPERFRAME_SIZE);
1185                         /* skip unused bits */
1186                         if (pwd->last_bitoffset > 0)
1187                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1188                         /*
1189                          * This frame is stored in the last superframe and in
1190                          * the current one.
1191                          */
1192                         ret = -E_WMA_DECODE;
1193                         if (wma_decode_frame(pwd, samples) < 0)
1194                                 goto fail;
1195                         frame_count++;
1196                         samples += pwd->ahi.channels * pwd->frame_len;
1197                 }
1198
1199                 /* read each frame starting from bit_offset */
1200                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1201                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1202                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1203                 len = pos & 7;
1204                 if (len > 0)
1205                         skip_bits(&pwd->gb, len);
1206
1207                 pwd->reset_block_lengths = 1;
1208                 for (i = 0; i < nb_frames; i++) {
1209                         ret = -E_WMA_DECODE;
1210                         if (wma_decode_frame(pwd, samples) < 0)
1211                                 goto fail;
1212                         frame_count++;
1213                         samples += pwd->ahi.channels * pwd->frame_len;
1214                 }
1215
1216                 /* we copy the end of the frame in the last frame buffer */
1217                 pos = get_bits_count(&pwd->gb) +
1218                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1219                 pwd->last_bitoffset = pos & 7;
1220                 pos >>= 3;
1221                 len = buf_size - pos;
1222                 ret = -E_WMA_BAD_SUPERFRAME;
1223                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1224                         goto fail;
1225                 pwd->last_superframe_len = len;
1226                 memcpy(pwd->last_superframe, buf + pos, len);
1227         } else {
1228                 PARA_DEBUG_LOG("not using bit reservoir\n");
1229                 ret = -E_WMA_OUTPUT_SPACE;
1230                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1231                         goto fail;
1232                 /* single frame decode */
1233                 ret = -E_WMA_DECODE;
1234                 if (wma_decode_frame(pwd, samples) < 0)
1235                         goto fail;
1236                 frame_count++;
1237                 samples += pwd->ahi.channels * pwd->frame_len;
1238         }
1239         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1240                 "outbytes: %d, eaten: %d\n",
1241                 frame_count, pwd->frame_len, pwd->block_len,
1242                 (int8_t *) samples - (int8_t *) data, pwd->ahi.block_align);
1243         *data_size = (int8_t *)samples - (int8_t *)data;
1244         return pwd->ahi.block_align;
1245 fail:
1246         /* reset the bit reservoir on errors */
1247         pwd->last_superframe_len = 0;
1248         return ret;
1249 }
1250
1251 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1252                 struct filter_node *fn)
1253 {
1254         int ret, out_size = fn->bufsize - fn->loaded;
1255         struct private_wmadec_data *pwd = fn->private_data;
1256
1257         if (out_size < 128 * 1024)
1258                 return 0;
1259         if (!pwd) {
1260                 ret = wma_decode_init(inbuffer, len, &pwd);
1261                 if (ret <= 0)
1262                         return ret;
1263                 fn->private_data = pwd;
1264                 fn->fc->channels = pwd->ahi.channels;
1265                 fn->fc->samplerate = pwd->ahi.sample_rate;
1266                 return pwd->ahi.header_len;
1267         }
1268         /* skip 31 bytes */
1269         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1270                 return 0;
1271         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1272                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1273                 len - WMA_FRAME_SKIP);
1274         if (ret < 0)
1275                 return ret;
1276         fn->loaded += out_size;
1277         return ret + WMA_FRAME_SKIP;
1278 }
1279
1280 static void wmadec_close(struct filter_node *fn)
1281 {
1282         struct private_wmadec_data *pwd = fn->private_data;
1283
1284         if (!pwd)
1285                 return;
1286         wmadec_cleanup(pwd);
1287         free(fn->buf);
1288         fn->buf = NULL;
1289         free(fn->private_data);
1290         fn->private_data = NULL;
1291 }
1292
1293 static void wmadec_open(struct filter_node *fn)
1294 {
1295         fn->bufsize = 1024 * 1024;
1296         fn->buf = para_malloc(fn->bufsize);
1297         fn->private_data = NULL;
1298         fn->loaded = 0;
1299 }
1300
1301 /**
1302  * The init function of the wma decoder.
1303  *
1304  * \param f Its fields are filled in by the function.
1305  */
1306 void wmadec_filter_init(struct filter *f)
1307 {
1308         f->open = wmadec_open;
1309         f->close = wmadec_close;
1310         f->convert = wmadec_convert;
1311 }