]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
Add __aligned macro to gcc-compat.h. and use this instead of DECLARE_ALIGNED.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27 #include <sys/select.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "imdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         struct asf_header_info ahi;
63         struct getbit_context gb;
64         int use_bit_reservoir;
65         int use_variable_block_len;
66         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
67         int use_noise_coding;   ///< true if perceptual noise is added
68         int byte_offset_bits;
69         struct vlc exp_vlc;
70         int exponent_sizes[BLOCK_NB_SIZES];
71         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
72         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
73         int coefs_start;        ///< first coded coef
74         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
75         int exponent_high_sizes[BLOCK_NB_SIZES];
76         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
77         struct vlc hgain_vlc;
78
79         /* coded values in high bands */
80         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
82
83         /* there are two possible tables for spectral coefficients */
84         struct vlc coef_vlc[2];
85         uint16_t *run_table[2];
86         uint16_t *level_table[2];
87         const struct coef_vlc_table *coef_vlcs[2];
88         /* frame info */
89         int frame_len;          ///< frame length in samples
90         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
91         int nb_block_sizes;     ///< number of block sizes
92         /* block info */
93         int reset_block_lengths;
94         int block_len_bits;     ///< log2 of current block length
95         int next_block_len_bits;        ///< log2 of next block length
96         int prev_block_len_bits;        ///< log2 of prev block length
97         int block_len;          ///< block length in samples
98         int block_pos;          ///< current position in frame
99         uint8_t ms_stereo;      ///< true if mid/side stereo mode
100         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
101         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
102         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
103         float max_exponent[MAX_CHANNELS];
104         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
106         float output[BLOCK_MAX_SIZE * 2];
107         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
108         float *windows[BLOCK_NB_SIZES];
109         /* output buffer for one frame and the last for IMDCT windowing */
110         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
111         /* last frame info */
112         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
113         int last_bitoffset;
114         int last_superframe_len;
115         float noise_table[NOISE_TAB_SIZE];
116         int noise_index;
117         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
118         /* lsp_to_curve tables */
119         float lsp_cos_table[BLOCK_MAX_SIZE];
120         float lsp_pow_e_table[256];
121         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
122         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
123 };
124
125 #define EXPVLCBITS 8
126 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
127
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
130
131 #define VLCBITS 9
132 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
133
134 #define SINE_WINDOW(x) float ff_sine_ ## x[x] __aligned(16)
135
136 SINE_WINDOW(128);
137 SINE_WINDOW(256);
138 SINE_WINDOW(512);
139 SINE_WINDOW(1024);
140 SINE_WINDOW(2048);
141 SINE_WINDOW(4096);
142
143 static float *ff_sine_windows[6] = {
144         ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024,
145         ff_sine_2048, ff_sine_4096
146 };
147
148 /* Generate a sine window. */
149 static void sine_window_init(float *window, int n)
150 {
151         int i;
152
153         for (i = 0; i < n; i++)
154                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
155 }
156
157 static void wmadec_cleanup(struct private_wmadec_data *pwd)
158 {
159         int i;
160
161         for (i = 0; i < pwd->nb_block_sizes; i++)
162                 imdct_end(pwd->mdct_ctx[i]);
163         if (pwd->use_exp_vlc)
164                 free_vlc(&pwd->exp_vlc);
165         if (pwd->use_noise_coding)
166                 free_vlc(&pwd->hgain_vlc);
167         for (i = 0; i < 2; i++) {
168                 free_vlc(&pwd->coef_vlc[i]);
169                 free(pwd->run_table[i]);
170                 free(pwd->level_table[i]);
171         }
172 }
173
174 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
175                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
176 {
177         int n = vlc_table->n;
178         const uint8_t *table_bits = vlc_table->huffbits;
179         const uint32_t *table_codes = vlc_table->huffcodes;
180         const uint16_t *levels_table = vlc_table->levels;
181         uint16_t *run_table, *level_table;
182         int i, l, j, k, level;
183
184         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
185
186         run_table = para_malloc(n * sizeof(uint16_t));
187         level_table = para_malloc(n * sizeof(uint16_t));
188         i = 2;
189         level = 1;
190         k = 0;
191         while (i < n) {
192                 l = levels_table[k++];
193                 for (j = 0; j < l; j++) {
194                         run_table[i] = j;
195                         level_table[i] = level;
196                         i++;
197                 }
198                 level++;
199         }
200         *prun_table = run_table;
201         *plevel_table = level_table;
202 }
203
204 /* compute the scale factor band sizes for each MDCT block size */
205 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
206         float high_freq)
207 {
208         struct asf_header_info *ahi = &pwd->ahi;
209         int a, b, pos, lpos, k, block_len, i, j, n;
210         const uint8_t *table;
211
212         pwd->coefs_start = 0;
213         for (k = 0; k < pwd->nb_block_sizes; k++) {
214                 block_len = pwd->frame_len >> k;
215
216                 table = NULL;
217                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
218                 if (a < 3) {
219                         if (ahi->sample_rate >= 44100)
220                                 table = exponent_band_44100[a];
221                         else if (ahi->sample_rate >= 32000)
222                                 table = exponent_band_32000[a];
223                         else if (ahi->sample_rate >= 22050)
224                                 table = exponent_band_22050[a];
225                 }
226                 if (table) {
227                         n = *table++;
228                         for (i = 0; i < n; i++)
229                                 pwd->exponent_bands[k][i] = table[i];
230                         pwd->exponent_sizes[k] = n;
231                 } else {
232                         j = 0;
233                         lpos = 0;
234                         for (i = 0; i < 25; i++) {
235                                 a = wma_critical_freqs[i];
236                                 b = ahi->sample_rate;
237                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
238                                 pos <<= 2;
239                                 if (pos > block_len)
240                                         pos = block_len;
241                                 if (pos > lpos)
242                                         pwd->exponent_bands[k][j++] = pos - lpos;
243                                 if (pos >= block_len)
244                                         break;
245                                 lpos = pos;
246                         }
247                         pwd->exponent_sizes[k] = j;
248                 }
249
250                 /* max number of coefs */
251                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
252                 /* high freq computation */
253                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
254                         / ahi->sample_rate + 0.5);
255                 n = pwd->exponent_sizes[k];
256                 j = 0;
257                 pos = 0;
258                 for (i = 0; i < n; i++) {
259                         int start, end;
260                         start = pos;
261                         pos += pwd->exponent_bands[k][i];
262                         end = pos;
263                         if (start < pwd->high_band_start[k])
264                                 start = pwd->high_band_start[k];
265                         if (end > pwd->coefs_end[k])
266                                 end = pwd->coefs_end[k];
267                         if (end > start)
268                                 pwd->exponent_high_bands[k][j++] = end - start;
269                 }
270                 pwd->exponent_high_sizes[k] = j;
271         }
272 }
273
274 static int wma_init(struct private_wmadec_data *pwd)
275 {
276         int i;
277         float bps1, high_freq;
278         volatile float bps;
279         int sample_rate1;
280         int coef_vlc_table;
281         struct asf_header_info *ahi = &pwd->ahi;
282         int flags2 = ahi->flags2;
283
284         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
285                 || ahi->channels <= 0 || ahi->channels > 8
286                 || ahi->bit_rate <= 0)
287                 return -E_WMA_BAD_PARAMS;
288
289         /* compute MDCT block size */
290         if (ahi->sample_rate <= 16000) {
291                 pwd->frame_len_bits = 9;
292         } else if (ahi->sample_rate <= 22050) {
293                 pwd->frame_len_bits = 10;
294         } else {
295                 pwd->frame_len_bits = 11;
296         }
297         pwd->frame_len = 1 << pwd->frame_len_bits;
298         if (pwd->use_variable_block_len) {
299                 int nb_max, nb;
300                 nb = ((flags2 >> 3) & 3) + 1;
301                 if ((ahi->bit_rate / ahi->channels) >= 32000)
302                         nb += 2;
303                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
304                 if (nb > nb_max)
305                         nb = nb_max;
306                 pwd->nb_block_sizes = nb + 1;
307         } else
308                 pwd->nb_block_sizes = 1;
309
310         /* init rate dependent parameters */
311         pwd->use_noise_coding = 1;
312         high_freq = ahi->sample_rate * 0.5;
313
314         /* wma2 rates are normalized */
315         sample_rate1 = ahi->sample_rate;
316         if (sample_rate1 >= 44100)
317                 sample_rate1 = 44100;
318         else if (sample_rate1 >= 22050)
319                 sample_rate1 = 22050;
320         else if (sample_rate1 >= 16000)
321                 sample_rate1 = 16000;
322         else if (sample_rate1 >= 11025)
323                 sample_rate1 = 11025;
324         else if (sample_rate1 >= 8000)
325                 sample_rate1 = 8000;
326
327         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
328         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
329         /*
330          * Compute high frequency value and choose if noise coding should be
331          * activated.
332          */
333         bps1 = bps;
334         if (ahi->channels == 2)
335                 bps1 = bps * 1.6;
336         if (sample_rate1 == 44100) {
337                 if (bps1 >= 0.61)
338                         pwd->use_noise_coding = 0;
339                 else
340                         high_freq = high_freq * 0.4;
341         } else if (sample_rate1 == 22050) {
342                 if (bps1 >= 1.16)
343                         pwd->use_noise_coding = 0;
344                 else if (bps1 >= 0.72)
345                         high_freq = high_freq * 0.7;
346                 else
347                         high_freq = high_freq * 0.6;
348         } else if (sample_rate1 == 16000) {
349                 if (bps > 0.5)
350                         high_freq = high_freq * 0.5;
351                 else
352                         high_freq = high_freq * 0.3;
353         } else if (sample_rate1 == 11025) {
354                 high_freq = high_freq * 0.7;
355         } else if (sample_rate1 == 8000) {
356                 if (bps <= 0.625) {
357                         high_freq = high_freq * 0.5;
358                 } else if (bps > 0.75) {
359                         pwd->use_noise_coding = 0;
360                 } else {
361                         high_freq = high_freq * 0.65;
362                 }
363         } else {
364                 if (bps >= 0.8) {
365                         high_freq = high_freq * 0.75;
366                 } else if (bps >= 0.6) {
367                         high_freq = high_freq * 0.6;
368                 } else {
369                         high_freq = high_freq * 0.5;
370                 }
371         }
372         PARA_INFO_LOG("channels=%d sample_rate=%d "
373                 "bitrate=%d block_align=%d\n",
374                 ahi->channels, ahi->sample_rate,
375                 ahi->bit_rate, ahi->block_align);
376         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
377                 "high_freq=%f bitoffset=%d\n",
378                 pwd->frame_len, bps, bps1,
379                 high_freq, pwd->byte_offset_bits);
380         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
381                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
382
383         compute_scale_factor_band_sizes(pwd, high_freq);
384         /* init MDCT windows : simple sinus window */
385         for (i = 0; i < pwd->nb_block_sizes; i++) {
386                 int n;
387                 n = 1 << (pwd->frame_len_bits - i);
388                 sine_window_init(ff_sine_windows[pwd->frame_len_bits - i - 7], n);
389                 pwd->windows[i] = ff_sine_windows[pwd->frame_len_bits - i - 7];
390         }
391
392         pwd->reset_block_lengths = 1;
393
394         if (pwd->use_noise_coding) {
395                 /* init the noise generator */
396                 if (pwd->use_exp_vlc)
397                         pwd->noise_mult = 0.02;
398                 else
399                         pwd->noise_mult = 0.04;
400
401                 {
402                         unsigned int seed;
403                         float norm;
404                         seed = 1;
405                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
406                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
407                                 seed = seed * 314159 + 1;
408                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
409                         }
410                 }
411         }
412
413         /* choose the VLC tables for the coefficients */
414         coef_vlc_table = 2;
415         if (ahi->sample_rate >= 32000) {
416                 if (bps1 < 0.72)
417                         coef_vlc_table = 0;
418                 else if (bps1 < 1.16)
419                         coef_vlc_table = 1;
420         }
421         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
422         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
423         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
424                 pwd->coef_vlcs[0]);
425         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
426                 pwd->coef_vlcs[1]);
427         return 0;
428 }
429
430 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
431 {
432         float wdel, a, b;
433         int i, e, m;
434
435         wdel = M_PI / frame_len;
436         for (i = 0; i < frame_len; i++)
437                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
438
439         /* tables for x^-0.25 computation */
440         for (i = 0; i < 256; i++) {
441                 e = i - 126;
442                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
443         }
444
445         /* These two tables are needed to avoid two operations in pow_m1_4. */
446         b = 1.0;
447         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
448                 m = (1 << LSP_POW_BITS) + i;
449                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
450                 a = pow(a, -0.25);
451                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
452                 pwd->lsp_pow_m_table2[i] = b - a;
453                 b = a;
454         }
455 }
456
457 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
458 {
459         struct private_wmadec_data *pwd;
460         int ret, i;
461
462         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
463         pwd = para_calloc(sizeof(*pwd));
464         ret = read_asf_header(initial_buf, len, &pwd->ahi);
465         if (ret <= 0) {
466                 free(pwd);
467                 return ret;
468         }
469
470         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
471         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
472         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
473
474         ret = wma_init(pwd);
475         if (ret < 0)
476                 return ret;
477         /* init MDCT */
478         for (i = 0; i < pwd->nb_block_sizes; i++) {
479                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
480                 if (ret < 0)
481                         return ret;
482         }
483         if (pwd->use_noise_coding) {
484                 PARA_INFO_LOG("using noise coding\n");
485                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
486                         sizeof(ff_wma_hgain_huffbits), ff_wma_hgain_huffbits,
487                         ff_wma_hgain_huffcodes, 2);
488         }
489
490         if (pwd->use_exp_vlc) {
491                 PARA_INFO_LOG("using exp_vlc\n");
492                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
493                 sizeof(ff_wma_scale_huffbits), ff_wma_scale_huffbits,
494                 ff_wma_scale_huffcodes, 4);
495         } else {
496                 PARA_INFO_LOG("using curve\n");
497                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
498         }
499         *result = pwd;
500         return pwd->ahi.header_len;
501 }
502
503 /**
504  * compute x^-0.25 with an exponent and mantissa table. We use linear
505  * interpolation to reduce the mantissa table size at a small speed
506  * expense (linear interpolation approximately doubles the number of
507  * bits of precision).
508  */
509 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
510 {
511         union {
512                 float f;
513                 unsigned int v;
514         } u, t;
515         unsigned int e, m;
516         float a, b;
517
518         u.f = x;
519         e = u.v >> 23;
520         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
521         /* build interpolation scale: 1 <= t < 2. */
522         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
523         a = pwd->lsp_pow_m_table1[m];
524         b = pwd->lsp_pow_m_table2[m];
525         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
526 }
527
528 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
529                 float *out, float *val_max_ptr, int n, float *lsp)
530 {
531         int i, j;
532         float p, q, w, v, val_max;
533
534         val_max = 0;
535         for (i = 0; i < n; i++) {
536                 p = 0.5f;
537                 q = 0.5f;
538                 w = pwd->lsp_cos_table[i];
539                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
540                         q *= w - lsp[j - 1];
541                         p *= w - lsp[j];
542                 }
543                 p *= p * (2.0f - w);
544                 q *= q * (2.0f + w);
545                 v = p + q;
546                 v = pow_m1_4(pwd, v);
547                 if (v > val_max)
548                         val_max = v;
549                 out[i] = v;
550         }
551         *val_max_ptr = val_max;
552 }
553
554 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
555 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
556 {
557         float lsp_coefs[NB_LSP_COEFS];
558         int val, i;
559
560         for (i = 0; i < NB_LSP_COEFS; i++) {
561                 if (i == 0 || i >= 8)
562                         val = get_bits(&pwd->gb, 3);
563                 else
564                         val = get_bits(&pwd->gb, 4);
565                 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
566         }
567
568         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
569                 pwd->block_len, lsp_coefs);
570 }
571
572 /* Decode exponents coded with VLC codes. */
573 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
574 {
575         int last_exp, n, code;
576         const uint16_t *ptr, *band_ptr;
577         float v, *q, max_scale, *q_end;
578
579         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
580         ptr = band_ptr;
581         q = pwd->exponents[ch];
582         q_end = q + pwd->block_len;
583         max_scale = 0;
584         last_exp = 36;
585
586         while (q < q_end) {
587                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
588                 if (code < 0)
589                         return -1;
590                 /* NOTE: this offset is the same as MPEG4 AAC ! */
591                 last_exp += code - 60;
592                 /* XXX: use a table */
593                 v = pow(10, last_exp * (1.0 / 16.0));
594                 if (v > max_scale)
595                         max_scale = v;
596                 n = *ptr++;
597                 do {
598                         *q++ = v;
599                 } while (--n);
600         }
601         pwd->max_exponent[ch] = max_scale;
602         return 0;
603 }
604
605 /* compute src0 * src1 + src2 */
606 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
607                 const float *src2, int len)
608 {
609         int i;
610
611         for (i = 0; i < len; i++)
612                 dst[i] = src0[i] * src1[i] + src2[i];
613 }
614
615 static inline void vector_mult_reverse(float *dst, const float *src0,
616                 const float *src1, int len)
617 {
618         int i;
619
620         src1 += len - 1;
621         for (i = 0; i < len; i++)
622                 dst[i] = src0[i] * src1[-i];
623 }
624
625 /**
626  * Apply MDCT window and add into output.
627  *
628  * We ensure that when the windows overlap their squared sum
629  * is always 1 (MDCT reconstruction rule).
630  */
631 static void wma_window(struct private_wmadec_data *pwd, float *out)
632 {
633         float *in = pwd->output;
634         int block_len, bsize, n;
635
636         /* left part */
637         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
638                 block_len = pwd->block_len;
639                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
640                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
641         } else {
642                 block_len = 1 << pwd->prev_block_len_bits;
643                 n = (pwd->block_len - block_len) / 2;
644                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
645                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
646                         block_len);
647                 memcpy(out + n + block_len, in + n + block_len,
648                         n * sizeof(float));
649         }
650         out += pwd->block_len;
651         in += pwd->block_len;
652         /* right part */
653         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
654                 block_len = pwd->block_len;
655                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
656                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
657         } else {
658                 block_len = 1 << pwd->next_block_len_bits;
659                 n = (pwd->block_len - block_len) / 2;
660                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
661                 memcpy(out, in, n * sizeof(float));
662                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
663                         block_len);
664                 memset(out + n + block_len, 0, n * sizeof(float));
665         }
666 }
667
668 static int wma_total_gain_to_bits(int total_gain)
669 {
670         if (total_gain < 15)
671                 return 13;
672         else if (total_gain < 32)
673                 return 12;
674         else if (total_gain < 40)
675                 return 11;
676         else if (total_gain < 45)
677                 return 10;
678         else
679                 return 9;
680 }
681
682 /**
683  * @return 0 if OK. 1 if last block of frame. return -1 if
684  * unrecorrable error.
685  */
686 static int wma_decode_block(struct private_wmadec_data *pwd)
687 {
688         int n, v, ch, code, bsize;
689         int coef_nb_bits, total_gain;
690         int nb_coefs[MAX_CHANNELS];
691         float mdct_norm;
692
693         /* compute current block length */
694         if (pwd->use_variable_block_len) {
695                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
696
697                 if (pwd->reset_block_lengths) {
698                         pwd->reset_block_lengths = 0;
699                         v = get_bits(&pwd->gb, n);
700                         if (v >= pwd->nb_block_sizes)
701                                 return -1;
702                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
703                         v = get_bits(&pwd->gb, n);
704                         if (v >= pwd->nb_block_sizes)
705                                 return -1;
706                         pwd->block_len_bits = pwd->frame_len_bits - v;
707                 } else {
708                         /* update block lengths */
709                         pwd->prev_block_len_bits = pwd->block_len_bits;
710                         pwd->block_len_bits = pwd->next_block_len_bits;
711                 }
712                 v = get_bits(&pwd->gb, n);
713                 if (v >= pwd->nb_block_sizes)
714                         return -1;
715                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
716         } else {
717                 /* fixed block len */
718                 pwd->next_block_len_bits = pwd->frame_len_bits;
719                 pwd->prev_block_len_bits = pwd->frame_len_bits;
720                 pwd->block_len_bits = pwd->frame_len_bits;
721         }
722
723         /* now check if the block length is coherent with the frame length */
724         pwd->block_len = 1 << pwd->block_len_bits;
725         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
726                 return -E_INCOHERENT_BLOCK_LEN;
727
728         if (pwd->ahi.channels == 2)
729                 pwd->ms_stereo = get_bit(&pwd->gb);
730         v = 0;
731         for (ch = 0; ch < pwd->ahi.channels; ch++) {
732                 int a = get_bit(&pwd->gb);
733                 pwd->channel_coded[ch] = a;
734                 v |= a;
735         }
736
737         bsize = pwd->frame_len_bits - pwd->block_len_bits;
738
739         /* if no channel coded, no need to go further */
740         /* XXX: fix potential framing problems */
741         if (!v)
742                 goto next;
743
744         /* read total gain and extract corresponding number of bits for
745            coef escape coding */
746         total_gain = 1;
747         for (;;) {
748                 int a = get_bits(&pwd->gb, 7);
749                 total_gain += a;
750                 if (a != 127)
751                         break;
752         }
753
754         coef_nb_bits = wma_total_gain_to_bits(total_gain);
755
756         /* compute number of coefficients */
757         n = pwd->coefs_end[bsize] - pwd->coefs_start;
758         for (ch = 0; ch < pwd->ahi.channels; ch++)
759                 nb_coefs[ch] = n;
760
761         /* complex coding */
762         if (pwd->use_noise_coding) {
763                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
764                         if (pwd->channel_coded[ch]) {
765                                 int i, m, a;
766                                 m = pwd->exponent_high_sizes[bsize];
767                                 for (i = 0; i < m; i++) {
768                                         a = get_bit(&pwd->gb);
769                                         pwd->high_band_coded[ch][i] = a;
770                                         /* if noise coding, the coefficients are not transmitted */
771                                         if (a)
772                                                 nb_coefs[ch] -=
773                                                     pwd->
774                                                     exponent_high_bands[bsize]
775                                                     [i];
776                                 }
777                         }
778                 }
779                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
780                         if (pwd->channel_coded[ch]) {
781                                 int i, val;
782
783                                 n = pwd->exponent_high_sizes[bsize];
784                                 val = (int) 0x80000000;
785                                 for (i = 0; i < n; i++) {
786                                         if (pwd->high_band_coded[ch][i]) {
787                                                 if (val == (int) 0x80000000) {
788                                                         val =
789                                                             get_bits(&pwd->gb,
790                                                                      7) - 19;
791                                                 } else {
792                                                         code =
793                                                             get_vlc(&pwd->gb,
794                                                                      pwd->
795                                                                      hgain_vlc.
796                                                                      table,
797                                                                      HGAINVLCBITS,
798                                                                      HGAINMAX);
799                                                         if (code < 0)
800                                                                 return -1;
801                                                         val += code - 18;
802                                                 }
803                                                 pwd->high_band_values[ch][i] =
804                                                     val;
805                                         }
806                                 }
807                         }
808                 }
809         }
810
811         /* exponents can be reused in short blocks. */
812         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
813                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
814                         if (pwd->channel_coded[ch]) {
815                                 if (pwd->use_exp_vlc) {
816                                         if (decode_exp_vlc(pwd, ch) < 0)
817                                                 return -1;
818                                 } else {
819                                         decode_exp_lsp(pwd, ch);
820                                 }
821                                 pwd->exponents_bsize[ch] = bsize;
822                         }
823                 }
824         }
825
826         /* parse spectral coefficients : just RLE encoding */
827         for (ch = 0; ch < pwd->ahi.channels; ch++) {
828                 struct vlc *coef_vlc;
829                 int level, run, tindex;
830                 int16_t *ptr, *eptr;
831                 const uint16_t *level_table, *run_table;
832
833                 if (!pwd->channel_coded[ch])
834                         continue;
835                 /*
836                  * special VLC tables are used for ms stereo because there is
837                  * potentially less energy there
838                  */
839                 tindex = (ch == 1 && pwd->ms_stereo);
840                 coef_vlc = &pwd->coef_vlc[tindex];
841                 run_table = pwd->run_table[tindex];
842                 level_table = pwd->level_table[tindex];
843                 /* XXX: optimize */
844                 ptr = &pwd->coefs1[ch][0];
845                 eptr = ptr + nb_coefs[ch];
846                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
847                 for (;;) {
848                         code = get_vlc(&pwd->gb, coef_vlc->table,
849                                 VLCBITS, VLCMAX);
850                         if (code < 0)
851                                 return -1;
852                         if (code == 1) /* EOB */
853                                 break;
854                         if (code == 0) { /* escape */
855                                 level = get_bits(&pwd->gb, coef_nb_bits);
856                                 /* reading block_len_bits would be better */
857                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
858                         } else { /* normal code */
859                                 run = run_table[code];
860                                 level = level_table[code];
861                         }
862                         if (!get_bit(&pwd->gb))
863                                 level = -level;
864                         ptr += run;
865                         if (ptr >= eptr) {
866                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
867                                 break;
868                         }
869                         *ptr++ = level;
870                         if (ptr >= eptr) /* EOB can be omitted */
871                                 break;
872                 }
873         }
874
875         /* normalize */
876         {
877                 int n4 = pwd->block_len / 2;
878                 mdct_norm = 1.0 / (float) n4;
879         }
880
881         /* finally compute the MDCT coefficients */
882         for (ch = 0; ch < pwd->ahi.channels; ch++) {
883                 if (pwd->channel_coded[ch]) {
884                         int16_t *coefs1;
885                         float *coefs, *exponents, mult, mult1, noise;
886                         int i, j, n1, last_high_band, esize;
887                         float exp_power[HIGH_BAND_MAX_SIZE];
888
889                         coefs1 = pwd->coefs1[ch];
890                         exponents = pwd->exponents[ch];
891                         esize = pwd->exponents_bsize[ch];
892                         mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
893                         mult *= mdct_norm;
894                         coefs = pwd->coefs[ch];
895                         if (pwd->use_noise_coding) {
896                                 mult1 = mult;
897                                 /* very low freqs : noise */
898                                 for (i = 0; i < pwd->coefs_start; i++) {
899                                         *coefs++ =
900                                             pwd->noise_table[pwd->noise_index] *
901                                             exponents[i << bsize >> esize] *
902                                             mult1;
903                                         pwd->noise_index =
904                                             (pwd->noise_index +
905                                              1) & (NOISE_TAB_SIZE - 1);
906                                 }
907
908                                 n1 = pwd->exponent_high_sizes[bsize];
909
910                                 /* compute power of high bands */
911                                 exponents = pwd->exponents[ch] +
912                                     (pwd->high_band_start[bsize] << bsize);
913                                 last_high_band = 0;     /* avoid warning */
914                                 for (j = 0; j < n1; j++) {
915                                         n = pwd->exponent_high_bands[pwd->
916                                                                    frame_len_bits
917                                                                    -
918                                                                    pwd->
919                                                                    block_len_bits]
920                                             [j];
921                                         if (pwd->high_band_coded[ch][j]) {
922                                                 float e2, val;
923                                                 e2 = 0;
924                                                 for (i = 0; i < n; i++) {
925                                                         val = exponents[i << bsize
926                                                                       >> esize];
927                                                         e2 += val * val;
928                                                 }
929                                                 exp_power[j] = e2 / n;
930                                                 last_high_band = j;
931                                         }
932                                         exponents += n << bsize;
933                                 }
934
935                                 /* main freqs and high freqs */
936                                 exponents =
937                                     pwd->exponents[ch] +
938                                     (pwd->coefs_start << bsize);
939                                 for (j = -1; j < n1; j++) {
940                                         if (j < 0) {
941                                                 n = pwd->high_band_start[bsize] -
942                                                     pwd->coefs_start;
943                                         } else {
944                                                 n = pwd->exponent_high_bands[pwd->
945                                                                            frame_len_bits
946                                                                            -
947                                                                            pwd->
948                                                                            block_len_bits]
949                                                     [j];
950                                         }
951                                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
952                                                 /* use noise with specified power */
953                                                 mult1 =
954                                                     sqrt(exp_power[j] /
955                                                          exp_power
956                                                          [last_high_band]);
957                                                 /* XXX: use a table */
958                                                 mult1 =
959                                                     mult1 * pow(10,
960                                                                 pwd->
961                                                                 high_band_values
962                                                                 [ch][j] * 0.05);
963                                                 mult1 =
964                                                     mult1 /
965                                                     (pwd->max_exponent[ch] *
966                                                      pwd->noise_mult);
967                                                 mult1 *= mdct_norm;
968                                                 for (i = 0; i < n; i++) {
969                                                         noise =
970                                                             pwd->noise_table[pwd->
971                                                                            noise_index];
972                                                         pwd->noise_index =
973                                                             (pwd->noise_index +
974                                                              1) &
975                                                             (NOISE_TAB_SIZE -
976                                                              1);
977                                                         *coefs++ =
978                                                             noise *
979                                                             exponents[i << bsize
980                                                                       >> esize]
981                                                             * mult1;
982                                                 }
983                                                 exponents += n << bsize;
984                                         } else {
985                                                 /* coded values + small noise */
986                                                 for (i = 0; i < n; i++) {
987                                                         noise =
988                                                             pwd->noise_table[pwd->
989                                                                            noise_index];
990                                                         pwd->noise_index =
991                                                             (pwd->noise_index +
992                                                              1) &
993                                                             (NOISE_TAB_SIZE -
994                                                              1);
995                                                         *coefs++ =
996                                                             ((*coefs1++) +
997                                                              noise) *
998                                                             exponents[i << bsize
999                                                                       >> esize]
1000                                                             * mult;
1001                                                 }
1002                                                 exponents += n << bsize;
1003                                         }
1004                                 }
1005
1006                                 /* very high freqs : noise */
1007                                 n = pwd->block_len - pwd->coefs_end[bsize];
1008                                 mult1 =
1009                                     mult * exponents[((-1 << bsize)) >> esize];
1010                                 for (i = 0; i < n; i++) {
1011                                         *coefs++ =
1012                                             pwd->noise_table[pwd->noise_index] *
1013                                             mult1;
1014                                         pwd->noise_index =
1015                                             (pwd->noise_index +
1016                                              1) & (NOISE_TAB_SIZE - 1);
1017                                 }
1018                         } else {
1019                                 /* XXX: optimize more */
1020                                 for (i = 0; i < pwd->coefs_start; i++)
1021                                         *coefs++ = 0.0;
1022                                 n = nb_coefs[ch];
1023                                 for (i = 0; i < n; i++) {
1024                                         *coefs++ =
1025                                             coefs1[i] *
1026                                             exponents[i << bsize >> esize] *
1027                                             mult;
1028                                 }
1029                                 n = pwd->block_len - pwd->coefs_end[bsize];
1030                                 for (i = 0; i < n; i++)
1031                                         *coefs++ = 0.0;
1032                         }
1033                 }
1034         }
1035
1036         if (pwd->ms_stereo && pwd->channel_coded[1]) {
1037                 float a, b;
1038                 int i;
1039
1040                 /*
1041                  * Nominal case for ms stereo: we do it before mdct.
1042                  *
1043                  * No need to optimize this case because it should almost never
1044                  * happen.
1045                  */
1046                 if (!pwd->channel_coded[0]) {
1047                         PARA_NOTICE_LOG("rare ms-stereo\n");
1048                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
1049                         pwd->channel_coded[0] = 1;
1050                 }
1051                 for (i = 0; i < pwd->block_len; i++) {
1052                         a = pwd->coefs[0][i];
1053                         b = pwd->coefs[1][i];
1054                         pwd->coefs[0][i] = a + b;
1055                         pwd->coefs[1][i] = a - b;
1056                 }
1057         }
1058
1059 next:
1060         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1061                 int n4, index;
1062
1063                 n = pwd->block_len;
1064                 n4 = pwd->block_len / 2;
1065                 if (pwd->channel_coded[ch])
1066                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1067                 else if (!(pwd->ms_stereo && ch == 1))
1068                         memset(pwd->output, 0, sizeof(pwd->output));
1069
1070                 /* multiply by the window and add in the frame */
1071                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1072                 wma_window(pwd, &pwd->frame_out[ch][index]);
1073         }
1074
1075         /* update block number */
1076         pwd->block_pos += pwd->block_len;
1077         if (pwd->block_pos >= pwd->frame_len)
1078                 return 1;
1079         else
1080                 return 0;
1081 }
1082
1083 /*
1084  * Clip a signed integer value into the -32768,32767 range.
1085  *
1086  * \param a The value to clip.
1087  *
1088  * \return The clipped value.
1089  */
1090 static inline int16_t av_clip_int16(int a)
1091 {
1092         if ((a + 32768) & ~65535)
1093                 return (a >> 31) ^ 32767;
1094         else
1095                 return a;
1096 }
1097
1098 /* Decode a frame of frame_len samples. */
1099 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1100 {
1101         int ret, i, n, ch, incr;
1102         int16_t *ptr;
1103         float *iptr;
1104
1105         /* read each block */
1106         pwd->block_pos = 0;
1107         for (;;) {
1108                 ret = wma_decode_block(pwd);
1109                 if (ret < 0)
1110                         return -1;
1111                 if (ret)
1112                         break;
1113         }
1114
1115         /* convert frame to integer */
1116         n = pwd->frame_len;
1117         incr = pwd->ahi.channels;
1118         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1119                 ptr = samples + ch;
1120                 iptr = pwd->frame_out[ch];
1121
1122                 for (i = 0; i < n; i++) {
1123                         *ptr = av_clip_int16(lrintf(*iptr++));
1124                         ptr += incr;
1125                 }
1126                 /* prepare for next block */
1127                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1128                         pwd->frame_len * sizeof(float));
1129         }
1130         return 0;
1131 }
1132
1133 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1134                 int *data_size, const uint8_t *buf, int buf_size)
1135 {
1136         int ret;
1137         int16_t *samples;
1138         static int frame_count;
1139
1140         if (buf_size == 0) {
1141                 pwd->last_superframe_len = 0;
1142                 return 0;
1143         }
1144         if (buf_size < pwd->ahi.block_align)
1145                 return 0;
1146         buf_size = pwd->ahi.block_align;
1147         samples = data;
1148         init_get_bits(&pwd->gb, buf, buf_size);
1149         if (pwd->use_bit_reservoir) {
1150                 int i, nb_frames, bit_offset, pos, len;
1151                 uint8_t *q;
1152
1153                 /* read super frame header */
1154                 skip_bits(&pwd->gb, 4); /* super frame index */
1155                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1156                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1157                 ret = -E_WMA_OUTPUT_SPACE;
1158                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1159                                 * sizeof(int16_t) > *data_size)
1160                         goto fail;
1161
1162                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1163
1164                 if (pwd->last_superframe_len > 0) {
1165                         /* add bit_offset bits to last frame */
1166                         ret = -E_WMA_BAD_SUPERFRAME;
1167                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1168                                         MAX_CODED_SUPERFRAME_SIZE)
1169                                 goto fail;
1170                         q = pwd->last_superframe + pwd->last_superframe_len;
1171                         len = bit_offset;
1172                         while (len > 7) {
1173                                 *q++ = get_bits(&pwd->gb, 8);
1174                                 len -= 8;
1175                         }
1176                         if (len > 0)
1177                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1178
1179                         /* XXX: bit_offset bits into last frame */
1180                         init_get_bits(&pwd->gb, pwd->last_superframe,
1181                                 MAX_CODED_SUPERFRAME_SIZE);
1182                         /* skip unused bits */
1183                         if (pwd->last_bitoffset > 0)
1184                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1185                         /*
1186                          * This frame is stored in the last superframe and in
1187                          * the current one.
1188                          */
1189                         ret = -E_WMA_DECODE;
1190                         if (wma_decode_frame(pwd, samples) < 0)
1191                                 goto fail;
1192                         frame_count++;
1193                         samples += pwd->ahi.channels * pwd->frame_len;
1194                 }
1195
1196                 /* read each frame starting from bit_offset */
1197                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1198                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1199                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1200                 len = pos & 7;
1201                 if (len > 0)
1202                         skip_bits(&pwd->gb, len);
1203
1204                 pwd->reset_block_lengths = 1;
1205                 for (i = 0; i < nb_frames; i++) {
1206                         ret = -E_WMA_DECODE;
1207                         if (wma_decode_frame(pwd, samples) < 0)
1208                                 goto fail;
1209                         frame_count++;
1210                         samples += pwd->ahi.channels * pwd->frame_len;
1211                 }
1212
1213                 /* we copy the end of the frame in the last frame buffer */
1214                 pos = get_bits_count(&pwd->gb) +
1215                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1216                 pwd->last_bitoffset = pos & 7;
1217                 pos >>= 3;
1218                 len = buf_size - pos;
1219                 ret = -E_WMA_BAD_SUPERFRAME;
1220                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1221                         goto fail;
1222                 pwd->last_superframe_len = len;
1223                 memcpy(pwd->last_superframe, buf + pos, len);
1224         } else {
1225                 PARA_DEBUG_LOG("not using bit reservoir\n");
1226                 ret = -E_WMA_OUTPUT_SPACE;
1227                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1228                         goto fail;
1229                 /* single frame decode */
1230                 ret = -E_WMA_DECODE;
1231                 if (wma_decode_frame(pwd, samples) < 0)
1232                         goto fail;
1233                 frame_count++;
1234                 samples += pwd->ahi.channels * pwd->frame_len;
1235         }
1236         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1237                 "outbytes: %zd, eaten: %d\n",
1238                 frame_count, pwd->frame_len, pwd->block_len,
1239                 (int8_t *) samples - (int8_t *) data, pwd->ahi.block_align);
1240         *data_size = (int8_t *)samples - (int8_t *)data;
1241         return pwd->ahi.block_align;
1242 fail:
1243         /* reset the bit reservoir on errors */
1244         pwd->last_superframe_len = 0;
1245         return ret;
1246 }
1247
1248 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1249                 struct filter_node *fn)
1250 {
1251         int ret, out_size = fn->bufsize - fn->loaded;
1252         struct private_wmadec_data *pwd = fn->private_data;
1253
1254         if (out_size < 128 * 1024)
1255                 return 0;
1256         if (len <= WMA_FRAME_SKIP)
1257                 return 0;
1258         if (!pwd) {
1259                 ret = wma_decode_init(inbuffer, len, &pwd);
1260                 if (ret <= 0)
1261                         return ret;
1262                 fn->private_data = pwd;
1263                 fn->fc->channels = pwd->ahi.channels;
1264                 fn->fc->samplerate = pwd->ahi.sample_rate;
1265                 return pwd->ahi.header_len;
1266         }
1267         /* skip 31 bytes */
1268         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1269                 return 0;
1270         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1271                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1272                 len - WMA_FRAME_SKIP);
1273         if (ret < 0)
1274                 return ret;
1275         fn->loaded += out_size;
1276         return ret + WMA_FRAME_SKIP;
1277 }
1278
1279 static void wmadec_close(struct filter_node *fn)
1280 {
1281         struct private_wmadec_data *pwd = fn->private_data;
1282
1283         if (!pwd)
1284                 return;
1285         wmadec_cleanup(pwd);
1286         free(fn->buf);
1287         fn->buf = NULL;
1288         free(fn->private_data);
1289         fn->private_data = NULL;
1290 }
1291
1292 static void wmadec_open(struct filter_node *fn)
1293 {
1294         fn->bufsize = 1024 * 1024;
1295         fn->buf = para_malloc(fn->bufsize);
1296         fn->private_data = NULL;
1297         fn->loaded = 0;
1298 }
1299
1300 /**
1301  * The init function of the wma decoder.
1302  *
1303  * \param f Its fields are filled in by the function.
1304  */
1305 void wmadec_filter_init(struct filter *f)
1306 {
1307         f->open = wmadec_open;
1308         f->close = wmadec_close;
1309         f->convert = wmadec_convert;
1310 }