2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
27 #include <sys/select.h>
36 #include "bitstream.h"
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
55 #define MAX_CHANNELS 2
57 #define NOISE_TAB_SIZE 8192
59 #define LSP_POW_BITS 7
61 struct private_wmadec_data
{
62 struct asf_header_info ahi
;
63 struct getbit_context gb
;
64 int use_bit_reservoir
;
65 int use_variable_block_len
;
66 int use_exp_vlc
; ///< exponent coding: 0 = lsp, 1 = vlc + delta
67 int use_noise_coding
; ///< true if perceptual noise is added
70 int exponent_sizes
[BLOCK_NB_SIZES
];
71 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
72 int high_band_start
[BLOCK_NB_SIZES
]; ///< index of first coef in high band
73 int coefs_start
; ///< first coded coef
74 int coefs_end
[BLOCK_NB_SIZES
]; ///< max number of coded coefficients
75 int exponent_high_sizes
[BLOCK_NB_SIZES
];
76 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
79 /* coded values in high bands */
80 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
81 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
83 /* there are two possible tables for spectral coefficients */
84 struct vlc coef_vlc
[2];
85 uint16_t *run_table
[2];
86 uint16_t *level_table
[2];
87 const struct coef_vlc_table
*coef_vlcs
[2];
89 int frame_len
; ///< frame length in samples
90 int frame_len_bits
; ///< frame_len = 1 << frame_len_bits
91 int nb_block_sizes
; ///< number of block sizes
93 int reset_block_lengths
;
94 int block_len_bits
; ///< log2 of current block length
95 int next_block_len_bits
; ///< log2 of next block length
96 int prev_block_len_bits
; ///< log2 of prev block length
97 int block_len
; ///< block length in samples
98 int block_pos
; ///< current position in frame
99 uint8_t ms_stereo
; ///< true if mid/side stereo mode
100 uint8_t channel_coded
[MAX_CHANNELS
]; ///< true if channel is coded
101 int exponents_bsize
[MAX_CHANNELS
]; ///< log2 ratio frame/exp. length
102 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
103 float max_exponent
[MAX_CHANNELS
];
104 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
105 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
106 float output
[BLOCK_MAX_SIZE
* 2];
107 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
108 float *windows
[BLOCK_NB_SIZES
];
109 /* output buffer for one frame and the last for IMDCT windowing */
110 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
111 /* last frame info */
112 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
114 int last_superframe_len
;
115 float noise_table
[NOISE_TAB_SIZE
];
117 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
118 /* lsp_to_curve tables */
119 float lsp_cos_table
[BLOCK_MAX_SIZE
];
120 float lsp_pow_e_table
[256];
121 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
122 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
126 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
132 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
134 #define SINE_WINDOW(x) float ff_sine_ ## x[x] __aligned(16)
143 static float *ff_sine_windows
[6] = {
144 ff_sine_128
, ff_sine_256
, ff_sine_512
, ff_sine_1024
,
145 ff_sine_2048
, ff_sine_4096
148 /* Generate a sine window. */
149 static void sine_window_init(float *window
, int n
)
153 for (i
= 0; i
< n
; i
++)
154 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
157 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
161 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
162 imdct_end(pwd
->mdct_ctx
[i
]);
163 if (pwd
->use_exp_vlc
)
164 free_vlc(&pwd
->exp_vlc
);
165 if (pwd
->use_noise_coding
)
166 free_vlc(&pwd
->hgain_vlc
);
167 for (i
= 0; i
< 2; i
++) {
168 free_vlc(&pwd
->coef_vlc
[i
]);
169 free(pwd
->run_table
[i
]);
170 free(pwd
->level_table
[i
]);
174 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
175 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
177 int n
= vlc_table
->n
;
178 const uint8_t *table_bits
= vlc_table
->huffbits
;
179 const uint32_t *table_codes
= vlc_table
->huffcodes
;
180 const uint16_t *levels_table
= vlc_table
->levels
;
181 uint16_t *run_table
, *level_table
;
182 int i
, l
, j
, k
, level
;
184 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
186 run_table
= para_malloc(n
* sizeof(uint16_t));
187 level_table
= para_malloc(n
* sizeof(uint16_t));
192 l
= levels_table
[k
++];
193 for (j
= 0; j
< l
; j
++) {
195 level_table
[i
] = level
;
200 *prun_table
= run_table
;
201 *plevel_table
= level_table
;
204 /* compute the scale factor band sizes for each MDCT block size */
205 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
208 struct asf_header_info
*ahi
= &pwd
->ahi
;
209 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
210 const uint8_t *table
;
212 pwd
->coefs_start
= 0;
213 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
214 block_len
= pwd
->frame_len
>> k
;
217 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
219 if (ahi
->sample_rate
>= 44100)
220 table
= exponent_band_44100
[a
];
221 else if (ahi
->sample_rate
>= 32000)
222 table
= exponent_band_32000
[a
];
223 else if (ahi
->sample_rate
>= 22050)
224 table
= exponent_band_22050
[a
];
228 for (i
= 0; i
< n
; i
++)
229 pwd
->exponent_bands
[k
][i
] = table
[i
];
230 pwd
->exponent_sizes
[k
] = n
;
234 for (i
= 0; i
< 25; i
++) {
235 a
= wma_critical_freqs
[i
];
236 b
= ahi
->sample_rate
;
237 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
242 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
243 if (pos
>= block_len
)
247 pwd
->exponent_sizes
[k
] = j
;
250 /* max number of coefs */
251 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
252 /* high freq computation */
253 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
254 / ahi
->sample_rate
+ 0.5);
255 n
= pwd
->exponent_sizes
[k
];
258 for (i
= 0; i
< n
; i
++) {
261 pos
+= pwd
->exponent_bands
[k
][i
];
263 if (start
< pwd
->high_band_start
[k
])
264 start
= pwd
->high_band_start
[k
];
265 if (end
> pwd
->coefs_end
[k
])
266 end
= pwd
->coefs_end
[k
];
268 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
270 pwd
->exponent_high_sizes
[k
] = j
;
274 static int wma_init(struct private_wmadec_data
*pwd
)
277 float bps1
, high_freq
;
281 struct asf_header_info
*ahi
= &pwd
->ahi
;
282 int flags2
= ahi
->flags2
;
284 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
285 || ahi
->channels
<= 0 || ahi
->channels
> 8
286 || ahi
->bit_rate
<= 0)
287 return -E_WMA_BAD_PARAMS
;
289 /* compute MDCT block size */
290 if (ahi
->sample_rate
<= 16000) {
291 pwd
->frame_len_bits
= 9;
292 } else if (ahi
->sample_rate
<= 22050) {
293 pwd
->frame_len_bits
= 10;
295 pwd
->frame_len_bits
= 11;
297 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
298 if (pwd
->use_variable_block_len
) {
300 nb
= ((flags2
>> 3) & 3) + 1;
301 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
303 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
306 pwd
->nb_block_sizes
= nb
+ 1;
308 pwd
->nb_block_sizes
= 1;
310 /* init rate dependent parameters */
311 pwd
->use_noise_coding
= 1;
312 high_freq
= ahi
->sample_rate
* 0.5;
314 /* wma2 rates are normalized */
315 sample_rate1
= ahi
->sample_rate
;
316 if (sample_rate1
>= 44100)
317 sample_rate1
= 44100;
318 else if (sample_rate1
>= 22050)
319 sample_rate1
= 22050;
320 else if (sample_rate1
>= 16000)
321 sample_rate1
= 16000;
322 else if (sample_rate1
>= 11025)
323 sample_rate1
= 11025;
324 else if (sample_rate1
>= 8000)
327 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
328 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
330 * Compute high frequency value and choose if noise coding should be
334 if (ahi
->channels
== 2)
336 if (sample_rate1
== 44100) {
338 pwd
->use_noise_coding
= 0;
340 high_freq
= high_freq
* 0.4;
341 } else if (sample_rate1
== 22050) {
343 pwd
->use_noise_coding
= 0;
344 else if (bps1
>= 0.72)
345 high_freq
= high_freq
* 0.7;
347 high_freq
= high_freq
* 0.6;
348 } else if (sample_rate1
== 16000) {
350 high_freq
= high_freq
* 0.5;
352 high_freq
= high_freq
* 0.3;
353 } else if (sample_rate1
== 11025) {
354 high_freq
= high_freq
* 0.7;
355 } else if (sample_rate1
== 8000) {
357 high_freq
= high_freq
* 0.5;
358 } else if (bps
> 0.75) {
359 pwd
->use_noise_coding
= 0;
361 high_freq
= high_freq
* 0.65;
365 high_freq
= high_freq
* 0.75;
366 } else if (bps
>= 0.6) {
367 high_freq
= high_freq
* 0.6;
369 high_freq
= high_freq
* 0.5;
372 PARA_INFO_LOG("channels=%d sample_rate=%d "
373 "bitrate=%d block_align=%d\n",
374 ahi
->channels
, ahi
->sample_rate
,
375 ahi
->bit_rate
, ahi
->block_align
);
376 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
377 "high_freq=%f bitoffset=%d\n",
378 pwd
->frame_len
, bps
, bps1
,
379 high_freq
, pwd
->byte_offset_bits
);
380 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
381 pwd
->use_noise_coding
, pwd
->use_exp_vlc
, pwd
->nb_block_sizes
);
383 compute_scale_factor_band_sizes(pwd
, high_freq
);
384 /* init MDCT windows : simple sinus window */
385 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
387 n
= 1 << (pwd
->frame_len_bits
- i
);
388 sine_window_init(ff_sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
389 pwd
->windows
[i
] = ff_sine_windows
[pwd
->frame_len_bits
- i
- 7];
392 pwd
->reset_block_lengths
= 1;
394 if (pwd
->use_noise_coding
) {
395 /* init the noise generator */
396 if (pwd
->use_exp_vlc
)
397 pwd
->noise_mult
= 0.02;
399 pwd
->noise_mult
= 0.04;
405 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
406 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
407 seed
= seed
* 314159 + 1;
408 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
413 /* choose the VLC tables for the coefficients */
415 if (ahi
->sample_rate
>= 32000) {
418 else if (bps1
< 1.16)
421 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
422 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
423 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
425 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
430 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
435 wdel
= M_PI
/ frame_len
;
436 for (i
= 0; i
< frame_len
; i
++)
437 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
439 /* tables for x^-0.25 computation */
440 for (i
= 0; i
< 256; i
++) {
442 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
445 /* These two tables are needed to avoid two operations in pow_m1_4. */
447 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
448 m
= (1 << LSP_POW_BITS
) + i
;
449 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
451 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
452 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
457 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
459 struct private_wmadec_data
*pwd
;
462 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
463 pwd
= para_calloc(sizeof(*pwd
));
464 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
470 pwd
->use_exp_vlc
= pwd
->ahi
.flags2
& 0x0001;
471 pwd
->use_bit_reservoir
= pwd
->ahi
.flags2
& 0x0002;
472 pwd
->use_variable_block_len
= pwd
->ahi
.flags2
& 0x0004;
478 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
479 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
483 if (pwd
->use_noise_coding
) {
484 PARA_INFO_LOG("using noise coding\n");
485 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
486 sizeof(ff_wma_hgain_huffbits
), ff_wma_hgain_huffbits
,
487 ff_wma_hgain_huffcodes
, 2);
490 if (pwd
->use_exp_vlc
) {
491 PARA_INFO_LOG("using exp_vlc\n");
492 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
,
493 sizeof(ff_wma_scale_huffbits
), ff_wma_scale_huffbits
,
494 ff_wma_scale_huffcodes
, 4);
496 PARA_INFO_LOG("using curve\n");
497 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
500 return pwd
->ahi
.header_len
;
504 * compute x^-0.25 with an exponent and mantissa table. We use linear
505 * interpolation to reduce the mantissa table size at a small speed
506 * expense (linear interpolation approximately doubles the number of
507 * bits of precision).
509 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
520 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
521 /* build interpolation scale: 1 <= t < 2. */
522 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
523 a
= pwd
->lsp_pow_m_table1
[m
];
524 b
= pwd
->lsp_pow_m_table2
[m
];
525 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
528 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
529 float *out
, float *val_max_ptr
, int n
, float *lsp
)
532 float p
, q
, w
, v
, val_max
;
535 for (i
= 0; i
< n
; i
++) {
538 w
= pwd
->lsp_cos_table
[i
];
539 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
546 v
= pow_m1_4(pwd
, v
);
551 *val_max_ptr
= val_max
;
554 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
555 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
557 float lsp_coefs
[NB_LSP_COEFS
];
560 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
561 if (i
== 0 || i
>= 8)
562 val
= get_bits(&pwd
->gb
, 3);
564 val
= get_bits(&pwd
->gb
, 4);
565 lsp_coefs
[i
] = ff_wma_lsp_codebook
[i
][val
];
568 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
569 pwd
->block_len
, lsp_coefs
);
572 /* Decode exponents coded with VLC codes. */
573 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
575 int last_exp
, n
, code
;
576 const uint16_t *ptr
, *band_ptr
;
577 float v
, *q
, max_scale
, *q_end
;
579 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
581 q
= pwd
->exponents
[ch
];
582 q_end
= q
+ pwd
->block_len
;
587 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
590 /* NOTE: this offset is the same as MPEG4 AAC ! */
591 last_exp
+= code
- 60;
592 /* XXX: use a table */
593 v
= pow(10, last_exp
* (1.0 / 16.0));
601 pwd
->max_exponent
[ch
] = max_scale
;
605 /* compute src0 * src1 + src2 */
606 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
607 const float *src2
, int len
)
611 for (i
= 0; i
< len
; i
++)
612 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
615 static inline void vector_mult_reverse(float *dst
, const float *src0
,
616 const float *src1
, int len
)
621 for (i
= 0; i
< len
; i
++)
622 dst
[i
] = src0
[i
] * src1
[-i
];
626 * Apply MDCT window and add into output.
628 * We ensure that when the windows overlap their squared sum
629 * is always 1 (MDCT reconstruction rule).
631 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
633 float *in
= pwd
->output
;
634 int block_len
, bsize
, n
;
637 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
638 block_len
= pwd
->block_len
;
639 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
640 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
642 block_len
= 1 << pwd
->prev_block_len_bits
;
643 n
= (pwd
->block_len
- block_len
) / 2;
644 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
645 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
647 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
650 out
+= pwd
->block_len
;
651 in
+= pwd
->block_len
;
653 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
654 block_len
= pwd
->block_len
;
655 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
656 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
658 block_len
= 1 << pwd
->next_block_len_bits
;
659 n
= (pwd
->block_len
- block_len
) / 2;
660 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
661 memcpy(out
, in
, n
* sizeof(float));
662 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
664 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
668 static int wma_total_gain_to_bits(int total_gain
)
672 else if (total_gain
< 32)
674 else if (total_gain
< 40)
676 else if (total_gain
< 45)
683 * @return 0 if OK. 1 if last block of frame. return -1 if
684 * unrecorrable error.
686 static int wma_decode_block(struct private_wmadec_data
*pwd
)
688 int n
, v
, ch
, code
, bsize
;
689 int coef_nb_bits
, total_gain
;
690 int nb_coefs
[MAX_CHANNELS
];
693 /* compute current block length */
694 if (pwd
->use_variable_block_len
) {
695 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
697 if (pwd
->reset_block_lengths
) {
698 pwd
->reset_block_lengths
= 0;
699 v
= get_bits(&pwd
->gb
, n
);
700 if (v
>= pwd
->nb_block_sizes
)
702 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
703 v
= get_bits(&pwd
->gb
, n
);
704 if (v
>= pwd
->nb_block_sizes
)
706 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
708 /* update block lengths */
709 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
710 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
712 v
= get_bits(&pwd
->gb
, n
);
713 if (v
>= pwd
->nb_block_sizes
)
715 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
717 /* fixed block len */
718 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
719 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
720 pwd
->block_len_bits
= pwd
->frame_len_bits
;
723 /* now check if the block length is coherent with the frame length */
724 pwd
->block_len
= 1 << pwd
->block_len_bits
;
725 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
726 return -E_INCOHERENT_BLOCK_LEN
;
728 if (pwd
->ahi
.channels
== 2)
729 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
731 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
732 int a
= get_bit(&pwd
->gb
);
733 pwd
->channel_coded
[ch
] = a
;
737 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
739 /* if no channel coded, no need to go further */
740 /* XXX: fix potential framing problems */
744 /* read total gain and extract corresponding number of bits for
745 coef escape coding */
748 int a
= get_bits(&pwd
->gb
, 7);
754 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
756 /* compute number of coefficients */
757 n
= pwd
->coefs_end
[bsize
] - pwd
->coefs_start
;
758 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
762 if (pwd
->use_noise_coding
) {
763 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
764 if (pwd
->channel_coded
[ch
]) {
766 m
= pwd
->exponent_high_sizes
[bsize
];
767 for (i
= 0; i
< m
; i
++) {
768 a
= get_bit(&pwd
->gb
);
769 pwd
->high_band_coded
[ch
][i
] = a
;
770 /* if noise coding, the coefficients are not transmitted */
774 exponent_high_bands
[bsize
]
779 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
780 if (pwd
->channel_coded
[ch
]) {
783 n
= pwd
->exponent_high_sizes
[bsize
];
784 val
= (int) 0x80000000;
785 for (i
= 0; i
< n
; i
++) {
786 if (pwd
->high_band_coded
[ch
][i
]) {
787 if (val
== (int) 0x80000000) {
803 pwd
->high_band_values
[ch
][i
] =
811 /* exponents can be reused in short blocks. */
812 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
813 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
814 if (pwd
->channel_coded
[ch
]) {
815 if (pwd
->use_exp_vlc
) {
816 if (decode_exp_vlc(pwd
, ch
) < 0)
819 decode_exp_lsp(pwd
, ch
);
821 pwd
->exponents_bsize
[ch
] = bsize
;
826 /* parse spectral coefficients : just RLE encoding */
827 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
828 struct vlc
*coef_vlc
;
829 int level
, run
, tindex
;
831 const uint16_t *level_table
, *run_table
;
833 if (!pwd
->channel_coded
[ch
])
836 * special VLC tables are used for ms stereo because there is
837 * potentially less energy there
839 tindex
= (ch
== 1 && pwd
->ms_stereo
);
840 coef_vlc
= &pwd
->coef_vlc
[tindex
];
841 run_table
= pwd
->run_table
[tindex
];
842 level_table
= pwd
->level_table
[tindex
];
844 ptr
= &pwd
->coefs1
[ch
][0];
845 eptr
= ptr
+ nb_coefs
[ch
];
846 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
848 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
,
852 if (code
== 1) /* EOB */
854 if (code
== 0) { /* escape */
855 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
856 /* reading block_len_bits would be better */
857 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
858 } else { /* normal code */
859 run
= run_table
[code
];
860 level
= level_table
[code
];
862 if (!get_bit(&pwd
->gb
))
866 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
870 if (ptr
>= eptr
) /* EOB can be omitted */
877 int n4
= pwd
->block_len
/ 2;
878 mdct_norm
= 1.0 / (float) n4
;
881 /* finally compute the MDCT coefficients */
882 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
883 if (pwd
->channel_coded
[ch
]) {
885 float *coefs
, *exponents
, mult
, mult1
, noise
;
886 int i
, j
, n1
, last_high_band
, esize
;
887 float exp_power
[HIGH_BAND_MAX_SIZE
];
889 coefs1
= pwd
->coefs1
[ch
];
890 exponents
= pwd
->exponents
[ch
];
891 esize
= pwd
->exponents_bsize
[ch
];
892 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
894 coefs
= pwd
->coefs
[ch
];
895 if (pwd
->use_noise_coding
) {
897 /* very low freqs : noise */
898 for (i
= 0; i
< pwd
->coefs_start
; i
++) {
900 pwd
->noise_table
[pwd
->noise_index
] *
901 exponents
[i
<< bsize
>> esize
] *
905 1) & (NOISE_TAB_SIZE
- 1);
908 n1
= pwd
->exponent_high_sizes
[bsize
];
910 /* compute power of high bands */
911 exponents
= pwd
->exponents
[ch
] +
912 (pwd
->high_band_start
[bsize
] << bsize
);
913 last_high_band
= 0; /* avoid warning */
914 for (j
= 0; j
< n1
; j
++) {
915 n
= pwd
->exponent_high_bands
[pwd
->
921 if (pwd
->high_band_coded
[ch
][j
]) {
924 for (i
= 0; i
< n
; i
++) {
925 val
= exponents
[i
<< bsize
929 exp_power
[j
] = e2
/ n
;
932 exponents
+= n
<< bsize
;
935 /* main freqs and high freqs */
938 (pwd
->coefs_start
<< bsize
);
939 for (j
= -1; j
< n1
; j
++) {
941 n
= pwd
->high_band_start
[bsize
] -
944 n
= pwd
->exponent_high_bands
[pwd
->
951 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
952 /* use noise with specified power */
957 /* XXX: use a table */
965 (pwd
->max_exponent
[ch
] *
968 for (i
= 0; i
< n
; i
++) {
970 pwd
->noise_table
[pwd
->
983 exponents
+= n
<< bsize
;
985 /* coded values + small noise */
986 for (i
= 0; i
< n
; i
++) {
988 pwd
->noise_table
[pwd
->
1002 exponents
+= n
<< bsize
;
1006 /* very high freqs : noise */
1007 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
1009 mult
* exponents
[((-1 << bsize
)) >> esize
];
1010 for (i
= 0; i
< n
; i
++) {
1012 pwd
->noise_table
[pwd
->noise_index
] *
1016 1) & (NOISE_TAB_SIZE
- 1);
1019 /* XXX: optimize more */
1020 for (i
= 0; i
< pwd
->coefs_start
; i
++)
1023 for (i
= 0; i
< n
; i
++) {
1026 exponents
[i
<< bsize
>> esize
] *
1029 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
1030 for (i
= 0; i
< n
; i
++)
1036 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
1041 * Nominal case for ms stereo: we do it before mdct.
1043 * No need to optimize this case because it should almost never
1046 if (!pwd
->channel_coded
[0]) {
1047 PARA_NOTICE_LOG("rare ms-stereo\n");
1048 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
1049 pwd
->channel_coded
[0] = 1;
1051 for (i
= 0; i
< pwd
->block_len
; i
++) {
1052 a
= pwd
->coefs
[0][i
];
1053 b
= pwd
->coefs
[1][i
];
1054 pwd
->coefs
[0][i
] = a
+ b
;
1055 pwd
->coefs
[1][i
] = a
- b
;
1060 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1064 n4
= pwd
->block_len
/ 2;
1065 if (pwd
->channel_coded
[ch
])
1066 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1067 else if (!(pwd
->ms_stereo
&& ch
== 1))
1068 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1070 /* multiply by the window and add in the frame */
1071 index
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1072 wma_window(pwd
, &pwd
->frame_out
[ch
][index
]);
1075 /* update block number */
1076 pwd
->block_pos
+= pwd
->block_len
;
1077 if (pwd
->block_pos
>= pwd
->frame_len
)
1084 * Clip a signed integer value into the -32768,32767 range.
1086 * \param a The value to clip.
1088 * \return The clipped value.
1090 static inline int16_t av_clip_int16(int a
)
1092 if ((a
+ 32768) & ~65535)
1093 return (a
>> 31) ^ 32767;
1098 /* Decode a frame of frame_len samples. */
1099 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1101 int ret
, i
, n
, ch
, incr
;
1105 /* read each block */
1108 ret
= wma_decode_block(pwd
);
1115 /* convert frame to integer */
1117 incr
= pwd
->ahi
.channels
;
1118 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1120 iptr
= pwd
->frame_out
[ch
];
1122 for (i
= 0; i
< n
; i
++) {
1123 *ptr
= av_clip_int16(lrintf(*iptr
++));
1126 /* prepare for next block */
1127 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1128 pwd
->frame_len
* sizeof(float));
1133 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1134 int *data_size
, const uint8_t *buf
, int buf_size
)
1138 static int frame_count
;
1140 if (buf_size
== 0) {
1141 pwd
->last_superframe_len
= 0;
1144 if (buf_size
< pwd
->ahi
.block_align
)
1146 buf_size
= pwd
->ahi
.block_align
;
1148 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1149 if (pwd
->use_bit_reservoir
) {
1150 int i
, nb_frames
, bit_offset
, pos
, len
;
1153 /* read super frame header */
1154 skip_bits(&pwd
->gb
, 4); /* super frame index */
1155 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1156 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1157 ret
= -E_WMA_OUTPUT_SPACE
;
1158 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1159 * sizeof(int16_t) > *data_size
)
1162 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1164 if (pwd
->last_superframe_len
> 0) {
1165 /* add bit_offset bits to last frame */
1166 ret
= -E_WMA_BAD_SUPERFRAME
;
1167 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1168 MAX_CODED_SUPERFRAME_SIZE
)
1170 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1173 *q
++ = get_bits(&pwd
->gb
, 8);
1177 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1179 /* XXX: bit_offset bits into last frame */
1180 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1181 MAX_CODED_SUPERFRAME_SIZE
);
1182 /* skip unused bits */
1183 if (pwd
->last_bitoffset
> 0)
1184 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1186 * This frame is stored in the last superframe and in
1189 ret
= -E_WMA_DECODE
;
1190 if (wma_decode_frame(pwd
, samples
) < 0)
1193 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1196 /* read each frame starting from bit_offset */
1197 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1198 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1199 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1202 skip_bits(&pwd
->gb
, len
);
1204 pwd
->reset_block_lengths
= 1;
1205 for (i
= 0; i
< nb_frames
; i
++) {
1206 ret
= -E_WMA_DECODE
;
1207 if (wma_decode_frame(pwd
, samples
) < 0)
1210 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1213 /* we copy the end of the frame in the last frame buffer */
1214 pos
= get_bits_count(&pwd
->gb
) +
1215 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1216 pwd
->last_bitoffset
= pos
& 7;
1218 len
= buf_size
- pos
;
1219 ret
= -E_WMA_BAD_SUPERFRAME
;
1220 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1222 pwd
->last_superframe_len
= len
;
1223 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1225 PARA_DEBUG_LOG("not using bit reservoir\n");
1226 ret
= -E_WMA_OUTPUT_SPACE
;
1227 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1229 /* single frame decode */
1230 ret
= -E_WMA_DECODE
;
1231 if (wma_decode_frame(pwd
, samples
) < 0)
1234 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1236 PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1237 "outbytes: %zd, eaten: %d\n",
1238 frame_count
, pwd
->frame_len
, pwd
->block_len
,
1239 (int8_t *) samples
- (int8_t *) data
, pwd
->ahi
.block_align
);
1240 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1241 return pwd
->ahi
.block_align
;
1243 /* reset the bit reservoir on errors */
1244 pwd
->last_superframe_len
= 0;
1248 static ssize_t
wmadec_convert(char *inbuffer
, size_t len
,
1249 struct filter_node
*fn
)
1251 int ret
, out_size
= fn
->bufsize
- fn
->loaded
;
1252 struct private_wmadec_data
*pwd
= fn
->private_data
;
1254 if (out_size
< 128 * 1024)
1256 if (len
<= WMA_FRAME_SKIP
)
1259 ret
= wma_decode_init(inbuffer
, len
, &pwd
);
1262 fn
->private_data
= pwd
;
1263 fn
->fc
->channels
= pwd
->ahi
.channels
;
1264 fn
->fc
->samplerate
= pwd
->ahi
.sample_rate
;
1265 return pwd
->ahi
.header_len
;
1268 if (len
<= WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
)
1270 ret
= wma_decode_superframe(pwd
, fn
->buf
+ fn
->loaded
,
1271 &out_size
, (uint8_t *)inbuffer
+ WMA_FRAME_SKIP
,
1272 len
- WMA_FRAME_SKIP
);
1275 fn
->loaded
+= out_size
;
1276 return ret
+ WMA_FRAME_SKIP
;
1279 static void wmadec_close(struct filter_node
*fn
)
1281 struct private_wmadec_data
*pwd
= fn
->private_data
;
1285 wmadec_cleanup(pwd
);
1288 free(fn
->private_data
);
1289 fn
->private_data
= NULL
;
1292 static void wmadec_open(struct filter_node
*fn
)
1294 fn
->bufsize
= 1024 * 1024;
1295 fn
->buf
= para_malloc(fn
->bufsize
);
1296 fn
->private_data
= NULL
;
1301 * The init function of the wma decoder.
1303 * \param f Its fields are filled in by the function.
1305 void wmadec_filter_init(struct filter
*f
)
1307 f
->open
= wmadec_open
;
1308 f
->close
= wmadec_close
;
1309 f
->convert
= wmadec_convert
;