paraslash 0.7.3
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License, see file COPYING.LIB.
9  */
10
11 /** \file wmadec_filter.c paraslash's WMA decoder. */
12
13 /*
14  * This decoder handles Microsoft Windows Media Audio data version 2.
15  */
16
17 #include <math.h>
18 #include <regex.h>
19
20 #include "para.h"
21 #include "error.h"
22 #include "list.h"
23 #include "string.h"
24 #include "sched.h"
25 #include "buffer_tree.h"
26 #include "filter.h"
27 #include "portable_io.h"
28 #include "bitstream.h"
29 #include "imdct.h"
30 #include "wma.h"
31 #include "wmadata.h"
32
33
34 /* size of blocks */
35 #define BLOCK_MIN_BITS 7
36 #define BLOCK_MAX_BITS 11
37 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
38
39 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
40
41 /* XXX: find exact max size */
42 #define HIGH_BAND_MAX_SIZE 16
43
44 /* XXX: is it a suitable value ? */
45 #define MAX_CODED_SUPERFRAME_SIZE 16384
46
47 #define MAX_CHANNELS 2
48
49 #define NOISE_TAB_SIZE 8192
50
51 #define LSP_POW_BITS 7
52
53 struct private_wmadec_data {
54         /** Information contained in the audio file header. */
55         struct asf_header_info ahi;
56         struct getbit_context gb;
57         /** Whether perceptual noise is added. */
58         int use_noise_coding;
59         /** Depends on number of the bits per second and the frame length. */
60         int byte_offset_bits;
61         /** Only used if ahi->use_exp_vlc is true. */
62         struct vlc exp_vlc;
63         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
64         /** The index of the first coef in high band. */
65         int high_band_start[BLOCK_NB_SIZES];
66         /** Maximal number of coded coefficients. */
67         int coefs_end[BLOCK_NB_SIZES];
68         int exponent_high_sizes[BLOCK_NB_SIZES];
69         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
70         struct vlc hgain_vlc;
71
72         /* coded values in high bands */
73         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
74         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
75
76         /* there are two possible tables for spectral coefficients */
77         struct vlc coef_vlc[2];
78         uint16_t *run_table[2];
79         uint16_t *level_table[2];
80         /** Frame length in samples. */
81         int frame_len;
82         /** log2 of frame_len. */
83         int frame_len_bits;
84         /** Number of block sizes, one if !ahi->use_variable_block_len. */
85         int nb_block_sizes;
86         /* Whether to update block lengths from getbit context. */
87         bool reset_block_lengths;
88         /** log2 of current block length. */
89         int block_len_bits;
90         /** log2 of next block length. */
91         int next_block_len_bits;
92         /** log2 of previous block length. */
93         int prev_block_len_bits;
94         /** Block length in samples. */
95         int block_len;
96         /** Current position in frame. */
97         int block_pos;
98         /** True if channel is coded. */
99         uint8_t channel_coded[MAX_CHANNELS];
100         /** log2 ratio frame/exp. length. */
101         int exponents_bsize[MAX_CHANNELS];
102
103         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
104         float max_exponent[MAX_CHANNELS];
105         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
106         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
107         float output[BLOCK_MAX_SIZE * 2];
108         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
109         float *windows[BLOCK_NB_SIZES];
110         /** Output buffer for one frame and the last for IMDCT windowing. */
111         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
112         /** Last frame info. */
113         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
114         int last_bitoffset;
115         int last_superframe_len;
116         float noise_table[NOISE_TAB_SIZE];
117         int noise_index;
118         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
119         /* lsp_to_curve tables */
120         float lsp_cos_table[BLOCK_MAX_SIZE];
121         float lsp_pow_e_table[256];
122         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
123         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
124 };
125
126 #define EXPVLCBITS 8
127 #define HGAINVLCBITS 9
128 #define VLCBITS 9
129
130 /** \cond sine_winows */
131
132 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
133
134 SINE_WINDOW(128);
135 SINE_WINDOW(256);
136 SINE_WINDOW(512);
137 SINE_WINDOW(1024);
138 SINE_WINDOW(2048);
139 SINE_WINDOW(4096);
140
141 static float *sine_windows[6] = {
142         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
143 };
144 /** \endcond sine_windows */
145
146 /* Generate a sine window. */
147 static void sine_window_init(float *window, int n)
148 {
149         int i;
150
151         for (i = 0; i < n; i++)
152                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
153 }
154
155 static void init_coef_vlc(struct private_wmadec_data *pwd, int sidx, int didx)
156 {
157         const struct coef_vlc_table *src = coef_vlcs + sidx;
158         struct vlc *dst = pwd->coef_vlc + didx;
159         int i, l, j, k, level, n = src->n;
160
161         init_vlc(dst, VLCBITS, n, src->huffbits, src->huffcodes, 4);
162         pwd->run_table[didx] = arr_alloc(n, sizeof(uint16_t));
163         pwd->level_table[didx] = arr_alloc(n, sizeof(uint16_t));
164         i = 2;
165         level = 1;
166         k = 0;
167         while (i < n) {
168                 l = src->levels[k++];
169                 for (j = 0; j < l; j++) {
170                         pwd->run_table[didx][i] = j;
171                         pwd->level_table[didx][i] = level;
172                         i++;
173                 }
174                 level++;
175         }
176 }
177
178 /* compute the scale factor band sizes for each MDCT block size */
179 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
180         float high_freq)
181 {
182         struct asf_header_info *ahi = &pwd->ahi;
183         int a, b, pos, lpos, k, block_len, i, j, n;
184         const uint8_t *table;
185
186         for (k = 0; k < pwd->nb_block_sizes; k++) {
187                 int exponent_size;
188
189                 block_len = pwd->frame_len >> k;
190                 table = NULL;
191                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
192                 if (a < 3) {
193                         if (ahi->sample_rate >= 44100)
194                                 table = exponent_band_44100[a];
195                         else if (ahi->sample_rate >= 32000)
196                                 table = exponent_band_32000[a];
197                         else if (ahi->sample_rate >= 22050)
198                                 table = exponent_band_22050[a];
199                 }
200                 if (table) {
201                         n = *table++;
202                         for (i = 0; i < n; i++)
203                                 pwd->exponent_bands[k][i] = table[i];
204                         exponent_size = n;
205                 } else {
206                         j = 0;
207                         lpos = 0;
208                         for (i = 0; i < 25; i++) {
209                                 a = wma_critical_freqs[i];
210                                 b = ahi->sample_rate;
211                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
212                                 pos <<= 2;
213                                 if (pos > block_len)
214                                         pos = block_len;
215                                 if (pos > lpos)
216                                         pwd->exponent_bands[k][j++] = pos - lpos;
217                                 if (pos >= block_len)
218                                         break;
219                                 lpos = pos;
220                         }
221                         exponent_size = j;
222                 }
223
224                 /* max number of coefs */
225                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
226                 /* high freq computation */
227                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
228                         / ahi->sample_rate + 0.5);
229                 n = exponent_size;
230                 j = 0;
231                 pos = 0;
232                 for (i = 0; i < n; i++) {
233                         int start, end;
234                         start = pos;
235                         pos += pwd->exponent_bands[k][i];
236                         end = pos;
237                         if (start < pwd->high_band_start[k])
238                                 start = pwd->high_band_start[k];
239                         if (end > pwd->coefs_end[k])
240                                 end = pwd->coefs_end[k];
241                         if (end > start)
242                                 pwd->exponent_high_bands[k][j++] = end - start;
243                 }
244                 pwd->exponent_high_sizes[k] = j;
245         }
246 }
247
248 static int wma_init(struct private_wmadec_data *pwd)
249 {
250         int i;
251         float bps1, high_freq;
252         volatile float bps;
253         int sample_rate1;
254         int coef_vlc_table;
255         struct asf_header_info *ahi = &pwd->ahi;
256         int flags2 = ahi->flags2;
257
258         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
259                 || ahi->channels <= 0 || ahi->channels > 8
260                 || ahi->bit_rate <= 0)
261                 return -E_WMA_BAD_PARAMS;
262
263         /* compute MDCT block size */
264         if (ahi->sample_rate <= 16000)
265                 pwd->frame_len_bits = 9;
266         else if (ahi->sample_rate <= 22050)
267                 pwd->frame_len_bits = 10;
268         else
269                 pwd->frame_len_bits = 11;
270         pwd->frame_len = 1 << pwd->frame_len_bits;
271         if (pwd->ahi.use_variable_block_len) {
272                 int nb_max, nb;
273                 nb = ((flags2 >> 3) & 3) + 1;
274                 if ((ahi->bit_rate / ahi->channels) >= 32000)
275                         nb += 2;
276                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
277                 if (nb > nb_max)
278                         nb = nb_max;
279                 pwd->nb_block_sizes = nb + 1;
280         } else
281                 pwd->nb_block_sizes = 1;
282
283         /* init rate dependent parameters */
284         pwd->use_noise_coding = 1;
285         high_freq = ahi->sample_rate * 0.5;
286
287         /* wma2 rates are normalized */
288         sample_rate1 = ahi->sample_rate;
289         if (sample_rate1 >= 44100)
290                 sample_rate1 = 44100;
291         else if (sample_rate1 >= 22050)
292                 sample_rate1 = 22050;
293         else if (sample_rate1 >= 16000)
294                 sample_rate1 = 16000;
295         else if (sample_rate1 >= 11025)
296                 sample_rate1 = 11025;
297         else if (sample_rate1 >= 8000)
298                 sample_rate1 = 8000;
299
300         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
301         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
302         /*
303          * Compute high frequency value and choose if noise coding should be
304          * activated.
305          */
306         bps1 = bps;
307         if (ahi->channels == 2)
308                 bps1 = bps * 1.6;
309         if (sample_rate1 == 44100) {
310                 if (bps1 >= 0.61)
311                         pwd->use_noise_coding = 0;
312                 else
313                         high_freq = high_freq * 0.4;
314         } else if (sample_rate1 == 22050) {
315                 if (bps1 >= 1.16)
316                         pwd->use_noise_coding = 0;
317                 else if (bps1 >= 0.72)
318                         high_freq = high_freq * 0.7;
319                 else
320                         high_freq = high_freq * 0.6;
321         } else if (sample_rate1 == 16000) {
322                 if (bps > 0.5)
323                         high_freq = high_freq * 0.5;
324                 else
325                         high_freq = high_freq * 0.3;
326         } else if (sample_rate1 == 11025)
327                 high_freq = high_freq * 0.7;
328         else if (sample_rate1 == 8000) {
329                 if (bps <= 0.625)
330                         high_freq = high_freq * 0.5;
331                 else if (bps > 0.75)
332                         pwd->use_noise_coding = 0;
333                 else
334                         high_freq = high_freq * 0.65;
335         } else {
336                 if (bps >= 0.8)
337                         high_freq = high_freq * 0.75;
338                 else if (bps >= 0.6)
339                         high_freq = high_freq * 0.6;
340                 else
341                         high_freq = high_freq * 0.5;
342         }
343         PARA_INFO_LOG("channels=%u sample_rate=%u "
344                 "bitrate=%u block_align=%d\n",
345                 ahi->channels, ahi->sample_rate,
346                 ahi->bit_rate, ahi->block_align);
347         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
348                 "high_freq=%f bitoffset=%d\n",
349                 pwd->frame_len, bps, bps1,
350                 high_freq, pwd->byte_offset_bits);
351         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
352                 pwd->use_noise_coding, pwd->ahi.use_exp_vlc, pwd->nb_block_sizes);
353
354         compute_scale_factor_band_sizes(pwd, high_freq);
355         /* init MDCT windows : simple sinus window */
356         for (i = 0; i < pwd->nb_block_sizes; i++) {
357                 int n;
358                 n = 1 << (pwd->frame_len_bits - i);
359                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
360                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
361         }
362
363         pwd->reset_block_lengths = true;
364
365         if (pwd->use_noise_coding) {
366                 /* init the noise generator */
367                 if (pwd->ahi.use_exp_vlc)
368                         pwd->noise_mult = 0.02;
369                 else
370                         pwd->noise_mult = 0.04;
371
372                 {
373                         unsigned int seed;
374                         float norm;
375                         seed = 1;
376                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
377                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
378                                 seed = seed * 314159 + 1;
379                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
380                         }
381                 }
382         }
383
384         /* choose the VLC tables for the coefficients */
385         coef_vlc_table = 4;
386         if (ahi->sample_rate >= 32000) {
387                 if (bps1 < 0.72)
388                         coef_vlc_table = 0;
389                 else if (bps1 < 1.16)
390                         coef_vlc_table = 2;
391         }
392         init_coef_vlc(pwd, coef_vlc_table, 0);
393         init_coef_vlc(pwd, coef_vlc_table + 1, 1);
394         return 0;
395 }
396
397 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd)
398 {
399         float wdel, a, b;
400         int i, e, m;
401
402         wdel = M_PI / pwd->frame_len;
403         for (i = 0; i < pwd->frame_len; i++)
404                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
405
406         /* tables for x^-0.25 computation */
407         for (i = 0; i < 256; i++) {
408                 e = i - 126;
409                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
410         }
411
412         /* These two tables are needed to avoid two operations in pow_m1_4. */
413         b = 1.0;
414         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
415                 m = (1 << LSP_POW_BITS) + i;
416                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
417                 a = pow(a, -0.25);
418                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
419                 pwd->lsp_pow_m_table2[i] = b - a;
420                 b = a;
421         }
422 }
423
424 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
425 {
426         struct private_wmadec_data *pwd;
427         int ret, i;
428
429         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
430         pwd = zalloc(sizeof(*pwd));
431         ret = read_asf_header(initial_buf, len, &pwd->ahi);
432         if (ret <= 0) {
433                 free(pwd);
434                 return ret;
435         }
436
437         ret = wma_init(pwd);
438         if (ret < 0)
439                 return ret;
440         /* init MDCT */
441         for (i = 0; i < pwd->nb_block_sizes; i++) {
442                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
443                 if (ret < 0)
444                         return ret;
445         }
446         if (pwd->use_noise_coding) {
447                 PARA_INFO_LOG("using noise coding\n");
448                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
449                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
450                         wma_hgain_huffcodes, 2);
451         }
452
453         if (pwd->ahi.use_exp_vlc) {
454                 PARA_INFO_LOG("using exp_vlc\n");
455                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
456                         wma_scale_huffbits, wma_scale_huffcodes, 4);
457         } else {
458                 PARA_INFO_LOG("using curve\n");
459                 wma_lsp_to_curve_init(pwd);
460         }
461         *result = pwd;
462         return pwd->ahi.header_len;
463 }
464
465 /**
466  * compute x^-0.25 with an exponent and mantissa table. We use linear
467  * interpolation to reduce the mantissa table size at a small speed
468  * expense (linear interpolation approximately doubles the number of
469  * bits of precision).
470  */
471 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
472 {
473         union {
474                 float f;
475                 unsigned int v;
476         } u, t;
477         unsigned int e, m;
478         float a, b;
479
480         u.f = x;
481         e = u.v >> 23;
482         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
483         /* build interpolation scale: 1 <= t < 2. */
484         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
485         a = pwd->lsp_pow_m_table1[m];
486         b = pwd->lsp_pow_m_table2[m];
487         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
488 }
489
490 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
491                 float *out, float *val_max_ptr, int n, float *lsp)
492 {
493         int i, j;
494         float p, q, w, v, val_max;
495
496         val_max = 0;
497         for (i = 0; i < n; i++) {
498                 p = 0.5f;
499                 q = 0.5f;
500                 w = pwd->lsp_cos_table[i];
501                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
502                         q *= w - lsp[j - 1];
503                         p *= w - lsp[j];
504                 }
505                 p *= p * (2.0f - w);
506                 q *= q * (2.0f + w);
507                 v = p + q;
508                 v = pow_m1_4(pwd, v);
509                 if (v > val_max)
510                         val_max = v;
511                 out[i] = v;
512         }
513         *val_max_ptr = val_max;
514 }
515
516 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
517 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
518 {
519         float lsp_coefs[NB_LSP_COEFS];
520         int val, i;
521
522         for (i = 0; i < NB_LSP_COEFS; i++) {
523                 if (i == 0 || i >= 8)
524                         val = get_bits(&pwd->gb, 3);
525                 else
526                         val = get_bits(&pwd->gb, 4);
527                 lsp_coefs[i] = wma_lsp_codebook[i][val];
528         }
529
530         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
531                 pwd->block_len, lsp_coefs);
532 }
533
534 /* Decode exponents coded with VLC codes. */
535 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
536 {
537         int last_exp, n, code;
538         const uint16_t *ptr, *band_ptr;
539         float v, *q, max_scale, *q_end;
540
541         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
542         ptr = band_ptr;
543         q = pwd->exponents[ch];
544         q_end = q + pwd->block_len;
545         max_scale = 0;
546         last_exp = 36;
547
548         while (q < q_end) {
549                 code = get_vlc(&pwd->gb, &pwd->exp_vlc);
550                 if (code < 0)
551                         return code;
552                 /* NOTE: this offset is the same as MPEG4 AAC ! */
553                 last_exp += code - 60;
554                 /* XXX: use a table */
555                 v = pow(10, last_exp * (1.0 / 16.0));
556                 if (v > max_scale)
557                         max_scale = v;
558                 n = *ptr++;
559                 do {
560                         *q++ = v;
561                 } while (--n);
562         }
563         pwd->max_exponent[ch] = max_scale;
564         return 0;
565 }
566
567 /* compute src0 * src1 + src2 */
568 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
569                 const float *src2, int len)
570 {
571         int i;
572
573         for (i = 0; i < len; i++)
574                 dst[i] = src0[i] * src1[i] + src2[i];
575 }
576
577 static inline void vector_mult_reverse(float *dst, const float *src0,
578                 const float *src1, int len)
579 {
580         int i;
581
582         src1 += len - 1;
583         for (i = 0; i < len; i++)
584                 dst[i] = src0[i] * src1[-i];
585 }
586
587 /**
588  * Apply MDCT window and add into output.
589  *
590  * We ensure that when the windows overlap their squared sum
591  * is always 1 (MDCT reconstruction rule).
592  */
593 static void wma_window(struct private_wmadec_data *pwd, float *out)
594 {
595         float *in = pwd->output;
596         int block_len, bsize, n;
597
598         /* left part */
599         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
600                 block_len = pwd->block_len;
601                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
602                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
603         } else {
604                 block_len = 1 << pwd->prev_block_len_bits;
605                 n = (pwd->block_len - block_len) / 2;
606                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
607                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
608                         block_len);
609                 memcpy(out + n + block_len, in + n + block_len,
610                         n * sizeof(float));
611         }
612         out += pwd->block_len;
613         in += pwd->block_len;
614         /* right part */
615         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
616                 block_len = pwd->block_len;
617                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
618                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
619         } else {
620                 block_len = 1 << pwd->next_block_len_bits;
621                 n = (pwd->block_len - block_len) / 2;
622                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
623                 memcpy(out, in, n * sizeof(float));
624                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
625                         block_len);
626                 memset(out + n + block_len, 0, n * sizeof(float));
627         }
628 }
629
630 static int wma_total_gain_to_bits(int total_gain)
631 {
632         if (total_gain < 15)
633                 return 13;
634         else if (total_gain < 32)
635                 return 12;
636         else if (total_gain < 40)
637                 return 11;
638         else if (total_gain < 45)
639                 return 10;
640         else
641                 return 9;
642 }
643
644 static int compute_high_band_values(struct private_wmadec_data *pwd,
645                 int bsize, int nb_coefs[MAX_CHANNELS])
646 {
647         int ch;
648
649         if (!pwd->use_noise_coding)
650                 return 0;
651         for (ch = 0; ch < pwd->ahi.channels; ch++) {
652                 int i, m, a;
653                 if (!pwd->channel_coded[ch])
654                         continue;
655                 m = pwd->exponent_high_sizes[bsize];
656                 for (i = 0; i < m; i++) {
657                         a = get_bit(&pwd->gb);
658                         pwd->high_band_coded[ch][i] = a;
659                         if (!a)
660                                 continue;
661                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
662                 }
663         }
664         for (ch = 0; ch < pwd->ahi.channels; ch++) {
665                 int i, n, val;
666                 if (!pwd->channel_coded[ch])
667                         continue;
668                 n = pwd->exponent_high_sizes[bsize];
669                 val = (int)0x80000000;
670                 for (i = 0; i < n; i++) {
671                         if (!pwd->high_band_coded[ch][i])
672                                 continue;
673                         if (val == (int)0x80000000)
674                                 val = get_bits(&pwd->gb, 7) - 19;
675                         else {
676                                 int code = get_vlc(&pwd->gb, &pwd->hgain_vlc);
677                                 if (code < 0)
678                                         return code;
679                                 val += code - 18;
680                         }
681                         pwd->high_band_values[ch][i] = val;
682                 }
683         }
684         return 1;
685 }
686
687 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
688                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
689 {
690         int ch;
691         float mdct_norm = 1.0 / (pwd->block_len / 2);
692
693         for (ch = 0; ch < pwd->ahi.channels; ch++) {
694                 int16_t *coefs1;
695                 float *coefs, *exponents, mult, mult1, noise;
696                 int i, j, n, n1, last_high_band, esize;
697                 float exp_power[HIGH_BAND_MAX_SIZE];
698
699                 if (!pwd->channel_coded[ch])
700                         continue;
701                 coefs1 = pwd->coefs1[ch];
702                 exponents = pwd->exponents[ch];
703                 esize = pwd->exponents_bsize[ch];
704                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
705                 mult *= mdct_norm;
706                 coefs = pwd->coefs[ch];
707                 if (!pwd->use_noise_coding) {
708                         /* XXX: optimize more */
709                         n = nb_coefs[ch];
710                         for (i = 0; i < n; i++)
711                                 *coefs++ = coefs1[i] *
712                                         exponents[i << bsize >> esize] * mult;
713                         n = pwd->block_len - pwd->coefs_end[bsize];
714                         for (i = 0; i < n; i++)
715                                 *coefs++ = 0.0;
716                         continue;
717                 }
718                 n1 = pwd->exponent_high_sizes[bsize];
719                 /* compute power of high bands */
720                 exponents = pwd->exponents[ch] +
721                         (pwd->high_band_start[bsize] << bsize);
722                 last_high_band = 0; /* avoid warning */
723                 for (j = 0; j < n1; j++) {
724                         n = pwd->exponent_high_bands[
725                                 pwd->frame_len_bits - pwd->block_len_bits][j];
726                         if (pwd->high_band_coded[ch][j]) {
727                                 float e2, val;
728                                 e2 = 0;
729                                 for (i = 0; i < n; i++) {
730                                         val = exponents[i << bsize >> esize];
731                                         e2 += val * val;
732                                 }
733                                 exp_power[j] = e2 / n;
734                                 last_high_band = j;
735                         }
736                         exponents += n << bsize;
737                 }
738                 /* main freqs and high freqs */
739                 exponents = pwd->exponents[ch];
740                 for (j = -1; j < n1; j++) {
741                         if (j < 0)
742                                 n = pwd->high_band_start[bsize];
743                         else
744                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
745                                         - pwd->block_len_bits][j];
746                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
747                                 /* use noise with specified power */
748                                 mult1 = sqrt(exp_power[j]
749                                         / exp_power[last_high_band]);
750                                 /* XXX: use a table */
751                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
752                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
753                                 mult1 *= mdct_norm;
754                                 for (i = 0; i < n; i++) {
755                                         noise = pwd->noise_table[pwd->noise_index];
756                                         pwd->noise_index = (pwd->noise_index + 1)
757                                                 & (NOISE_TAB_SIZE - 1);
758                                         *coefs++ = noise * exponents[
759                                                 i << bsize >> esize] * mult1;
760                                 }
761                                 exponents += n << bsize;
762                         } else {
763                                 /* coded values + small noise */
764                                 for (i = 0; i < n; i++) {
765                                         noise = pwd->noise_table[pwd->noise_index];
766                                         pwd->noise_index = (pwd->noise_index + 1)
767                                                 & (NOISE_TAB_SIZE - 1);
768                                         *coefs++ = ((*coefs1++) + noise) *
769                                                 exponents[i << bsize >> esize]
770                                                 * mult;
771                                 }
772                                 exponents += n << bsize;
773                         }
774                 }
775                 /* very high freqs: noise */
776                 n = pwd->block_len - pwd->coefs_end[bsize];
777                 mult1 = mult * exponents[(-(1 << bsize)) >> esize];
778                 for (i = 0; i < n; i++) {
779                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
780                         pwd->noise_index = (pwd->noise_index + 1)
781                                 & (NOISE_TAB_SIZE - 1);
782                 }
783         }
784 }
785
786 /**
787  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
788  * errors.
789  */
790 static int wma_decode_block(struct private_wmadec_data *pwd)
791 {
792         int ret, n, v, ch, code, bsize;
793         int coef_nb_bits, total_gain;
794         int nb_coefs[MAX_CHANNELS];
795         bool ms_stereo = false; /* mid/side stereo mode */
796
797         /* compute current block length */
798         if (pwd->ahi.use_variable_block_len) {
799                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
800
801                 if (pwd->reset_block_lengths) {
802                         pwd->reset_block_lengths = false;
803                         v = get_bits(&pwd->gb, n);
804                         if (v >= pwd->nb_block_sizes)
805                                 return -E_WMA_BLOCK_SIZE;
806                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
807                         v = get_bits(&pwd->gb, n);
808                         if (v >= pwd->nb_block_sizes)
809                                 return -E_WMA_BLOCK_SIZE;
810                         pwd->block_len_bits = pwd->frame_len_bits - v;
811                 } else {
812                         /* update block lengths */
813                         pwd->prev_block_len_bits = pwd->block_len_bits;
814                         pwd->block_len_bits = pwd->next_block_len_bits;
815                 }
816                 v = get_bits(&pwd->gb, n);
817                 if (v >= pwd->nb_block_sizes)
818                         return -E_WMA_BLOCK_SIZE;
819                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
820         } else {
821                 /* fixed block len */
822                 pwd->next_block_len_bits = pwd->frame_len_bits;
823                 pwd->prev_block_len_bits = pwd->frame_len_bits;
824                 pwd->block_len_bits = pwd->frame_len_bits;
825         }
826
827         /* now check if the block length is coherent with the frame length */
828         pwd->block_len = 1 << pwd->block_len_bits;
829         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
830                 return -E_INCOHERENT_BLOCK_LEN;
831
832         if (pwd->ahi.channels == 2)
833                 ms_stereo = get_bit(&pwd->gb);
834         v = 0;
835         for (ch = 0; ch < pwd->ahi.channels; ch++) {
836                 int a = get_bit(&pwd->gb);
837                 pwd->channel_coded[ch] = a;
838                 v |= a;
839         }
840
841         bsize = pwd->frame_len_bits - pwd->block_len_bits;
842
843         /* if no channel coded, no need to go further */
844         /* XXX: fix potential framing problems */
845         if (!v)
846                 goto next;
847
848         /*
849          * Read total gain and extract corresponding number of bits for coef
850          * escape coding.
851          */
852         total_gain = 1;
853         for (;;) {
854                 int a = get_bits(&pwd->gb, 7);
855                 total_gain += a;
856                 if (a != 127)
857                         break;
858         }
859
860         coef_nb_bits = wma_total_gain_to_bits(total_gain);
861
862         /* compute number of coefficients */
863         n = pwd->coefs_end[bsize];
864         for (ch = 0; ch < pwd->ahi.channels; ch++)
865                 nb_coefs[ch] = n;
866
867         ret = compute_high_band_values(pwd, bsize, nb_coefs);
868         if (ret < 0)
869                 return ret;
870
871         /* exponents can be reused in short blocks. */
872         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
873                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
874                         if (pwd->channel_coded[ch]) {
875                                 if (pwd->ahi.use_exp_vlc) {
876                                         ret = decode_exp_vlc(pwd, ch);
877                                         if (ret < 0)
878                                                 return ret;
879                                 } else
880                                         decode_exp_lsp(pwd, ch);
881                                 pwd->exponents_bsize[ch] = bsize;
882                         }
883                 }
884         }
885
886         /* parse spectral coefficients : just RLE encoding */
887         for (ch = 0; ch < pwd->ahi.channels; ch++) {
888                 struct vlc *coef_vlc;
889                 int level, run, tindex;
890                 int16_t *ptr, *eptr;
891                 const uint16_t *level_table, *run_table;
892
893                 if (!pwd->channel_coded[ch])
894                         continue;
895                 /*
896                  * special VLC tables are used for ms stereo because there is
897                  * potentially less energy there
898                  */
899                 tindex = ch == 1 && ms_stereo;
900                 coef_vlc = &pwd->coef_vlc[tindex];
901                 run_table = pwd->run_table[tindex];
902                 level_table = pwd->level_table[tindex];
903                 /* XXX: optimize */
904                 ptr = &pwd->coefs1[ch][0];
905                 eptr = ptr + nb_coefs[ch];
906                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
907                 for (;;) {
908                         code = get_vlc(&pwd->gb, coef_vlc);
909                         if (code < 0)
910                                 return code;
911                         if (code == 1) /* EOB */
912                                 break;
913                         if (code == 0) { /* escape */
914                                 level = get_bits(&pwd->gb, coef_nb_bits);
915                                 /* reading block_len_bits would be better */
916                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
917                         } else { /* normal code */
918                                 run = run_table[code];
919                                 level = level_table[code];
920                         }
921                         if (!get_bit(&pwd->gb))
922                                 level = -level;
923                         ptr += run;
924                         if (ptr >= eptr) {
925                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
926                                 break;
927                         }
928                         *ptr++ = level;
929                         if (ptr >= eptr) /* EOB can be omitted */
930                                 break;
931                 }
932         }
933         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
934         if (ms_stereo && pwd->channel_coded[1]) {
935                 float a, b;
936                 int i;
937                 /*
938                  * Nominal case for ms stereo: we do it before mdct.
939                  *
940                  * No need to optimize this case because it should almost never
941                  * happen.
942                  */
943                 if (!pwd->channel_coded[0]) {
944                         PARA_NOTICE_LOG("rare ms-stereo\n");
945                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
946                         pwd->channel_coded[0] = 1;
947                 }
948                 for (i = 0; i < pwd->block_len; i++) {
949                         a = pwd->coefs[0][i];
950                         b = pwd->coefs[1][i];
951                         pwd->coefs[0][i] = a + b;
952                         pwd->coefs[1][i] = a - b;
953                 }
954         }
955 next:
956         for (ch = 0; ch < pwd->ahi.channels; ch++) {
957                 int n4, idx;
958
959                 n4 = pwd->block_len / 2;
960                 if (pwd->channel_coded[ch])
961                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
962                 else if (!(ms_stereo && ch == 1))
963                         memset(pwd->output, 0, sizeof(pwd->output));
964
965                 /* multiply by the window and add in the frame */
966                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
967                 wma_window(pwd, &pwd->frame_out[ch][idx]);
968         }
969
970         /* update block number */
971         pwd->block_pos += pwd->block_len;
972         if (pwd->block_pos >= pwd->frame_len)
973                 return 1;
974         else
975                 return 0;
976 }
977
978 /*
979  * Clip a signed integer value into the -32768,32767 range.
980  *
981  * \param a The value to clip.
982  *
983  * \return The clipped value.
984  */
985 static inline int16_t av_clip_int16(int a)
986 {
987         if ((a + 32768) & ~65535)
988                 return (a >> 31) ^ 32767;
989         else
990                 return a;
991 }
992
993 /* Decode a frame of frame_len samples. */
994 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
995 {
996         int ret, i, ch;
997         int16_t *ptr;
998         float *iptr;
999
1000         /* read each block */
1001         pwd->block_pos = 0;
1002         for (;;) {
1003                 ret = wma_decode_block(pwd);
1004                 if (ret < 0)
1005                         return ret;
1006                 if (ret)
1007                         break;
1008         }
1009
1010         /* convert frame to integer */
1011         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1012                 ptr = samples + ch;
1013                 iptr = pwd->frame_out[ch];
1014
1015                 for (i = 0; i < pwd->frame_len; i++) {
1016                         *ptr = av_clip_int16(lrintf(*iptr++));
1017                         ptr += pwd->ahi.channels;
1018                 }
1019                 /* prepare for next block */
1020                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1021                         pwd->frame_len * sizeof(float));
1022         }
1023         return 0;
1024 }
1025
1026 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *out,
1027                 int *out_size, const uint8_t *in)
1028 {
1029         int ret, in_size = pwd->ahi.packet_size - WMA_FRAME_SKIP;
1030         int16_t *samples = out;
1031
1032         init_get_bits(&pwd->gb, in, in_size);
1033         if (pwd->ahi.use_bit_reservoir) {
1034                 int i, nb_frames, bit_offset, pos, len;
1035                 uint8_t *q;
1036
1037                 /* read super frame header */
1038                 skip_bits(&pwd->gb, 4); /* super frame index */
1039                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1040                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1041                 ret = -E_WMA_OUTPUT_SPACE;
1042                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1043                                 * sizeof(int16_t) > *out_size)
1044                         goto fail;
1045
1046                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1047
1048                 if (pwd->last_superframe_len > 0) {
1049                         /* add bit_offset bits to last frame */
1050                         ret = -E_WMA_BAD_SUPERFRAME;
1051                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1052                                         MAX_CODED_SUPERFRAME_SIZE)
1053                                 goto fail;
1054                         q = pwd->last_superframe + pwd->last_superframe_len;
1055                         len = bit_offset;
1056                         while (len > 7) {
1057                                 *q++ = get_bits(&pwd->gb, 8);
1058                                 len -= 8;
1059                         }
1060                         if (len > 0)
1061                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1062
1063                         /* XXX: bit_offset bits into last frame */
1064                         init_get_bits(&pwd->gb, pwd->last_superframe,
1065                                 MAX_CODED_SUPERFRAME_SIZE);
1066                         /* skip unused bits */
1067                         if (pwd->last_bitoffset > 0)
1068                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1069                         /*
1070                          * This frame is stored in the last superframe and in
1071                          * the current one.
1072                          */
1073                         ret = wma_decode_frame(pwd, samples);
1074                         if (ret < 0)
1075                                 goto fail;
1076                         samples += pwd->ahi.channels * pwd->frame_len;
1077                 }
1078
1079                 /* read each frame starting from bit_offset */
1080                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1081                 init_get_bits(&pwd->gb, in + (pos >> 3),
1082                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1083                 len = pos & 7;
1084                 if (len > 0)
1085                         skip_bits(&pwd->gb, len);
1086
1087                 pwd->reset_block_lengths = true;
1088                 for (i = 0; i < nb_frames; i++) {
1089                         ret = wma_decode_frame(pwd, samples);
1090                         if (ret < 0)
1091                                 goto fail;
1092                         samples += pwd->ahi.channels * pwd->frame_len;
1093                 }
1094
1095                 /* we copy the end of the frame in the last frame buffer */
1096                 pos = get_bits_count(&pwd->gb) +
1097                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1098                 pwd->last_bitoffset = pos & 7;
1099                 pos >>= 3;
1100                 len = in_size - pos;
1101                 ret = -E_WMA_BAD_SUPERFRAME;
1102                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1103                         goto fail;
1104                 pwd->last_superframe_len = len;
1105                 memcpy(pwd->last_superframe, in + pos, len);
1106         } else {
1107                 PARA_DEBUG_LOG("not using bit reservoir\n");
1108                 ret = -E_WMA_OUTPUT_SPACE;
1109                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *out_size)
1110                         goto fail;
1111                 /* single frame decode */
1112                 ret = wma_decode_frame(pwd, samples);
1113                 if (ret < 0)
1114                         goto fail;
1115                 samples += pwd->ahi.channels * pwd->frame_len;
1116         }
1117         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1118                 pwd->frame_len, pwd->block_len,
1119                 (int)((int8_t *)samples - (int8_t *)out), pwd->ahi.block_align);
1120         *out_size = (int8_t *)samples - (int8_t *)out;
1121         return pwd->ahi.block_align;
1122 fail:
1123         /* reset the bit reservoir on errors */
1124         pwd->last_superframe_len = 0;
1125         return ret;
1126 }
1127
1128 static void wmadec_close(struct filter_node *fn)
1129 {
1130         struct private_wmadec_data *pwd = fn->private_data;
1131         int i;
1132
1133         if (!pwd)
1134                 return;
1135         for (i = 0; i < pwd->nb_block_sizes; i++)
1136                 imdct_end(pwd->mdct_ctx[i]);
1137         if (pwd->ahi.use_exp_vlc)
1138                 free_vlc(&pwd->exp_vlc);
1139         if (pwd->use_noise_coding)
1140                 free_vlc(&pwd->hgain_vlc);
1141         for (i = 0; i < 2; i++) {
1142                 free_vlc(&pwd->coef_vlc[i]);
1143                 free(pwd->run_table[i]);
1144                 free(pwd->level_table[i]);
1145         }
1146         free(fn->private_data);
1147         fn->private_data = NULL;
1148 }
1149
1150 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1151 {
1152         struct filter_node *fn = btr_context(btrn);
1153         struct private_wmadec_data *pwd = fn->private_data;
1154
1155         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1156                 result);
1157 }
1158
1159 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1160
1161 static int wmadec_post_monitor(__a_unused struct sched *s, void *context)
1162 {
1163         struct filter_node *fn = context;
1164         int ret, converted, out_size;
1165         struct private_wmadec_data *pwd = fn->private_data;
1166         struct btr_node *btrn = fn->btrn;
1167         size_t len;
1168         char *in, *out;
1169
1170 next_buffer:
1171         converted = 0;
1172         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1173         if (ret < 0)
1174                 goto err;
1175         if (ret == 0)
1176                 return 0;
1177         btr_merge(btrn, fn->min_iqs);
1178         len = btr_next_buffer(btrn, &in);
1179         ret = -E_EOF;
1180         if (len < fn->min_iqs)
1181                 goto err;
1182         if (!pwd) {
1183                 ret = wma_decode_init(in, len, &pwd);
1184                 if (ret < 0)
1185                         goto err;
1186                 if (ret == 0) {
1187                         fn->min_iqs += 4096;
1188                         goto next_buffer;
1189                 }
1190                 fn->min_iqs = 2 * pwd->ahi.packet_size;
1191                 fn->private_data = pwd;
1192                 converted = pwd->ahi.header_len;
1193                 goto success;
1194         }
1195         fn->min_iqs = pwd->ahi.packet_size;
1196         if (fn->min_iqs > len)
1197                 goto success;
1198         out_size = WMA_OUTPUT_BUFFER_SIZE;
1199         out = alloc(out_size);
1200         ret = wma_decode_superframe(pwd, out, &out_size,
1201                 (uint8_t *)in + WMA_FRAME_SKIP);
1202         if (ret < 0) {
1203                 free(out);
1204                 goto err;
1205         }
1206         if (out_size > 0) {
1207                 out = para_realloc(out, out_size);
1208                 btr_add_output(out, out_size, btrn);
1209         } else
1210                 free(out);
1211         converted += pwd->ahi.packet_size;
1212 success:
1213         btr_consume(btrn, converted);
1214         return 0;
1215 err:
1216         assert(ret < 0);
1217         btr_remove_node(&fn->btrn);
1218         return ret;
1219 }
1220
1221 static void wmadec_open(struct filter_node *fn)
1222 {
1223         fn->private_data = NULL;
1224         fn->min_iqs = 4096;
1225 }
1226
1227 const struct filter lsg_filter_cmd_com_wmadec_user_data = {
1228         .open = wmadec_open,
1229         .close = wmadec_close,
1230         .execute = wmadec_execute,
1231         .pre_monitor = generic_filter_pre_monitor,
1232         .post_monitor = wmadec_post_monitor,
1233 };