2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
35 #include "bitstream.h"
42 #define BLOCK_MIN_BITS 7
43 #define BLOCK_MAX_BITS 11
44 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48 /* XXX: find exact max size */
49 #define HIGH_BAND_MAX_SIZE 16
51 /* XXX: is it a suitable value ? */
52 #define MAX_CODED_SUPERFRAME_SIZE 16384
54 #define MAX_CHANNELS 2
56 #define NOISE_TAB_SIZE 8192
58 #define LSP_POW_BITS 7
60 struct private_wmadec_data
{
61 struct asf_header_info ahi
;
62 struct getbit_context gb
;
63 int use_bit_reservoir
;
64 int use_variable_block_len
;
65 int use_exp_vlc
; ///< exponent coding: 0 = lsp, 1 = vlc + delta
66 int use_noise_coding
; ///< true if perceptual noise is added
69 int exponent_sizes
[BLOCK_NB_SIZES
];
70 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
71 int high_band_start
[BLOCK_NB_SIZES
]; ///< index of first coef in high band
72 int coefs_start
; ///< first coded coef
73 int coefs_end
[BLOCK_NB_SIZES
]; ///< max number of coded coefficients
74 int exponent_high_sizes
[BLOCK_NB_SIZES
];
75 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
78 /* coded values in high bands */
79 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
80 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
82 /* there are two possible tables for spectral coefficients */
83 struct vlc coef_vlc
[2];
84 uint16_t *run_table
[2];
85 uint16_t *level_table
[2];
86 uint16_t *int_table
[2];
87 const struct coef_vlc_table
*coef_vlcs
[2];
89 int frame_len
; ///< frame length in samples
90 int frame_len_bits
; ///< frame_len = 1 << frame_len_bits
91 int nb_block_sizes
; ///< number of block sizes
93 int reset_block_lengths
;
94 int block_len_bits
; ///< log2 of current block length
95 int next_block_len_bits
; ///< log2 of next block length
96 int prev_block_len_bits
; ///< log2 of prev block length
97 int block_len
; ///< block length in samples
98 int block_pos
; ///< current position in frame
99 uint8_t ms_stereo
; ///< true if mid/side stereo mode
100 uint8_t channel_coded
[MAX_CHANNELS
]; ///< true if channel is coded
101 int exponents_bsize
[MAX_CHANNELS
]; ///< log2 ratio frame/exp. length
102 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
103 float max_exponent
[MAX_CHANNELS
];
104 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
105 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
106 float output
[BLOCK_MAX_SIZE
* 2];
107 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
108 float *windows
[BLOCK_NB_SIZES
];
109 /* output buffer for one frame and the last for IMDCT windowing */
110 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
111 /* last frame info */
112 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
114 int last_superframe_len
;
115 float noise_table
[NOISE_TAB_SIZE
];
117 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
118 /* lsp_to_curve tables */
119 float lsp_cos_table
[BLOCK_MAX_SIZE
];
120 float lsp_pow_e_table
[256];
121 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
122 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
126 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
132 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
134 DECLARE_ALIGNED(16, float, ff_sine_128
[128]);
135 DECLARE_ALIGNED(16, float, ff_sine_256
[256]);
136 DECLARE_ALIGNED(16, float, ff_sine_512
[512]);
137 DECLARE_ALIGNED(16, float, ff_sine_1024
[1024]);
138 DECLARE_ALIGNED(16, float, ff_sine_2048
[2048]);
139 DECLARE_ALIGNED(16, float, ff_sine_4096
[4096]);
141 static float *ff_sine_windows
[6] = {
142 ff_sine_128
, ff_sine_256
, ff_sine_512
, ff_sine_1024
,
143 ff_sine_2048
, ff_sine_4096
146 /* Generate a sine window. */
147 static void sine_window_init(float *window
, int n
)
151 for (i
= 0; i
< n
; i
++)
152 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
155 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
159 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
160 imdct_end(pwd
->mdct_ctx
[i
]);
161 if (pwd
->use_exp_vlc
)
162 free_vlc(&pwd
->exp_vlc
);
163 if (pwd
->use_noise_coding
)
164 free_vlc(&pwd
->hgain_vlc
);
165 for (i
= 0; i
< 2; i
++) {
166 free_vlc(&pwd
->coef_vlc
[i
]);
167 free(pwd
->run_table
[i
]);
168 free(pwd
->level_table
[i
]);
169 free(pwd
->int_table
[i
]);
173 /* XXX: use same run/length optimization as mpeg decoders */
174 //FIXME maybe split decode / encode or pass flag
175 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
176 uint16_t **plevel_table
, uint16_t **pint_table
,
177 const struct coef_vlc_table
*vlc_table
)
179 int n
= vlc_table
->n
;
180 const uint8_t *table_bits
= vlc_table
->huffbits
;
181 const uint32_t *table_codes
= vlc_table
->huffcodes
;
182 const uint16_t *levels_table
= vlc_table
->levels
;
183 uint16_t *run_table
, *level_table
, *int_table
;
184 int i
, l
, j
, k
, level
;
186 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4, 4);
188 run_table
= para_malloc(n
* sizeof(uint16_t));
189 level_table
= para_malloc(n
* sizeof(uint16_t));
190 int_table
= para_malloc(n
* sizeof(uint16_t));
196 l
= levels_table
[k
++];
197 for (j
= 0; j
< l
; j
++) {
199 level_table
[i
] = level
;
204 *prun_table
= run_table
;
205 *plevel_table
= level_table
;
206 *pint_table
= int_table
;
209 /* compute the scale factor band sizes for each MDCT block size */
210 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
213 struct asf_header_info
*ahi
= &pwd
->ahi
;
214 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
215 const uint8_t *table
;
217 pwd
->coefs_start
= 0;
218 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
219 block_len
= pwd
->frame_len
>> k
;
222 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
224 if (ahi
->sample_rate
>= 44100)
225 table
= exponent_band_44100
[a
];
226 else if (ahi
->sample_rate
>= 32000)
227 table
= exponent_band_32000
[a
];
228 else if (ahi
->sample_rate
>= 22050)
229 table
= exponent_band_22050
[a
];
233 for (i
= 0; i
< n
; i
++)
234 pwd
->exponent_bands
[k
][i
] = table
[i
];
235 pwd
->exponent_sizes
[k
] = n
;
239 for (i
= 0; i
< 25; i
++) {
240 a
= wma_critical_freqs
[i
];
241 b
= ahi
->sample_rate
;
242 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
247 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
248 if (pos
>= block_len
)
252 pwd
->exponent_sizes
[k
] = j
;
255 /* max number of coefs */
256 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
257 /* high freq computation */
258 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
259 / ahi
->sample_rate
+ 0.5);
260 n
= pwd
->exponent_sizes
[k
];
263 for (i
= 0; i
< n
; i
++) {
266 pos
+= pwd
->exponent_bands
[k
][i
];
268 if (start
< pwd
->high_band_start
[k
])
269 start
= pwd
->high_band_start
[k
];
270 if (end
> pwd
->coefs_end
[k
])
271 end
= pwd
->coefs_end
[k
];
273 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
275 pwd
->exponent_high_sizes
[k
] = j
;
279 static int wma_init(struct private_wmadec_data
*pwd
)
282 float bps1
, high_freq
;
286 struct asf_header_info
*ahi
= &pwd
->ahi
;
287 int flags2
= ahi
->flags2
;
289 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
290 || ahi
->channels
<= 0 || ahi
->channels
> 8
291 || ahi
->bit_rate
<= 0)
292 return -E_WMA_BAD_PARAMS
;
294 /* compute MDCT block size */
295 if (ahi
->sample_rate
<= 16000) {
296 pwd
->frame_len_bits
= 9;
297 } else if (ahi
->sample_rate
<= 22050) {
298 pwd
->frame_len_bits
= 10;
300 pwd
->frame_len_bits
= 11;
302 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
303 if (pwd
->use_variable_block_len
) {
305 nb
= ((flags2
>> 3) & 3) + 1;
306 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
308 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
311 pwd
->nb_block_sizes
= nb
+ 1;
313 pwd
->nb_block_sizes
= 1;
315 /* init rate dependent parameters */
316 pwd
->use_noise_coding
= 1;
317 high_freq
= ahi
->sample_rate
* 0.5;
319 /* wma2 rates are normalized */
320 sample_rate1
= ahi
->sample_rate
;
321 if (sample_rate1
>= 44100)
322 sample_rate1
= 44100;
323 else if (sample_rate1
>= 22050)
324 sample_rate1
= 22050;
325 else if (sample_rate1
>= 16000)
326 sample_rate1
= 16000;
327 else if (sample_rate1
>= 11025)
328 sample_rate1
= 11025;
329 else if (sample_rate1
>= 8000)
332 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
333 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
335 * Compute high frequency value and choose if noise coding should be
339 if (ahi
->channels
== 2)
341 if (sample_rate1
== 44100) {
343 pwd
->use_noise_coding
= 0;
345 high_freq
= high_freq
* 0.4;
346 } else if (sample_rate1
== 22050) {
348 pwd
->use_noise_coding
= 0;
349 else if (bps1
>= 0.72)
350 high_freq
= high_freq
* 0.7;
352 high_freq
= high_freq
* 0.6;
353 } else if (sample_rate1
== 16000) {
355 high_freq
= high_freq
* 0.5;
357 high_freq
= high_freq
* 0.3;
358 } else if (sample_rate1
== 11025) {
359 high_freq
= high_freq
* 0.7;
360 } else if (sample_rate1
== 8000) {
362 high_freq
= high_freq
* 0.5;
363 } else if (bps
> 0.75) {
364 pwd
->use_noise_coding
= 0;
366 high_freq
= high_freq
* 0.65;
370 high_freq
= high_freq
* 0.75;
371 } else if (bps
>= 0.6) {
372 high_freq
= high_freq
* 0.6;
374 high_freq
= high_freq
* 0.5;
377 PARA_INFO_LOG("channels=%d sample_rate=%d "
378 "bitrate=%d block_align=%d\n",
379 ahi
->channels
, ahi
->sample_rate
,
380 ahi
->bit_rate
, ahi
->block_align
);
381 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
382 "high_freq=%f bitoffset=%d\n",
383 pwd
->frame_len
, bps
, bps1
,
384 high_freq
, pwd
->byte_offset_bits
);
385 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
386 pwd
->use_noise_coding
, pwd
->use_exp_vlc
, pwd
->nb_block_sizes
);
388 compute_scale_factor_band_sizes(pwd
, high_freq
);
389 /* init MDCT windows : simple sinus window */
390 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
392 n
= 1 << (pwd
->frame_len_bits
- i
);
393 sine_window_init(ff_sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
394 pwd
->windows
[i
] = ff_sine_windows
[pwd
->frame_len_bits
- i
- 7];
397 pwd
->reset_block_lengths
= 1;
399 if (pwd
->use_noise_coding
) {
400 /* init the noise generator */
401 if (pwd
->use_exp_vlc
)
402 pwd
->noise_mult
= 0.02;
404 pwd
->noise_mult
= 0.04;
410 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
411 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
412 seed
= seed
* 314159 + 1;
413 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
418 /* choose the VLC tables for the coefficients */
420 if (ahi
->sample_rate
>= 32000) {
423 else if (bps1
< 1.16)
426 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
427 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
428 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
429 &pwd
->int_table
[0], pwd
->coef_vlcs
[0]);
430 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
431 &pwd
->int_table
[1], pwd
->coef_vlcs
[1]);
435 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
440 wdel
= M_PI
/ frame_len
;
441 for (i
= 0; i
< frame_len
; i
++)
442 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
444 /* tables for x^-0.25 computation */
445 for (i
= 0; i
< 256; i
++) {
447 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
450 /* These two tables are needed to avoid two operations in pow_m1_4. */
452 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
453 m
= (1 << LSP_POW_BITS
) + i
;
454 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
456 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
457 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
462 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
464 struct private_wmadec_data
*pwd
;
467 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
468 pwd
= para_calloc(sizeof(*pwd
));
469 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
475 pwd
->use_exp_vlc
= pwd
->ahi
.flags2
& 0x0001;
476 pwd
->use_bit_reservoir
= pwd
->ahi
.flags2
& 0x0002;
477 pwd
->use_variable_block_len
= pwd
->ahi
.flags2
& 0x0004;
483 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
484 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
488 if (pwd
->use_noise_coding
) {
489 PARA_INFO_LOG("using noise coding\n");
490 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
491 sizeof(ff_wma_hgain_huffbits
), ff_wma_hgain_huffbits
,
492 ff_wma_hgain_huffcodes
, 2, 2);
495 if (pwd
->use_exp_vlc
) {
496 PARA_INFO_LOG("using exp_vlc\n");
497 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
,
498 sizeof(ff_wma_scale_huffbits
), ff_wma_scale_huffbits
,
499 ff_wma_scale_huffcodes
, 4, 4);
501 PARA_INFO_LOG("using curve\n");
502 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
505 return pwd
->ahi
.header_len
;
509 * compute x^-0.25 with an exponent and mantissa table. We use linear
510 * interpolation to reduce the mantissa table size at a small speed
511 * expense (linear interpolation approximately doubles the number of
512 * bits of precision).
514 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
525 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
526 /* build interpolation scale: 1 <= t < 2. */
527 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
528 a
= pwd
->lsp_pow_m_table1
[m
];
529 b
= pwd
->lsp_pow_m_table2
[m
];
530 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
533 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
534 float *out
, float *val_max_ptr
, int n
, float *lsp
)
537 float p
, q
, w
, v
, val_max
;
540 for (i
= 0; i
< n
; i
++) {
543 w
= pwd
->lsp_cos_table
[i
];
544 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
551 v
= pow_m1_4(pwd
, v
);
556 *val_max_ptr
= val_max
;
559 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
560 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
562 float lsp_coefs
[NB_LSP_COEFS
];
565 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
566 if (i
== 0 || i
>= 8)
567 val
= get_bits(&pwd
->gb
, 3);
569 val
= get_bits(&pwd
->gb
, 4);
570 lsp_coefs
[i
] = ff_wma_lsp_codebook
[i
][val
];
573 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
574 pwd
->block_len
, lsp_coefs
);
578 * Parse a vlc code, faster then get_vlc().
580 * \param bits The number of bits which will be read at once, must be
581 * identical to nb_bits in init_vlc()
583 * \param max_depth The number of times bits bits must be read to completely
584 * read the longest vlc code = (max_vlc_length + bits - 1) / bits.
586 static int get_vlc2(struct getbit_context
*s
, VLC_TYPE(*table
)[2],
587 int bits
, int max_depth
)
593 GET_VLC(code
, re
, s
, table
, bits
, max_depth
)
598 /* Decode exponents coded with VLC codes. */
599 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
601 int last_exp
, n
, code
;
602 const uint16_t *ptr
, *band_ptr
;
603 float v
, *q
, max_scale
, *q_end
;
605 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
607 q
= pwd
->exponents
[ch
];
608 q_end
= q
+ pwd
->block_len
;
613 code
= get_vlc2(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
616 /* NOTE: this offset is the same as MPEG4 AAC ! */
617 last_exp
+= code
- 60;
618 /* XXX: use a table */
619 v
= pow(10, last_exp
* (1.0 / 16.0));
627 pwd
->max_exponent
[ch
] = max_scale
;
631 /* compute src0 * src1 + src2 */
632 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
633 const float *src2
, int len
)
637 for (i
= 0; i
< len
; i
++)
638 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
641 static inline void vector_mult_reverse(float *dst
, const float *src0
,
642 const float *src1
, int len
)
647 for (i
= 0; i
< len
; i
++)
648 dst
[i
] = src0
[i
] * src1
[-i
];
652 * Apply MDCT window and add into output.
654 * We ensure that when the windows overlap their squared sum
655 * is always 1 (MDCT reconstruction rule).
657 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
659 float *in
= pwd
->output
;
660 int block_len
, bsize
, n
;
663 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
664 block_len
= pwd
->block_len
;
665 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
666 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
668 block_len
= 1 << pwd
->prev_block_len_bits
;
669 n
= (pwd
->block_len
- block_len
) / 2;
670 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
671 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
673 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
676 out
+= pwd
->block_len
;
677 in
+= pwd
->block_len
;
679 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
680 block_len
= pwd
->block_len
;
681 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
682 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
684 block_len
= 1 << pwd
->next_block_len_bits
;
685 n
= (pwd
->block_len
- block_len
) / 2;
686 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
687 memcpy(out
, in
, n
* sizeof(float));
688 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
690 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
694 static int wma_total_gain_to_bits(int total_gain
)
698 else if (total_gain
< 32)
700 else if (total_gain
< 40)
702 else if (total_gain
< 45)
709 * @return 0 if OK. 1 if last block of frame. return -1 if
710 * unrecorrable error.
712 static int wma_decode_block(struct private_wmadec_data
*pwd
)
714 int n
, v
, ch
, code
, bsize
;
715 int coef_nb_bits
, total_gain
;
716 int nb_coefs
[MAX_CHANNELS
];
719 /* compute current block length */
720 if (pwd
->use_variable_block_len
) {
721 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
723 if (pwd
->reset_block_lengths
) {
724 pwd
->reset_block_lengths
= 0;
725 v
= get_bits(&pwd
->gb
, n
);
726 if (v
>= pwd
->nb_block_sizes
)
728 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
729 v
= get_bits(&pwd
->gb
, n
);
730 if (v
>= pwd
->nb_block_sizes
)
732 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
734 /* update block lengths */
735 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
736 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
738 v
= get_bits(&pwd
->gb
, n
);
739 if (v
>= pwd
->nb_block_sizes
)
741 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
743 /* fixed block len */
744 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
745 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
746 pwd
->block_len_bits
= pwd
->frame_len_bits
;
749 /* now check if the block length is coherent with the frame length */
750 pwd
->block_len
= 1 << pwd
->block_len_bits
;
751 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
752 return -E_INCOHERENT_BLOCK_LEN
;
754 if (pwd
->ahi
.channels
== 2)
755 pwd
->ms_stereo
= get_bits1(&pwd
->gb
);
757 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
758 int a
= get_bits1(&pwd
->gb
);
759 pwd
->channel_coded
[ch
] = a
;
763 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
765 /* if no channel coded, no need to go further */
766 /* XXX: fix potential framing problems */
770 /* read total gain and extract corresponding number of bits for
771 coef escape coding */
774 int a
= get_bits(&pwd
->gb
, 7);
780 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
782 /* compute number of coefficients */
783 n
= pwd
->coefs_end
[bsize
] - pwd
->coefs_start
;
784 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
788 if (pwd
->use_noise_coding
) {
789 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
790 if (pwd
->channel_coded
[ch
]) {
792 m
= pwd
->exponent_high_sizes
[bsize
];
793 for (i
= 0; i
< m
; i
++) {
794 a
= get_bits1(&pwd
->gb
);
795 pwd
->high_band_coded
[ch
][i
] = a
;
796 /* if noise coding, the coefficients are not transmitted */
800 exponent_high_bands
[bsize
]
805 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
806 if (pwd
->channel_coded
[ch
]) {
809 n
= pwd
->exponent_high_sizes
[bsize
];
810 val
= (int) 0x80000000;
811 for (i
= 0; i
< n
; i
++) {
812 if (pwd
->high_band_coded
[ch
][i
]) {
813 if (val
== (int) 0x80000000) {
829 pwd
->high_band_values
[ch
][i
] =
837 /* exponents can be reused in short blocks. */
838 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bits1(&pwd
->gb
)) {
839 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
840 if (pwd
->channel_coded
[ch
]) {
841 if (pwd
->use_exp_vlc
) {
842 if (decode_exp_vlc(pwd
, ch
) < 0)
845 decode_exp_lsp(pwd
, ch
);
847 pwd
->exponents_bsize
[ch
] = bsize
;
852 /* parse spectral coefficients : just RLE encoding */
853 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
854 if (pwd
->channel_coded
[ch
]) {
855 struct vlc
*coef_vlc
;
856 int level
, run
, sign
, tindex
;
858 const uint16_t *level_table
, *run_table
;
860 /* special VLC tables are used for ms stereo because
861 there is potentially less energy there */
862 tindex
= (ch
== 1 && pwd
->ms_stereo
);
863 coef_vlc
= &pwd
->coef_vlc
[tindex
];
864 run_table
= pwd
->run_table
[tindex
];
865 level_table
= pwd
->level_table
[tindex
];
867 ptr
= &pwd
->coefs1
[ch
][0];
868 eptr
= ptr
+ nb_coefs
[ch
];
869 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
872 get_vlc2(&pwd
->gb
, coef_vlc
->table
, VLCBITS
,
879 } else if (code
== 0) {
881 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
882 /* NOTE: this is rather suboptimal. reading
883 block_len_bits would be better */
885 get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
888 run
= run_table
[code
];
889 level
= level_table
[code
];
891 sign
= get_bits1(&pwd
->gb
);
896 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
900 /* NOTE: EOB can be omitted */
909 int n4
= pwd
->block_len
/ 2;
910 mdct_norm
= 1.0 / (float) n4
;
913 /* finally compute the MDCT coefficients */
914 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
915 if (pwd
->channel_coded
[ch
]) {
917 float *coefs
, *exponents
, mult
, mult1
, noise
;
918 int i
, j
, n1
, last_high_band
, esize
;
919 float exp_power
[HIGH_BAND_MAX_SIZE
];
921 coefs1
= pwd
->coefs1
[ch
];
922 exponents
= pwd
->exponents
[ch
];
923 esize
= pwd
->exponents_bsize
[ch
];
924 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
926 coefs
= pwd
->coefs
[ch
];
927 if (pwd
->use_noise_coding
) {
929 /* very low freqs : noise */
930 for (i
= 0; i
< pwd
->coefs_start
; i
++) {
932 pwd
->noise_table
[pwd
->noise_index
] *
933 exponents
[i
<< bsize
>> esize
] *
937 1) & (NOISE_TAB_SIZE
- 1);
940 n1
= pwd
->exponent_high_sizes
[bsize
];
942 /* compute power of high bands */
943 exponents
= pwd
->exponents
[ch
] +
944 (pwd
->high_band_start
[bsize
] << bsize
);
945 last_high_band
= 0; /* avoid warning */
946 for (j
= 0; j
< n1
; j
++) {
947 n
= pwd
->exponent_high_bands
[pwd
->
953 if (pwd
->high_band_coded
[ch
][j
]) {
956 for (i
= 0; i
< n
; i
++) {
957 val
= exponents
[i
<< bsize
961 exp_power
[j
] = e2
/ n
;
964 exponents
+= n
<< bsize
;
967 /* main freqs and high freqs */
970 (pwd
->coefs_start
<< bsize
);
971 for (j
= -1; j
< n1
; j
++) {
973 n
= pwd
->high_band_start
[bsize
] -
976 n
= pwd
->exponent_high_bands
[pwd
->
983 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
984 /* use noise with specified power */
989 /* XXX: use a table */
997 (pwd
->max_exponent
[ch
] *
1000 for (i
= 0; i
< n
; i
++) {
1002 pwd
->noise_table
[pwd
->
1011 exponents
[i
<< bsize
1015 exponents
+= n
<< bsize
;
1017 /* coded values + small noise */
1018 for (i
= 0; i
< n
; i
++) {
1020 pwd
->noise_table
[pwd
->
1030 exponents
[i
<< bsize
1034 exponents
+= n
<< bsize
;
1038 /* very high freqs : noise */
1039 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
1041 mult
* exponents
[((-1 << bsize
)) >> esize
];
1042 for (i
= 0; i
< n
; i
++) {
1044 pwd
->noise_table
[pwd
->noise_index
] *
1048 1) & (NOISE_TAB_SIZE
- 1);
1051 /* XXX: optimize more */
1052 for (i
= 0; i
< pwd
->coefs_start
; i
++)
1055 for (i
= 0; i
< n
; i
++) {
1058 exponents
[i
<< bsize
>> esize
] *
1061 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
1062 for (i
= 0; i
< n
; i
++)
1068 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
1073 * Nominal case for ms stereo: we do it before mdct.
1075 * No need to optimize this case because it should almost never
1078 if (!pwd
->channel_coded
[0]) {
1079 PARA_NOTICE_LOG("rare ms-stereo\n");
1080 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
1081 pwd
->channel_coded
[0] = 1;
1083 for (i
= 0; i
< pwd
->block_len
; i
++) {
1084 a
= pwd
->coefs
[0][i
];
1085 b
= pwd
->coefs
[1][i
];
1086 pwd
->coefs
[0][i
] = a
+ b
;
1087 pwd
->coefs
[1][i
] = a
- b
;
1092 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1096 n4
= pwd
->block_len
/ 2;
1097 if (pwd
->channel_coded
[ch
])
1098 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1099 else if (!(pwd
->ms_stereo
&& ch
== 1))
1100 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1102 /* multiply by the window and add in the frame */
1103 index
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1104 wma_window(pwd
, &pwd
->frame_out
[ch
][index
]);
1107 /* update block number */
1108 pwd
->block_pos
+= pwd
->block_len
;
1109 if (pwd
->block_pos
>= pwd
->frame_len
)
1116 * Clip a signed integer value into the -32768,32767 range.
1118 * \param a The value to clip.
1120 * \return The clipped value.
1122 static inline int16_t av_clip_int16(int a
)
1124 if ((a
+ 32768) & ~65535)
1125 return (a
>> 31) ^ 32767;
1130 /* Decode a frame of frame_len samples. */
1131 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1133 int ret
, i
, n
, ch
, incr
;
1137 /* read each block */
1140 ret
= wma_decode_block(pwd
);
1147 /* convert frame to integer */
1149 incr
= pwd
->ahi
.channels
;
1150 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1152 iptr
= pwd
->frame_out
[ch
];
1154 for (i
= 0; i
< n
; i
++) {
1155 *ptr
= av_clip_int16(lrintf(*iptr
++));
1158 /* prepare for next block */
1159 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1160 pwd
->frame_len
* sizeof(float));
1165 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1166 int *data_size
, const uint8_t *buf
, int buf_size
)
1168 int ret
, nb_frames
, bit_offset
, i
, pos
, len
;
1171 static int frame_count
;
1173 if (buf_size
== 0) {
1174 pwd
->last_superframe_len
= 0;
1177 if (buf_size
< pwd
->ahi
.block_align
)
1179 buf_size
= pwd
->ahi
.block_align
;
1181 init_get_bits(&pwd
->gb
, buf
, buf_size
* 8);
1182 if (pwd
->use_bit_reservoir
) {
1183 /* read super frame header */
1184 skip_bits(&pwd
->gb
, 4); /* super frame index */
1185 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1186 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1187 ret
= -E_WMA_OUTPUT_SPACE
;
1188 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1189 * sizeof(int16_t) > *data_size
)
1192 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1194 if (pwd
->last_superframe_len
> 0) {
1195 /* add bit_offset bits to last frame */
1196 ret
= -E_WMA_BAD_SUPERFRAME
;
1197 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1198 MAX_CODED_SUPERFRAME_SIZE
)
1200 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1203 *q
++ = get_bits(&pwd
->gb
, 8);
1207 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1209 /* XXX: bit_offset bits into last frame */
1210 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1211 MAX_CODED_SUPERFRAME_SIZE
* 8);
1212 /* skip unused bits */
1213 if (pwd
->last_bitoffset
> 0)
1214 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1216 * This frame is stored in the last superframe and in
1219 ret
= -E_WMA_DECODE
;
1220 if (wma_decode_frame(pwd
, samples
) < 0)
1223 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1226 /* read each frame starting from bit_offset */
1227 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1228 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1229 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)) * 8);
1232 skip_bits(&pwd
->gb
, len
);
1234 pwd
->reset_block_lengths
= 1;
1235 for (i
= 0; i
< nb_frames
; i
++) {
1236 ret
= -E_WMA_DECODE
;
1237 if (wma_decode_frame(pwd
, samples
) < 0)
1240 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1243 /* we copy the end of the frame in the last frame buffer */
1244 pos
= get_bits_count(&pwd
->gb
) +
1245 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1246 pwd
->last_bitoffset
= pos
& 7;
1248 len
= buf_size
- pos
;
1249 ret
= -E_WMA_BAD_SUPERFRAME
;
1250 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1252 pwd
->last_superframe_len
= len
;
1253 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1255 PARA_DEBUG_LOG("not using bit reservoir\n");
1256 ret
= -E_WMA_OUTPUT_SPACE
;
1257 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1259 /* single frame decode */
1260 ret
= -E_WMA_DECODE
;
1261 if (wma_decode_frame(pwd
, samples
) < 0)
1264 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1266 PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1267 "outbytes: %d, eaten: %d\n",
1268 frame_count
, pwd
->frame_len
, pwd
->block_len
,
1269 (int8_t *) samples
- (int8_t *) data
, pwd
->ahi
.block_align
);
1270 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1271 return pwd
->ahi
.block_align
;
1273 /* reset the bit reservoir on errors */
1274 pwd
->last_superframe_len
= 0;
1278 static ssize_t
wmadec_convert(char *inbuffer
, size_t len
,
1279 struct filter_node
*fn
)
1281 int ret
, out_size
= fn
->bufsize
- fn
->loaded
;
1282 struct private_wmadec_data
*pwd
= fn
->private_data
;
1284 if (out_size
< 128 * 1024)
1287 ret
= wma_decode_init(inbuffer
, len
, &pwd
);
1290 fn
->private_data
= pwd
;
1291 fn
->fc
->channels
= pwd
->ahi
.channels
;
1292 fn
->fc
->samplerate
= pwd
->ahi
.sample_rate
;
1293 return pwd
->ahi
.header_len
;
1296 if (len
<= WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
)
1298 ret
= wma_decode_superframe(pwd
, fn
->buf
+ fn
->loaded
,
1299 &out_size
, (uint8_t *)inbuffer
+ WMA_FRAME_SKIP
,
1300 len
- WMA_FRAME_SKIP
);
1303 fn
->loaded
+= out_size
;
1304 return ret
+ WMA_FRAME_SKIP
;
1307 static void wmadec_close(struct filter_node
*fn
)
1309 struct private_wmadec_data
*pwd
= fn
->private_data
;
1313 wmadec_cleanup(pwd
);
1316 free(fn
->private_data
);
1317 fn
->private_data
= NULL
;
1320 static void wmadec_open(struct filter_node
*fn
)
1322 fn
->bufsize
= 1024 * 1024;
1323 fn
->buf
= para_malloc(fn
->bufsize
);
1324 fn
->private_data
= NULL
;
1329 * The init function of the wma decoder.
1331 * \param f Its fields are filled in by the function.
1333 void wmadec_filter_init(struct filter
*f
)
1335 f
->open
= wmadec_open
;
1336 f
->close
= wmadec_close
;
1337 f
->convert
= wmadec_convert
;