2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
27 #include <sys/select.h>
36 #include "bitstream.h"
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
55 #define MAX_CHANNELS 2
57 #define NOISE_TAB_SIZE 8192
59 #define LSP_POW_BITS 7
61 struct private_wmadec_data
{
62 struct asf_header_info ahi
;
63 struct getbit_context gb
;
64 int use_bit_reservoir
;
65 int use_variable_block_len
;
66 int use_exp_vlc
; ///< exponent coding: 0 = lsp, 1 = vlc + delta
67 int use_noise_coding
; ///< true if perceptual noise is added
70 int exponent_sizes
[BLOCK_NB_SIZES
];
71 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
72 int high_band_start
[BLOCK_NB_SIZES
]; ///< index of first coef in high band
73 int coefs_start
; ///< first coded coef
74 int coefs_end
[BLOCK_NB_SIZES
]; ///< max number of coded coefficients
75 int exponent_high_sizes
[BLOCK_NB_SIZES
];
76 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
79 /* coded values in high bands */
80 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
81 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
83 /* there are two possible tables for spectral coefficients */
84 struct vlc coef_vlc
[2];
85 uint16_t *run_table
[2];
86 uint16_t *level_table
[2];
87 const struct coef_vlc_table
*coef_vlcs
[2];
89 int frame_len
; ///< frame length in samples
90 int frame_len_bits
; ///< frame_len = 1 << frame_len_bits
91 int nb_block_sizes
; ///< number of block sizes
93 int reset_block_lengths
;
94 int block_len_bits
; ///< log2 of current block length
95 int next_block_len_bits
; ///< log2 of next block length
96 int prev_block_len_bits
; ///< log2 of prev block length
97 int block_len
; ///< block length in samples
98 int block_pos
; ///< current position in frame
99 uint8_t ms_stereo
; ///< true if mid/side stereo mode
100 uint8_t channel_coded
[MAX_CHANNELS
]; ///< true if channel is coded
101 int exponents_bsize
[MAX_CHANNELS
]; ///< log2 ratio frame/exp. length
102 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
103 float max_exponent
[MAX_CHANNELS
];
104 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
105 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
106 float output
[BLOCK_MAX_SIZE
* 2];
107 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
108 float *windows
[BLOCK_NB_SIZES
];
109 /* output buffer for one frame and the last for IMDCT windowing */
110 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
111 /* last frame info */
112 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
114 int last_superframe_len
;
115 float noise_table
[NOISE_TAB_SIZE
];
117 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
118 /* lsp_to_curve tables */
119 float lsp_cos_table
[BLOCK_MAX_SIZE
];
120 float lsp_pow_e_table
[256];
121 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
122 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
126 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
132 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
134 #define SINE_WINDOW(x) float sine_ ## x[x] __aligned(16)
143 static float *sine_windows
[6] = {
144 sine_128
, sine_256
, sine_512
, sine_1024
, sine_2048
, sine_4096
147 /* Generate a sine window. */
148 static void sine_window_init(float *window
, int n
)
152 for (i
= 0; i
< n
; i
++)
153 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
156 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
160 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
161 imdct_end(pwd
->mdct_ctx
[i
]);
162 if (pwd
->use_exp_vlc
)
163 free_vlc(&pwd
->exp_vlc
);
164 if (pwd
->use_noise_coding
)
165 free_vlc(&pwd
->hgain_vlc
);
166 for (i
= 0; i
< 2; i
++) {
167 free_vlc(&pwd
->coef_vlc
[i
]);
168 free(pwd
->run_table
[i
]);
169 free(pwd
->level_table
[i
]);
173 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
174 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
176 int n
= vlc_table
->n
;
177 const uint8_t *table_bits
= vlc_table
->huffbits
;
178 const uint32_t *table_codes
= vlc_table
->huffcodes
;
179 const uint16_t *levels_table
= vlc_table
->levels
;
180 uint16_t *run_table
, *level_table
;
181 int i
, l
, j
, k
, level
;
183 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
185 run_table
= para_malloc(n
* sizeof(uint16_t));
186 level_table
= para_malloc(n
* sizeof(uint16_t));
191 l
= levels_table
[k
++];
192 for (j
= 0; j
< l
; j
++) {
194 level_table
[i
] = level
;
199 *prun_table
= run_table
;
200 *plevel_table
= level_table
;
203 /* compute the scale factor band sizes for each MDCT block size */
204 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
207 struct asf_header_info
*ahi
= &pwd
->ahi
;
208 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
209 const uint8_t *table
;
211 pwd
->coefs_start
= 0;
212 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
213 block_len
= pwd
->frame_len
>> k
;
216 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
218 if (ahi
->sample_rate
>= 44100)
219 table
= exponent_band_44100
[a
];
220 else if (ahi
->sample_rate
>= 32000)
221 table
= exponent_band_32000
[a
];
222 else if (ahi
->sample_rate
>= 22050)
223 table
= exponent_band_22050
[a
];
227 for (i
= 0; i
< n
; i
++)
228 pwd
->exponent_bands
[k
][i
] = table
[i
];
229 pwd
->exponent_sizes
[k
] = n
;
233 for (i
= 0; i
< 25; i
++) {
234 a
= wma_critical_freqs
[i
];
235 b
= ahi
->sample_rate
;
236 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
241 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
242 if (pos
>= block_len
)
246 pwd
->exponent_sizes
[k
] = j
;
249 /* max number of coefs */
250 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
251 /* high freq computation */
252 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
253 / ahi
->sample_rate
+ 0.5);
254 n
= pwd
->exponent_sizes
[k
];
257 for (i
= 0; i
< n
; i
++) {
260 pos
+= pwd
->exponent_bands
[k
][i
];
262 if (start
< pwd
->high_band_start
[k
])
263 start
= pwd
->high_band_start
[k
];
264 if (end
> pwd
->coefs_end
[k
])
265 end
= pwd
->coefs_end
[k
];
267 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
269 pwd
->exponent_high_sizes
[k
] = j
;
273 static int wma_init(struct private_wmadec_data
*pwd
)
276 float bps1
, high_freq
;
280 struct asf_header_info
*ahi
= &pwd
->ahi
;
281 int flags2
= ahi
->flags2
;
283 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
284 || ahi
->channels
<= 0 || ahi
->channels
> 8
285 || ahi
->bit_rate
<= 0)
286 return -E_WMA_BAD_PARAMS
;
288 /* compute MDCT block size */
289 if (ahi
->sample_rate
<= 16000) {
290 pwd
->frame_len_bits
= 9;
291 } else if (ahi
->sample_rate
<= 22050) {
292 pwd
->frame_len_bits
= 10;
294 pwd
->frame_len_bits
= 11;
296 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
297 if (pwd
->use_variable_block_len
) {
299 nb
= ((flags2
>> 3) & 3) + 1;
300 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
302 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
305 pwd
->nb_block_sizes
= nb
+ 1;
307 pwd
->nb_block_sizes
= 1;
309 /* init rate dependent parameters */
310 pwd
->use_noise_coding
= 1;
311 high_freq
= ahi
->sample_rate
* 0.5;
313 /* wma2 rates are normalized */
314 sample_rate1
= ahi
->sample_rate
;
315 if (sample_rate1
>= 44100)
316 sample_rate1
= 44100;
317 else if (sample_rate1
>= 22050)
318 sample_rate1
= 22050;
319 else if (sample_rate1
>= 16000)
320 sample_rate1
= 16000;
321 else if (sample_rate1
>= 11025)
322 sample_rate1
= 11025;
323 else if (sample_rate1
>= 8000)
326 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
327 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
329 * Compute high frequency value and choose if noise coding should be
333 if (ahi
->channels
== 2)
335 if (sample_rate1
== 44100) {
337 pwd
->use_noise_coding
= 0;
339 high_freq
= high_freq
* 0.4;
340 } else if (sample_rate1
== 22050) {
342 pwd
->use_noise_coding
= 0;
343 else if (bps1
>= 0.72)
344 high_freq
= high_freq
* 0.7;
346 high_freq
= high_freq
* 0.6;
347 } else if (sample_rate1
== 16000) {
349 high_freq
= high_freq
* 0.5;
351 high_freq
= high_freq
* 0.3;
352 } else if (sample_rate1
== 11025) {
353 high_freq
= high_freq
* 0.7;
354 } else if (sample_rate1
== 8000) {
356 high_freq
= high_freq
* 0.5;
357 } else if (bps
> 0.75) {
358 pwd
->use_noise_coding
= 0;
360 high_freq
= high_freq
* 0.65;
364 high_freq
= high_freq
* 0.75;
365 } else if (bps
>= 0.6) {
366 high_freq
= high_freq
* 0.6;
368 high_freq
= high_freq
* 0.5;
371 PARA_INFO_LOG("channels=%d sample_rate=%d "
372 "bitrate=%d block_align=%d\n",
373 ahi
->channels
, ahi
->sample_rate
,
374 ahi
->bit_rate
, ahi
->block_align
);
375 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
376 "high_freq=%f bitoffset=%d\n",
377 pwd
->frame_len
, bps
, bps1
,
378 high_freq
, pwd
->byte_offset_bits
);
379 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
380 pwd
->use_noise_coding
, pwd
->use_exp_vlc
, pwd
->nb_block_sizes
);
382 compute_scale_factor_band_sizes(pwd
, high_freq
);
383 /* init MDCT windows : simple sinus window */
384 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
386 n
= 1 << (pwd
->frame_len_bits
- i
);
387 sine_window_init(sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
388 pwd
->windows
[i
] = sine_windows
[pwd
->frame_len_bits
- i
- 7];
391 pwd
->reset_block_lengths
= 1;
393 if (pwd
->use_noise_coding
) {
394 /* init the noise generator */
395 if (pwd
->use_exp_vlc
)
396 pwd
->noise_mult
= 0.02;
398 pwd
->noise_mult
= 0.04;
404 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
405 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
406 seed
= seed
* 314159 + 1;
407 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
412 /* choose the VLC tables for the coefficients */
414 if (ahi
->sample_rate
>= 32000) {
417 else if (bps1
< 1.16)
420 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
421 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
422 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
424 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
429 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
434 wdel
= M_PI
/ frame_len
;
435 for (i
= 0; i
< frame_len
; i
++)
436 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
438 /* tables for x^-0.25 computation */
439 for (i
= 0; i
< 256; i
++) {
441 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
444 /* These two tables are needed to avoid two operations in pow_m1_4. */
446 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
447 m
= (1 << LSP_POW_BITS
) + i
;
448 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
450 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
451 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
456 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
458 struct private_wmadec_data
*pwd
;
461 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
462 pwd
= para_calloc(sizeof(*pwd
));
463 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
469 pwd
->use_exp_vlc
= pwd
->ahi
.flags2
& 0x0001;
470 pwd
->use_bit_reservoir
= pwd
->ahi
.flags2
& 0x0002;
471 pwd
->use_variable_block_len
= pwd
->ahi
.flags2
& 0x0004;
477 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
478 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
482 if (pwd
->use_noise_coding
) {
483 PARA_INFO_LOG("using noise coding\n");
484 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
485 sizeof(wma_hgain_huffbits
), wma_hgain_huffbits
,
486 wma_hgain_huffcodes
, 2);
489 if (pwd
->use_exp_vlc
) {
490 PARA_INFO_LOG("using exp_vlc\n");
491 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
,
492 sizeof(wma_scale_huffbits
), wma_scale_huffbits
,
493 wma_scale_huffcodes
, 4);
495 PARA_INFO_LOG("using curve\n");
496 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
499 return pwd
->ahi
.header_len
;
503 * compute x^-0.25 with an exponent and mantissa table. We use linear
504 * interpolation to reduce the mantissa table size at a small speed
505 * expense (linear interpolation approximately doubles the number of
506 * bits of precision).
508 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
519 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
520 /* build interpolation scale: 1 <= t < 2. */
521 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
522 a
= pwd
->lsp_pow_m_table1
[m
];
523 b
= pwd
->lsp_pow_m_table2
[m
];
524 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
527 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
528 float *out
, float *val_max_ptr
, int n
, float *lsp
)
531 float p
, q
, w
, v
, val_max
;
534 for (i
= 0; i
< n
; i
++) {
537 w
= pwd
->lsp_cos_table
[i
];
538 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
545 v
= pow_m1_4(pwd
, v
);
550 *val_max_ptr
= val_max
;
553 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
554 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
556 float lsp_coefs
[NB_LSP_COEFS
];
559 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
560 if (i
== 0 || i
>= 8)
561 val
= get_bits(&pwd
->gb
, 3);
563 val
= get_bits(&pwd
->gb
, 4);
564 lsp_coefs
[i
] = wma_lsp_codebook
[i
][val
];
567 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
568 pwd
->block_len
, lsp_coefs
);
571 /* Decode exponents coded with VLC codes. */
572 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
574 int last_exp
, n
, code
;
575 const uint16_t *ptr
, *band_ptr
;
576 float v
, *q
, max_scale
, *q_end
;
578 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
580 q
= pwd
->exponents
[ch
];
581 q_end
= q
+ pwd
->block_len
;
586 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
589 /* NOTE: this offset is the same as MPEG4 AAC ! */
590 last_exp
+= code
- 60;
591 /* XXX: use a table */
592 v
= pow(10, last_exp
* (1.0 / 16.0));
600 pwd
->max_exponent
[ch
] = max_scale
;
604 /* compute src0 * src1 + src2 */
605 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
606 const float *src2
, int len
)
610 for (i
= 0; i
< len
; i
++)
611 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
614 static inline void vector_mult_reverse(float *dst
, const float *src0
,
615 const float *src1
, int len
)
620 for (i
= 0; i
< len
; i
++)
621 dst
[i
] = src0
[i
] * src1
[-i
];
625 * Apply MDCT window and add into output.
627 * We ensure that when the windows overlap their squared sum
628 * is always 1 (MDCT reconstruction rule).
630 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
632 float *in
= pwd
->output
;
633 int block_len
, bsize
, n
;
636 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
637 block_len
= pwd
->block_len
;
638 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
639 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
641 block_len
= 1 << pwd
->prev_block_len_bits
;
642 n
= (pwd
->block_len
- block_len
) / 2;
643 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
644 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
646 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
649 out
+= pwd
->block_len
;
650 in
+= pwd
->block_len
;
652 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
653 block_len
= pwd
->block_len
;
654 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
655 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
657 block_len
= 1 << pwd
->next_block_len_bits
;
658 n
= (pwd
->block_len
- block_len
) / 2;
659 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
660 memcpy(out
, in
, n
* sizeof(float));
661 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
663 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
667 static int wma_total_gain_to_bits(int total_gain
)
671 else if (total_gain
< 32)
673 else if (total_gain
< 40)
675 else if (total_gain
< 45)
681 static int compute_high_band_values(struct private_wmadec_data
*pwd
,
682 int bsize
, int nb_coefs
[MAX_CHANNELS
])
686 if (pwd
->use_noise_coding
) {
687 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
688 if (pwd
->channel_coded
[ch
]) {
690 m
= pwd
->exponent_high_sizes
[bsize
];
691 for (i
= 0; i
< m
; i
++) {
692 a
= get_bit(&pwd
->gb
);
693 pwd
->high_band_coded
[ch
][i
] = a
;
694 /* if noise coding, the coefficients are not transmitted */
698 exponent_high_bands
[bsize
]
703 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
704 if (pwd
->channel_coded
[ch
]) {
707 n
= pwd
->exponent_high_sizes
[bsize
];
708 val
= (int) 0x80000000;
709 for (i
= 0; i
< n
; i
++) {
710 if (pwd
->high_band_coded
[ch
][i
]) {
711 if (val
== (int) 0x80000000) {
727 pwd
->high_band_values
[ch
][i
] =
737 * @return 0 if OK. 1 if last block of frame. return -1 if
738 * unrecorrable error.
740 static int wma_decode_block(struct private_wmadec_data
*pwd
)
742 int n
, v
, ch
, code
, bsize
;
743 int coef_nb_bits
, total_gain
;
744 int nb_coefs
[MAX_CHANNELS
];
747 /* compute current block length */
748 if (pwd
->use_variable_block_len
) {
749 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
751 if (pwd
->reset_block_lengths
) {
752 pwd
->reset_block_lengths
= 0;
753 v
= get_bits(&pwd
->gb
, n
);
754 if (v
>= pwd
->nb_block_sizes
)
756 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
757 v
= get_bits(&pwd
->gb
, n
);
758 if (v
>= pwd
->nb_block_sizes
)
760 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
762 /* update block lengths */
763 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
764 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
766 v
= get_bits(&pwd
->gb
, n
);
767 if (v
>= pwd
->nb_block_sizes
)
769 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
771 /* fixed block len */
772 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
773 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
774 pwd
->block_len_bits
= pwd
->frame_len_bits
;
777 /* now check if the block length is coherent with the frame length */
778 pwd
->block_len
= 1 << pwd
->block_len_bits
;
779 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
780 return -E_INCOHERENT_BLOCK_LEN
;
782 if (pwd
->ahi
.channels
== 2)
783 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
785 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
786 int a
= get_bit(&pwd
->gb
);
787 pwd
->channel_coded
[ch
] = a
;
791 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
793 /* if no channel coded, no need to go further */
794 /* XXX: fix potential framing problems */
798 /* read total gain and extract corresponding number of bits for
799 coef escape coding */
802 int a
= get_bits(&pwd
->gb
, 7);
808 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
810 /* compute number of coefficients */
811 n
= pwd
->coefs_end
[bsize
] - pwd
->coefs_start
;
812 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
815 if (compute_high_band_values(pwd
, bsize
, nb_coefs
) < 0)
818 /* exponents can be reused in short blocks. */
819 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
820 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
821 if (pwd
->channel_coded
[ch
]) {
822 if (pwd
->use_exp_vlc
) {
823 if (decode_exp_vlc(pwd
, ch
) < 0)
826 decode_exp_lsp(pwd
, ch
);
828 pwd
->exponents_bsize
[ch
] = bsize
;
833 /* parse spectral coefficients : just RLE encoding */
834 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
835 struct vlc
*coef_vlc
;
836 int level
, run
, tindex
;
838 const uint16_t *level_table
, *run_table
;
840 if (!pwd
->channel_coded
[ch
])
843 * special VLC tables are used for ms stereo because there is
844 * potentially less energy there
846 tindex
= (ch
== 1 && pwd
->ms_stereo
);
847 coef_vlc
= &pwd
->coef_vlc
[tindex
];
848 run_table
= pwd
->run_table
[tindex
];
849 level_table
= pwd
->level_table
[tindex
];
851 ptr
= &pwd
->coefs1
[ch
][0];
852 eptr
= ptr
+ nb_coefs
[ch
];
853 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
855 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
,
859 if (code
== 1) /* EOB */
861 if (code
== 0) { /* escape */
862 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
863 /* reading block_len_bits would be better */
864 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
865 } else { /* normal code */
866 run
= run_table
[code
];
867 level
= level_table
[code
];
869 if (!get_bit(&pwd
->gb
))
873 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
877 if (ptr
>= eptr
) /* EOB can be omitted */
884 int n4
= pwd
->block_len
/ 2;
885 mdct_norm
= 1.0 / (float) n4
;
888 /* finally compute the MDCT coefficients */
889 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
890 if (pwd
->channel_coded
[ch
]) {
892 float *coefs
, *exponents
, mult
, mult1
, noise
;
893 int i
, j
, n1
, last_high_band
, esize
;
894 float exp_power
[HIGH_BAND_MAX_SIZE
];
896 coefs1
= pwd
->coefs1
[ch
];
897 exponents
= pwd
->exponents
[ch
];
898 esize
= pwd
->exponents_bsize
[ch
];
899 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
901 coefs
= pwd
->coefs
[ch
];
902 if (pwd
->use_noise_coding
) {
904 /* very low freqs : noise */
905 for (i
= 0; i
< pwd
->coefs_start
; i
++) {
907 pwd
->noise_table
[pwd
->noise_index
] *
908 exponents
[i
<< bsize
>> esize
] *
912 1) & (NOISE_TAB_SIZE
- 1);
915 n1
= pwd
->exponent_high_sizes
[bsize
];
917 /* compute power of high bands */
918 exponents
= pwd
->exponents
[ch
] +
919 (pwd
->high_band_start
[bsize
] << bsize
);
920 last_high_band
= 0; /* avoid warning */
921 for (j
= 0; j
< n1
; j
++) {
922 n
= pwd
->exponent_high_bands
[pwd
->
928 if (pwd
->high_band_coded
[ch
][j
]) {
931 for (i
= 0; i
< n
; i
++) {
932 val
= exponents
[i
<< bsize
936 exp_power
[j
] = e2
/ n
;
939 exponents
+= n
<< bsize
;
942 /* main freqs and high freqs */
945 (pwd
->coefs_start
<< bsize
);
946 for (j
= -1; j
< n1
; j
++) {
948 n
= pwd
->high_band_start
[bsize
] -
951 n
= pwd
->exponent_high_bands
[pwd
->
958 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
959 /* use noise with specified power */
964 /* XXX: use a table */
972 (pwd
->max_exponent
[ch
] *
975 for (i
= 0; i
< n
; i
++) {
977 pwd
->noise_table
[pwd
->
990 exponents
+= n
<< bsize
;
992 /* coded values + small noise */
993 for (i
= 0; i
< n
; i
++) {
995 pwd
->noise_table
[pwd
->
1005 exponents
[i
<< bsize
1009 exponents
+= n
<< bsize
;
1013 /* very high freqs : noise */
1014 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
1016 mult
* exponents
[((-1 << bsize
)) >> esize
];
1017 for (i
= 0; i
< n
; i
++) {
1019 pwd
->noise_table
[pwd
->noise_index
] *
1023 1) & (NOISE_TAB_SIZE
- 1);
1026 /* XXX: optimize more */
1027 for (i
= 0; i
< pwd
->coefs_start
; i
++)
1030 for (i
= 0; i
< n
; i
++) {
1033 exponents
[i
<< bsize
>> esize
] *
1036 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
1037 for (i
= 0; i
< n
; i
++)
1043 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
1048 * Nominal case for ms stereo: we do it before mdct.
1050 * No need to optimize this case because it should almost never
1053 if (!pwd
->channel_coded
[0]) {
1054 PARA_NOTICE_LOG("rare ms-stereo\n");
1055 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
1056 pwd
->channel_coded
[0] = 1;
1058 for (i
= 0; i
< pwd
->block_len
; i
++) {
1059 a
= pwd
->coefs
[0][i
];
1060 b
= pwd
->coefs
[1][i
];
1061 pwd
->coefs
[0][i
] = a
+ b
;
1062 pwd
->coefs
[1][i
] = a
- b
;
1067 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1071 n4
= pwd
->block_len
/ 2;
1072 if (pwd
->channel_coded
[ch
])
1073 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1074 else if (!(pwd
->ms_stereo
&& ch
== 1))
1075 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1077 /* multiply by the window and add in the frame */
1078 index
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1079 wma_window(pwd
, &pwd
->frame_out
[ch
][index
]);
1082 /* update block number */
1083 pwd
->block_pos
+= pwd
->block_len
;
1084 if (pwd
->block_pos
>= pwd
->frame_len
)
1091 * Clip a signed integer value into the -32768,32767 range.
1093 * \param a The value to clip.
1095 * \return The clipped value.
1097 static inline int16_t av_clip_int16(int a
)
1099 if ((a
+ 32768) & ~65535)
1100 return (a
>> 31) ^ 32767;
1105 /* Decode a frame of frame_len samples. */
1106 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1108 int ret
, i
, n
, ch
, incr
;
1112 /* read each block */
1115 ret
= wma_decode_block(pwd
);
1122 /* convert frame to integer */
1124 incr
= pwd
->ahi
.channels
;
1125 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1127 iptr
= pwd
->frame_out
[ch
];
1129 for (i
= 0; i
< n
; i
++) {
1130 *ptr
= av_clip_int16(lrintf(*iptr
++));
1133 /* prepare for next block */
1134 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1135 pwd
->frame_len
* sizeof(float));
1140 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1141 int *data_size
, const uint8_t *buf
, int buf_size
)
1145 static int frame_count
;
1147 if (buf_size
== 0) {
1148 pwd
->last_superframe_len
= 0;
1151 if (buf_size
< pwd
->ahi
.block_align
)
1153 buf_size
= pwd
->ahi
.block_align
;
1155 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1156 if (pwd
->use_bit_reservoir
) {
1157 int i
, nb_frames
, bit_offset
, pos
, len
;
1160 /* read super frame header */
1161 skip_bits(&pwd
->gb
, 4); /* super frame index */
1162 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1163 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1164 ret
= -E_WMA_OUTPUT_SPACE
;
1165 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1166 * sizeof(int16_t) > *data_size
)
1169 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1171 if (pwd
->last_superframe_len
> 0) {
1172 /* add bit_offset bits to last frame */
1173 ret
= -E_WMA_BAD_SUPERFRAME
;
1174 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1175 MAX_CODED_SUPERFRAME_SIZE
)
1177 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1180 *q
++ = get_bits(&pwd
->gb
, 8);
1184 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1186 /* XXX: bit_offset bits into last frame */
1187 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1188 MAX_CODED_SUPERFRAME_SIZE
);
1189 /* skip unused bits */
1190 if (pwd
->last_bitoffset
> 0)
1191 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1193 * This frame is stored in the last superframe and in
1196 ret
= -E_WMA_DECODE
;
1197 if (wma_decode_frame(pwd
, samples
) < 0)
1200 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1203 /* read each frame starting from bit_offset */
1204 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1205 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1206 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1209 skip_bits(&pwd
->gb
, len
);
1211 pwd
->reset_block_lengths
= 1;
1212 for (i
= 0; i
< nb_frames
; i
++) {
1213 ret
= -E_WMA_DECODE
;
1214 if (wma_decode_frame(pwd
, samples
) < 0)
1217 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1220 /* we copy the end of the frame in the last frame buffer */
1221 pos
= get_bits_count(&pwd
->gb
) +
1222 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1223 pwd
->last_bitoffset
= pos
& 7;
1225 len
= buf_size
- pos
;
1226 ret
= -E_WMA_BAD_SUPERFRAME
;
1227 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1229 pwd
->last_superframe_len
= len
;
1230 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1232 PARA_DEBUG_LOG("not using bit reservoir\n");
1233 ret
= -E_WMA_OUTPUT_SPACE
;
1234 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1236 /* single frame decode */
1237 ret
= -E_WMA_DECODE
;
1238 if (wma_decode_frame(pwd
, samples
) < 0)
1241 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1243 PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1244 "outbytes: %zd, eaten: %d\n",
1245 frame_count
, pwd
->frame_len
, pwd
->block_len
,
1246 (int8_t *) samples
- (int8_t *) data
, pwd
->ahi
.block_align
);
1247 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1248 return pwd
->ahi
.block_align
;
1250 /* reset the bit reservoir on errors */
1251 pwd
->last_superframe_len
= 0;
1255 static ssize_t
wmadec_convert(char *inbuffer
, size_t len
,
1256 struct filter_node
*fn
)
1258 int ret
, out_size
= fn
->bufsize
- fn
->loaded
;
1259 struct private_wmadec_data
*pwd
= fn
->private_data
;
1261 if (out_size
< 128 * 1024)
1263 if (len
<= WMA_FRAME_SKIP
)
1266 ret
= wma_decode_init(inbuffer
, len
, &pwd
);
1269 fn
->private_data
= pwd
;
1270 fn
->fc
->channels
= pwd
->ahi
.channels
;
1271 fn
->fc
->samplerate
= pwd
->ahi
.sample_rate
;
1272 return pwd
->ahi
.header_len
;
1275 if (len
<= WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
)
1277 ret
= wma_decode_superframe(pwd
, fn
->buf
+ fn
->loaded
,
1278 &out_size
, (uint8_t *)inbuffer
+ WMA_FRAME_SKIP
,
1279 len
- WMA_FRAME_SKIP
);
1282 fn
->loaded
+= out_size
;
1283 return ret
+ WMA_FRAME_SKIP
;
1286 static void wmadec_close(struct filter_node
*fn
)
1288 struct private_wmadec_data
*pwd
= fn
->private_data
;
1292 wmadec_cleanup(pwd
);
1295 free(fn
->private_data
);
1296 fn
->private_data
= NULL
;
1299 static void wmadec_open(struct filter_node
*fn
)
1301 fn
->bufsize
= 1024 * 1024;
1302 fn
->buf
= para_malloc(fn
->bufsize
);
1303 fn
->private_data
= NULL
;
1308 * The init function of the wma decoder.
1310 * \param f Its fields are filled in by the function.
1312 void wmadec_filter_init(struct filter
*f
)
1314 f
->open
= wmadec_open
;
1315 f
->close
= wmadec_close
;
1316 f
->convert
= wmadec_convert
;