X-Git-Url: http://git.tuebingen.mpg.de/?p=paraslash.git;a=blobdiff_plain;f=buffer_tree.c;h=7d79636fac717f4e4cb8559dec698f8204eed34c;hp=0ffe62465183a52e9508f60215b59dde09fba553;hb=4744d937c4160898d1fe151257606430750e580c;hpb=98ab15f91ac1b5127c86d5f0b6aed353f43ffd35 diff --git a/buffer_tree.c b/buffer_tree.c index 0ffe6246..7d79636f 100644 --- a/buffer_tree.c +++ b/buffer_tree.c @@ -1,5 +1,11 @@ +/* + * Copyright (C) 2009-2012 Andre Noll + * + * Licensed under the GPL v2. For licencing details see COPYING. + */ + +/** \file buffer_tree.c Buffer tree and buffer pool implementations. */ #include -#include #include "para.h" #include "list.h" @@ -57,8 +63,7 @@ struct btr_node { * Create a new buffer pool. * * \param name The name of the new buffer pool. - * - * \param area The size in bytes of the pool area. + * \param area_size The size in bytes of the pool area. * * \return An opaque pointer to the newly created buffer pool. It must be * passed to btr_pool_free() after it is no longer used to deallocate all @@ -79,7 +84,7 @@ struct btr_pool *btr_pool_new(const char *name, size_t area_size) } /** - * Dellocate resources used by a buffer pool. + * Deallocate resources used by a buffer pool. * * \param btrp A pointer obtained via btr_pool_new(). */ @@ -105,7 +110,7 @@ size_t btr_pool_size(struct btr_pool *btrp) return btrp->area_end - btrp->area_start; } -size_t btr_pool_filled(struct btr_pool *btrp) +static size_t btr_pool_filled(struct btr_pool *btrp) { if (!btrp->whead) return btr_pool_size(btrp); @@ -135,7 +140,7 @@ size_t btr_pool_unused(struct btr_pool *btrp) * Return maximal size available for one read. This is * smaller than the value returned by btr_pool_unused(). */ -size_t btr_pool_available(struct btr_pool *btrp) +static size_t btr_pool_available(struct btr_pool *btrp) { if (!btrp->whead) return 0; @@ -160,6 +165,35 @@ size_t btr_pool_get_buffer(struct btr_pool *btrp, char **result) return btr_pool_available(btrp); } +/** + * Get references to buffers pointing to free space of the buffer pool area. + * + * \param btrp The buffer pool. + * \param iov The scatter array. + * + * \return Zero if the buffer pool is full, one if the free space of the buffer + * pool area is available as a single contiguous buffer, two if the free space + * consists of two buffers. If this function returns the value n, then n + * elements of \a iov are initialized. + */ +int btr_pool_get_buffers(struct btr_pool *btrp, struct iovec iov[2]) +{ + size_t sz, unused; + char *buf; + + sz = btr_pool_get_buffer(btrp, &buf); + if (sz == 0) + return 0; + iov[0].iov_len = sz; + iov[0].iov_base = buf; + unused = btr_pool_unused(btrp); + if (sz == unused) + return 1; + iov[1].iov_len = unused - sz; + iov[1].iov_base = btrp->area_start; + return 2; +} + /** * Mark a part of the buffer pool area as allocated. * @@ -222,9 +256,11 @@ static void btr_pool_deallocate(struct btr_pool *btrp, size_t size) * * \param bnd Specifies how to create the new node. * - * This function always succeeds (or calls exit()). The returned pointer - * must be freed using btr_free_node() after it has been removed from - * the buffer tree via btr_remove_node(). + * \return A pointer to the newly allocated node. + * + * This function always succeeds (or calls exit()). The returned pointer must + * be freed using btr_free_node() after the node has been removed from the + * buffer tree via btr_remove_node(). */ struct btr_node *btr_new_node(struct btr_node_description *bnd) { @@ -424,6 +460,17 @@ static void btr_pushdown_br(struct btr_buffer_reference *br, struct btr_node *bt btr_drop_buffer_reference(br); } +/** + * Feed all buffer references of the input queue through the output channel. + * + * \param btrn The node whose buffer references should be pushed down. + * + * This function is useful for filters that do not change the contents of the + * buffers at all, like the wav filter or the amp filter if no amplification + * was specified. This function is rather cheap. + * + * \sa \ref btr_pushdown_one(). + */ void btr_pushdown(struct btr_node *btrn) { struct btr_buffer_reference *br, *tmp; @@ -432,15 +479,22 @@ void btr_pushdown(struct btr_node *btrn) btr_pushdown_br(br, btrn); } -int btr_pushdown_one(struct btr_node *btrn) +/** + * Feed the next buffer of the input queue through the output channel. + * + * \param btrn The node whose first input queue buffer should be pushed down. + * + * This works like \ref btr_pushdown() but pushes down only one buffer + * reference. + */ +void btr_pushdown_one(struct btr_node *btrn) { struct btr_buffer_reference *br; if (list_empty(&btrn->input_queue)) - return 0; + return; br = list_first_entry(&btrn->input_queue, struct btr_buffer_reference, node); btr_pushdown_br(br, btrn); - return 1; } /* @@ -470,6 +524,24 @@ bool btr_no_parent(struct btr_node *btrn) return !btrn->parent; } +/** + * Find out whether it is OK to change an input buffer. + * + * \param btrn The buffer tree node to check. + * + * This is used by filters that produce exactly the same amount of output as + * there is input. The amp filter which multiplies each sample by some number + * is an example of such a filter. If there are no other nodes in the buffer + * tree that read the same input stream (i.e. if \a btrn has no siblings), a + * node may modify its input buffer directly and push down the modified buffer + * to its children, thereby avoiding to allocate a possibly large additional + * buffer. + * + * Since the buffer tree may change at any time, this function should be called + * during each post_select call. + * + * \return True if \a btrn has no siblings. + */ bool btr_inplace_ok(struct btr_node *btrn) { if (!btrn->parent) @@ -482,7 +554,7 @@ static inline size_t br_available_bytes(struct btr_buffer_reference *br) return br->btrb->size - br->consumed; } -size_t btr_get_buffer_by_reference(struct btr_buffer_reference *br, char **buf) +static size_t btr_get_buffer_by_reference(struct btr_buffer_reference *br, char **buf) { if (buf) *buf = br->btrb->buf + br->consumed; @@ -490,40 +562,95 @@ size_t btr_get_buffer_by_reference(struct btr_buffer_reference *br, char **buf) } /** - * Obtain the next buffer of the input queue of a buffer tree node. + * Obtain the next buffer of the input queue, omitting data. * * \param btrn The node whose input queue is to be queried. + * \param omit Number of bytes to be omitted. * \param bufp Result pointer. * - * \return The number of bytes that can be read from buf. Zero if the input - * buffer queue is empty. In this case the value of \a bufp is undefined. + * If a buffer tree node needs more input data but can not consume the data it + * already has (because it might be needed again later) this function can be + * used instead of btr_next_buffer() to get a reference to the buffer obtained + * by skipping the given number of bytes. Skipped input bytes are not consumed. + * + * With a zero \a omit argument, this function is equivalent to \ref + * btr_next_buffer(). + * + * \return Number of bytes in \a bufp. If there are less than or equal to \a + * omit many bytes available in the input queue of the buffer tree node pointed + * to by \a btrn, the function returns zero and the value of \a bufp is + * undefined. */ -size_t btr_next_buffer(struct btr_node *btrn, char **bufp) +size_t btr_next_buffer_omit(struct btr_node *btrn, size_t omit, char **bufp) { struct btr_buffer_reference *br; + size_t wrap_count, sz, rv = 0; char *buf, *result = NULL; - size_t sz, rv = 0; - FOR_EACH_BUFFER_REF(br, btrn) { + br = get_first_input_br(btrn); + if (!br) + return 0; + wrap_count = br->wrap_count; + if (wrap_count > 0) { /* we have a wrap buffer */ sz = btr_get_buffer_by_reference(br, &buf); - if (!result) { - result = buf; - rv = sz; - if (!br->btrb->pool) - break; - continue; + if (sz > omit) { /* and it's big enough */ + result = buf + omit; + rv = sz - omit; + /* + * Wrap buffers are allocated by malloc(), so the next + * buffer ref will not align nicely, so we return the + * tail of the wrap buffer. + */ + goto out; } - if (!br->btrb->pool) - break; - if (result + rv != buf) - break; - rv += sz; + /* + * The next wrap_count bytes exist twice, in the wrap buffer + * and as a buffer reference in the buffer tree pool. + */ + omit += wrap_count; } + /* + * For buffer tree pools, the buffers in the list align, i.e. the next + * buffer in the list starts directly at the end of its predecessor. In + * this case we merge adjacent buffers and return one larger buffer + * instead. + */ + FOR_EACH_BUFFER_REF(br, btrn) { + sz = btr_get_buffer_by_reference(br, &buf); + if (result) { + if (result + rv != buf) + goto out; + rv += sz; + } else if (sz > omit) { + result = buf + omit; + rv = sz - omit; + } else + omit -= sz; + } + if (!result) + return 0; +out: if (bufp) *bufp = result; return rv; } +/** + * Obtain the next buffer of the input queue of a buffer tree node. + * + * \param btrn The node whose input queue is to be queried. + * \param bufp Result pointer. + * + * \return The number of bytes that can be read from buf. + * + * The call of this function is is equivalent to calling \ref + * btr_next_buffer_omit() with an \a omit value of zero. + */ +size_t btr_next_buffer(struct btr_node *btrn, char **bufp) +{ + return btr_next_buffer_omit(btrn, 0, bufp); +} + /** * Deallocate the given number of bytes from the input queue. * @@ -532,7 +659,7 @@ size_t btr_next_buffer(struct btr_node *btrn, char **bufp) * * This function must be used to get rid of existing buffer references in the * node's input queue. If no references to a buffer remain, the underlying - * buffers are either freed (in the non-buffer tree case) or the read head of + * buffers are either freed (in the non-buffer pool case) or the read head of * the buffer pool is being advanced. * * Note that \a numbytes may be smaller than the buffer size. In this case the @@ -563,7 +690,7 @@ void btr_consume(struct btr_node *btrn, size_t numbytes) numbytes -= br->btrb->size - br->consumed; btr_drop_buffer_reference(br); } - assert(true); + assert(false); } /* * We have a wrap buffer, consume from it. If in total, i.e. including @@ -589,13 +716,26 @@ void btr_consume(struct btr_node *btrn, size_t numbytes) return btr_consume(btrn, sz); } -static void flush_input_queue(struct btr_node *btrn) +/** + * Clear the input queue of a buffer tree node. + * + * \param btrn The node whose input queue should be cleared. + */ +void btr_drain(struct btr_node *btrn) { struct btr_buffer_reference *br, *tmp; + FOR_EACH_BUFFER_REF_SAFE(br, tmp, btrn) btr_drop_buffer_reference(br); } +/** + * Free all resources allocated by btr_new_node(). + * + * \param btrn Pointer to a btr node obtained by \ref btr_new_node(). + * + * Like free(3), it is OK to call this with a \p NULL pointer argument. + */ void btr_free_node(struct btr_node *btrn) { if (!btrn) @@ -604,16 +744,27 @@ void btr_free_node(struct btr_node *btrn) free(btrn); } +/** + * Remove a node from a buffer tree. + * + * \param btrn The node to remove. + * + * This makes all child nodes of \a btrn orphans and removes \a btrn from the + * list of children of its parent. Moreover, the input queue of \a btrn is + * flushed if it is not empty. + * + * \sa \ref btr_splice_out_node. + */ void btr_remove_node(struct btr_node *btrn) { struct btr_node *ch; if (!btrn) return; - PARA_NOTICE_LOG("removing btr node %s from buffer tree\n", btrn->name); + PARA_INFO_LOG("removing btr node %s from buffer tree\n", btrn->name); FOR_EACH_CHILD(ch, btrn) ch->parent = NULL; - flush_input_queue(btrn); + btr_drain(btrn); if (btrn->parent) list_del(&btrn->node); } @@ -646,6 +797,17 @@ size_t btr_get_input_queue_size(struct btr_node *btrn) return size; } +/** + * Remove a node from the buffer tree, reconnecting parent and children. + * + * \param btrn The node to splice out. + * + * This function is used by buffer tree nodes that do not exist during the + * whole lifetime of the buffer tree. Unlike btr_remove_node(), calling + * btr_splice_out_node() does not split the tree into disconnected components + * but reconnects the buffer tree by making all child nodes of \a btrn children + * of the parent of \a btrn. + */ void btr_splice_out_node(struct btr_node *btrn) { struct btr_node *ch, *tmp; @@ -663,14 +825,18 @@ void btr_splice_out_node(struct btr_node *btrn) list_move(&ch->node, &btrn->parent->children); } assert(list_empty(&btrn->children)); + btrn->parent = NULL; } /** - * Return the size of the largest input queue. + * Return number of queued output bytes of a buffer tree node. + * + * \param btrn The node whose output queue size should be computed. * - * Iterates over all children of the given node. + * \return This function iterates over all children of the given node and + * returns the size of the largest input queue. */ -static size_t btr_bytes_pending(struct btr_node *btrn) +size_t btr_get_output_queue_size(struct btr_node *btrn) { size_t max_size = 0; struct btr_node *ch; @@ -682,17 +848,19 @@ static size_t btr_bytes_pending(struct btr_node *btrn) return max_size; } -int btr_exec(struct btr_node *btrn, const char *command, char **value_result) -{ - if (!btrn) - return -ERRNO_TO_PARA_ERROR(EINVAL); - if (!btrn->execute) - return -ERRNO_TO_PARA_ERROR(ENOTSUP); - return btrn->execute(btrn, command, value_result); -} - /** - * Execute a inter-node command. + * Execute a inter-node command on a parent node. + * + * \param btrn The node to start looking. + * \param command The command to execute. + * \param value_result Additional arguments and result value. + * + * This function traverses the buffer tree upwards and looks for parent nodes + * of \a btrn that understands \a command. On the first such node the command + * is executed, and the result is stored in \a value_result. + * + * \return \p -ENOTSUP if no parent node of \a btrn understands \a command. + * Otherwise the return value of the command handler is returned. */ int btr_exec_up(struct btr_node *btrn, const char *command, char **value_result) { @@ -711,13 +879,22 @@ int btr_exec_up(struct btr_node *btrn, const char *command, char **value_result) if (ret < 0) return ret; if (value_result && *value_result) - PARA_NOTICE_LOG("%s(%s): %s\n", command, parent->name, + PARA_INFO_LOG("%s(%s): %s\n", command, parent->name, *value_result); return 1; } return -ERRNO_TO_PARA_ERROR(ENOTSUP); } +/** + * Obtain the context of a buffer node tree. + * + * \param btrn The node whose output queue size should be computed. + * + * \return A pointer to the \a context address specified at node creation time. + * + * \sa btr_new_node(), struct \ref btr_node_description. + */ void *btr_context(struct btr_node *btrn) { return btrn->context; @@ -741,7 +918,7 @@ static void merge_input_pool(struct btr_node *btrn, size_t dest_size) struct btr_buffer_reference *br, *wbr = NULL; int num_refs; /* including wrap buffer */ char *buf, *buf1 = NULL, *buf2 = NULL; - size_t sz, sz1 = 0, sz2 = 0, wsz; + size_t sz, sz1 = 0, sz2 = 0, wb_consumed = 0; br = get_first_input_br(btrn); if (!br || br_available_bytes(br) >= dest_size) @@ -758,6 +935,7 @@ static void merge_input_pool(struct btr_node *btrn, size_t dest_size) wbr = br; if (sz >= dest_size) return; + wb_consumed = br->consumed; continue; } if (!buf1) { @@ -777,7 +955,7 @@ static void merge_input_pool(struct btr_node *btrn, size_t dest_size) assert(buf2 + sz2 == buf); sz2 += sz; next: - if (sz1 + sz2 >= dest_size) + if (sz1 + sz2 >= dest_size + wb_consumed) break; } if (!buf2) /* nothing to do */ @@ -809,7 +987,6 @@ next: * We already have a wrap buffer, but it is too small. It might be * partially used. */ - wsz = br_available_bytes(wbr); if (wbr->wrap_count == sz1 && wbr->btrb->size >= sz1 + sz2) /* nothing we can do about it */ return; sz = sz1 + sz2 - wbr->btrb->size; /* amount of new data */ @@ -849,6 +1026,7 @@ static int merge_input(struct btr_node *btrn) if (i == 2) break; } + assert(i == 2); /* make a new btrb that combines the two buffers and a br to it. */ sz = szs[0] + szs[1]; buf = para_malloc(sz); @@ -868,6 +1046,20 @@ static int merge_input(struct btr_node *btrn) return 2; } +/** + * Combine input queue buffers. + * + * \param btrn The buffer tree node whose input should be merged. + * \param dest_size Stop merging if a buffer of at least this size exists. + * + * Used to combine as many buffers as needed into a single buffer whose size is + * at least \a dest_size. This function is rather cheap in case the parent node + * uses buffer pools and rather expensive otherwise. + * + * Note that if less than \a dest_size bytes are available in total, this + * function does nothing and subsequent calls to btr_next_buffer() will still + * return a buffer size less than \a dest_size. + */ void btr_merge(struct btr_node *btrn, size_t dest_size) { if (need_buffer_pool_merge(btrn)) @@ -883,7 +1075,7 @@ void btr_merge(struct btr_node *btrn, size_t dest_size) } } -bool btr_eof(struct btr_node *btrn) +static bool btr_eof(struct btr_node *btrn) { char *buf; size_t len = btr_next_buffer(btrn, &buf); @@ -891,7 +1083,7 @@ bool btr_eof(struct btr_node *btrn) return (len == 0 && btr_no_parent(btrn)); } -void log_tree_recursively(struct btr_node *btrn, int loglevel, int depth) +static void log_tree_recursively(struct btr_node *btrn, int loglevel, int depth) { struct btr_node *ch; const char spaces[] = " ", *space = spaces + 16 - depth; @@ -903,13 +1095,26 @@ void log_tree_recursively(struct btr_node *btrn, int loglevel, int depth) log_tree_recursively(ch, loglevel, depth + 1); } +/** + * Write the current buffer (sub-)tree to the log. + * + * \param btrn Start logging at this node. + * \param loglevel Set severity with which the tree should be logged. + */ void btr_log_tree(struct btr_node *btrn, int loglevel) { return log_tree_recursively(btrn, loglevel, 0); } -/* - * \return \a root if \a name is \p NULL. +/** + * Find the node with the given name in the buffer tree. + * + * \param name The name of the node to search. + * \param root Where to start the search. + * + * \return A pointer to the node with the given name on success. If \a name is + * \p NULL, the function returns \a root. If there is no node with the given + * name, \p NULL is returned. */ struct btr_node *btr_search_node(const char *name, struct btr_node *root) { @@ -928,8 +1133,34 @@ struct btr_node *btr_search_node(const char *name, struct btr_node *root) } /** 640K ought to be enough for everybody ;) */ -#define BTRN_MAX_PENDING (640 * 1024) +#define BTRN_MAX_PENDING (96 * 1024) +/** + * Return the current state of a buffer tree node. + * + * \param btrn The node whose state should be queried. + * \param min_iqs The minimal input queue size. + * \param type The supposed type of \a btrn. + * + * Most users of the buffer tree subsystem call this function from both + * their pre_select and the post_select methods. + * + * \return Negative if an error condition was detected, zero if there + * is nothing to do and positive otherwise. + * + * Examples: + * + * - If a non-root node has no parent and an empty input queue, the function + * returns \p -E_BTR_EOF. Similarly, if a non-leaf node has no children, \p + * -E_BTR_NO_CHILD is returned. + * + * - If less than \a min_iqs many bytes are available in the input queue and no + * EOF condition was detected, the function returns zero. + * + * - If there's plenty of data left in the input queue of the children of \a + * btrn, the function also returns zero in order to bound the memory usage of + * the buffer tree. + */ int btr_node_status(struct btr_node *btrn, size_t min_iqs, enum btr_node_type type) { @@ -939,7 +1170,7 @@ int btr_node_status(struct btr_node *btrn, size_t min_iqs, if (type != BTR_NT_LEAF) { if (btr_no_children(btrn)) return -E_BTR_NO_CHILD; - if (btr_bytes_pending(btrn) > BTRN_MAX_PENDING) + if (btr_get_output_queue_size(btrn) > BTRN_MAX_PENDING) return 0; } if (type != BTR_NT_ROOT) { @@ -954,6 +1185,14 @@ int btr_node_status(struct btr_node *btrn, size_t min_iqs, return 1; } +/** + * Get the time of the first I/O for a buffer tree node. + * + * \param btrn The node whose I/O time should be obtained. + * \param tv Result pointer. + * + * Mainly useful for the time display of para_audiod. + */ void btr_get_node_start(struct btr_node *btrn, struct timeval *tv) { *tv = btrn->start;