X-Git-Url: http://git.tuebingen.mpg.de/?p=paraslash.git;a=blobdiff_plain;f=buffer_tree.c;h=88fb8362bb0c9233d9a5916519b4acf47f4a63ed;hp=1be2037f5a7f3b9a2eb231debebdcf0be0ecedba;hb=eb9722e8763a9b2a2ae99d98a9715bd932081c3c;hpb=c282c836791cedf57c128555af90af37c7c01c05 diff --git a/buffer_tree.c b/buffer_tree.c index 1be2037f..88fb8362 100644 --- a/buffer_tree.c +++ b/buffer_tree.c @@ -1,3 +1,10 @@ +/* + * Copyright (C) 2009-2011 Andre Noll + * + * Licensed under the GPL v2. For licencing details see COPYING. + */ + +/** \file buffer_tree.c Buffer tree and buffer pool implementations. */ #include #include @@ -8,12 +15,22 @@ #include "error.h" #include "sched.h" +/* whead = NULL means area full */ +struct btr_pool { + char *name; + char *area_start; + char *area_end; + char *rhead; + char *whead; +}; struct btr_buffer { char *buf; size_t size; /** The number of references to this buffer. */ int refcount; + /* NULL means no buffer pool but a malloced buffer. */ + struct btr_pool *pool; }; struct btr_buffer_reference { @@ -21,6 +38,7 @@ struct btr_buffer_reference { size_t consumed; /* Each buffer reference belongs to the buffer queue list of some buffer tree node. */ struct list_head node; + size_t wrap_count; }; struct btr_node { @@ -42,6 +60,188 @@ struct btr_node { void *context; }; +/** + * Create a new buffer pool. + * + * \param name The name of the new buffer pool. + * \param area_size The size in bytes of the pool area. + * + * \return An opaque pointer to the newly created buffer pool. It must be + * passed to btr_pool_free() after it is no longer used to deallocate all + * resources. + */ +struct btr_pool *btr_pool_new(const char *name, size_t area_size) +{ + struct btr_pool *btrp; + + PARA_INFO_LOG("%s, %zu bytes\n", name, area_size); + btrp = para_malloc(sizeof(*btrp)); + btrp->area_start = para_malloc(area_size); + btrp->area_end = btrp->area_start + area_size; + btrp->rhead = btrp->area_start; + btrp->whead = btrp->area_start; + btrp->name = para_strdup(name); + return btrp; +} + +/** + * Deallocate resources used by a buffer pool. + * + * \param btrp A pointer obtained via btr_pool_new(). + */ +void btr_pool_free(struct btr_pool *btrp) +{ + if (!btrp) + return; + free(btrp->area_start); + free(btrp->name); + free(btrp); +} + +/** + * Return the size of the buffer pool area. + * + * \param btrp The buffer pool. + * + * \return The same value which was passed during creation time to + * btr_pool_new(). + */ +size_t btr_pool_size(struct btr_pool *btrp) +{ + return btrp->area_end - btrp->area_start; +} + +static size_t btr_pool_filled(struct btr_pool *btrp) +{ + if (!btrp->whead) + return btr_pool_size(btrp); + if (btrp->rhead <= btrp->whead) + return btrp->whead - btrp->rhead; + return btr_pool_size(btrp) - (btrp->rhead - btrp->whead); +} + +/** + * Get the number of unused bytes in the buffer pool. + * + * \param btrp The pool. + * + * \return The number of bytes that can currently be allocated. + * + * Note that in general the returned number of bytes is not available as a + * single contiguous buffer. Use btr_pool_available() to obtain the length of + * the largest contiguous buffer that can currently be allocated from the + * buffer pool. + */ +size_t btr_pool_unused(struct btr_pool *btrp) +{ + return btr_pool_size(btrp) - btr_pool_filled(btrp); +} + +/* + * Return maximal size available for one read. This is + * smaller than the value returned by btr_pool_unused(). + */ +static size_t btr_pool_available(struct btr_pool *btrp) +{ + if (!btrp->whead) + return 0; + if (btrp->rhead <= btrp->whead) + return btrp->area_end - btrp->whead; + return btrp->rhead - btrp->whead; +} + +/** + * Obtain the current write head. + * + * \param btrp The buffer pool. + * \param result The write head is returned here. + * + * \return The maximal amount of bytes that may be written to the returned + * buffer. + */ +size_t btr_pool_get_buffer(struct btr_pool *btrp, char **result) +{ + if (result) + *result = btrp->whead; + return btr_pool_available(btrp); +} + +/** + * Get references to buffers pointing to free space of the buffer pool area. + * + * \param btrp The buffer pool. + * \param iov The scatter array. + * + * \return Zero if the buffer pool is full, one if the free space of the buffer + * pool area is available as a single contiguous buffer, two if the free space + * consists of two buffers. If this function returns the value n, then n + * elements of \a iov are initialized. + */ +int btr_pool_get_buffers(struct btr_pool *btrp, struct iovec iov[2]) +{ + size_t sz, unused; + char *buf; + + sz = btr_pool_get_buffer(btrp, &buf); + if (sz == 0) + return 0; + iov[0].iov_len = sz; + iov[0].iov_base = buf; + unused = btr_pool_unused(btrp); + if (sz == unused) + return 1; + iov[1].iov_len = unused - sz; + iov[1].iov_base = btrp->area_start; + return 2; +} + +/** + * Mark a part of the buffer pool area as allocated. + * + * \param btrp The buffer pool. + * \param size The amount of bytes to be allocated. + * + * This is usually called after the caller wrote to the buffer obtained by + * btr_pool_get_buffer(). + */ +static void btr_pool_allocate(struct btr_pool *btrp, size_t size) +{ + char *end; + + if (size == 0) + return; + assert(size <= btr_pool_available(btrp)); + end = btrp->whead + size; + assert(end <= btrp->area_end); + + if (end == btrp->area_end) { + PARA_DEBUG_LOG("%s: end of pool area reached\n", btrp->name); + end = btrp->area_start; + } + if (end == btrp->rhead) { + PARA_DEBUG_LOG("%s btrp buffer full\n", btrp->name); + end = NULL; /* buffer full */ + } + btrp->whead = end; +} + +static void btr_pool_deallocate(struct btr_pool *btrp, size_t size) +{ + char *end = btrp->rhead + size; + + if (size == 0) + return; + assert(end <= btrp->area_end); + assert(size <= btr_pool_filled(btrp)); + if (end == btrp->area_end) + end = btrp->area_start; + if (!btrp->whead) + btrp->whead = btrp->rhead; + btrp->rhead = end; + if (btrp->rhead == btrp->whead) + btrp->rhead = btrp->whead = btrp->area_start; +} + #define FOR_EACH_CHILD(_tn, _btrn) list_for_each_entry((_tn), \ &((_btrn)->children), node) #define FOR_EACH_CHILD_SAFE(_tn, _tmp, _btrn) \ @@ -52,43 +252,86 @@ struct btr_node { #define FOR_EACH_BUFFER_REF_SAFE(_br, _tmp, _btrn) \ list_for_each_entry_safe((_br), (_tmp), &(_btrn)->input_queue, node) -struct btr_node *btr_new_node(const char *name, struct btr_node *parent, - btr_command_handler handler, void *context) +/** + * Create a new buffer tree node. + * + * \param bnd Specifies how to create the new node. + * + * \return A pointer to the newly allocated node. + * + * This function always succeeds (or calls exit()). The returned pointer must + * be freed using btr_free_node() after the node has been removed from the + * buffer tree via btr_remove_node(). + */ +struct btr_node *btr_new_node(struct btr_node_description *bnd) { struct btr_node *btrn = para_malloc(sizeof(*btrn)); - btrn->name = para_strdup(name); - btrn->parent = parent; - btrn->execute = handler; - btrn->context = context; + btrn->name = para_strdup(bnd->name); + btrn->parent = bnd->parent; + btrn->execute = bnd->handler; + btrn->context = bnd->context; btrn->start.tv_sec = 0; btrn->start.tv_usec = 0; - if (parent) - list_add_tail(&btrn->node, &parent->children); INIT_LIST_HEAD(&btrn->children); INIT_LIST_HEAD(&btrn->input_queue); - if (parent) - PARA_INFO_LOG("added %s as child of %s\n", name, parent->name); - else - PARA_INFO_LOG("added %s as btr root\n", name); + if (!bnd->child) { + if (bnd->parent) { + list_add_tail(&btrn->node, &bnd->parent->children); + PARA_INFO_LOG("new leaf node: %s (child of %s)\n", + bnd->name, bnd->parent->name); + } else + PARA_INFO_LOG("added %s as btr root\n", bnd->name); + goto out; + } + if (!bnd->parent) { + assert(!bnd->child->parent); + PARA_INFO_LOG("new root: %s (was %s)\n", + bnd->name, bnd->child->name); + btrn->parent = NULL; + list_add_tail(&bnd->child->node, &btrn->children); + /* link it in */ + bnd->child->parent = btrn; + goto out; + } + PARA_EMERG_LOG("inserting internal nodes not yet supported.\n"); + exit(EXIT_FAILURE); + assert(bnd->child->parent == bnd->parent); +out: return btrn; } /* * Allocate a new btr buffer. * - * The freshly allocated buffer will have a zero refcount. + * The freshly allocated buffer will have a zero refcount and will + * not be associated with a btr pool. */ static struct btr_buffer *new_btrb(char *buf, size_t size) { - struct btr_buffer *btrb = para_malloc(sizeof(*btrb)); + struct btr_buffer *btrb = para_calloc(sizeof(*btrb)); btrb->buf = buf; btrb->size = size; - btrb->refcount = 0; return btrb; } +static void dealloc_buffer(struct btr_buffer *btrb) +{ + if (btrb->pool) + btr_pool_deallocate(btrb->pool, btrb->size); + else + free(btrb->buf); +} + +static struct btr_buffer_reference *get_first_input_br(struct btr_node *btrn) +{ + if (list_empty(&btrn->input_queue)) + return NULL; + return list_first_entry(&btrn->input_queue, + struct btr_buffer_reference, node); +} + /* * Deallocate the reference, release the resources if refcount drops to zero. */ @@ -96,12 +339,11 @@ static void btr_drop_buffer_reference(struct btr_buffer_reference *br) { struct btr_buffer *btrb = br->btrb; - //PARA_CRIT_LOG("dropping buffer reference %p\n", br); list_del(&br->node); free(br); btrb->refcount--; if (btrb->refcount == 0) { - free(btrb->buf); + dealloc_buffer(btrb); free(btrb); } } @@ -114,7 +356,7 @@ static void add_btrb_to_children(struct btr_buffer *btrb, if (btrn->start.tv_sec == 0) btrn->start = *now; FOR_EACH_CHILD(ch, btrn) { - struct btr_buffer_reference *br = para_malloc(sizeof(*br)); + struct btr_buffer_reference *br = para_calloc(sizeof(*br)); br->btrb = btrb; br->consumed = consumed; list_add_tail(&br->node, &ch->input_queue); @@ -124,6 +366,20 @@ static void add_btrb_to_children(struct btr_buffer *btrb, } } +/** + * Insert a malloced buffer into the buffer tree. + * + * \param buf The buffer to insert. + * \param size The size of \a buf in bytes. + * \param btrn Position in the buffer tree to create the output. + * + * This creates references to \a buf and adds these references to each child of + * \a btrn. The buffer will be freed using standard free() once no buffer tree + * node is referencing it any more. + * + * Note that this function must not be used if \a buf was obtained from a + * buffer pool. Use btr_add_output_pool() in this case. + */ void btr_add_output(char *buf, size_t size, struct btr_node *btrn) { struct btr_buffer *btrb; @@ -137,12 +393,85 @@ void btr_add_output(char *buf, size_t size, struct btr_node *btrn) add_btrb_to_children(btrb, btrn, 0); } +/** + * Feed data to child nodes of a buffer tree node. + * + * \param btrp The buffer pool. + * \param size The number of bytes to be allocated and fed to each child. + * \param btrn The node whose children are to be fed. + * + * This function allocates the amount of bytes from the buffer pool area, + * starting at the current value of the write head, and creates buffer + * references to the resulting part of the buffer pool area, one for each child + * of \a btrn. The references are then fed into the input queue of each child. + */ +void btr_add_output_pool(struct btr_pool *btrp, size_t size, + struct btr_node *btrn) +{ + struct btr_buffer *btrb; + char *buf; + size_t avail; + + assert(size != 0); + if (list_empty(&btrn->children)) + return; + avail = btr_pool_get_buffer(btrp, &buf); + assert(avail >= size); + btr_pool_allocate(btrp, size); + btrb = new_btrb(buf, size); + btrb->pool = btrp; + add_btrb_to_children(btrb, btrn, 0); +} + +/** + * Copy data to write head of a buffer pool and feed it to all children nodes. + * + * \param src The source buffer. + * \param n The size of the source buffer in bytes. + * \param btrp The destination buffer pool. + * \param btrn Add the data as output of this node. + * + * This is expensive. The caller must make sure the data fits into the buffer + * pool area. + */ +void btr_copy(const void *src, size_t n, struct btr_pool *btrp, + struct btr_node *btrn) +{ + char *buf; + size_t sz, copy; + + if (n == 0) + return; + assert(n <= btr_pool_unused(btrp)); + sz = btr_pool_get_buffer(btrp, &buf); + copy = PARA_MIN(sz, n); + memcpy(buf, src, copy); + btr_add_output_pool(btrp, copy, btrn); + if (copy == n) + return; + sz = btr_pool_get_buffer(btrp, &buf); + assert(sz >= n - copy); + memcpy(buf, src + copy, n - copy); + btr_add_output_pool(btrp, n - copy, btrn); +} + static void btr_pushdown_br(struct btr_buffer_reference *br, struct btr_node *btrn) { add_btrb_to_children(br->btrb, btrn, br->consumed); btr_drop_buffer_reference(br); } +/** + * Feed all buffer references of the input queue through the output channel. + * + * \param btrn The node whose buffer references should be pushed down. + * + * This function is useful for filters that do not change the contents of the + * buffers at all, like the wav filter or the amp filter if no amplification + * was specified. This function is rather cheap. + * + * \sa \ref btr_pushdown_one(). + */ void btr_pushdown(struct btr_node *btrn) { struct btr_buffer_reference *br, *tmp; @@ -151,28 +480,69 @@ void btr_pushdown(struct btr_node *btrn) btr_pushdown_br(br, btrn); } -int btr_pushdown_one(struct btr_node *btrn) +/** + * Feed the next buffer of the input queue through the output channel. + * + * \param btrn The node whose first input queue buffer should be pushed down. + * + * This works like \ref btr_pushdown() but pushes down only one buffer + * reference. + */ +void btr_pushdown_one(struct btr_node *btrn) { struct btr_buffer_reference *br; if (list_empty(&btrn->input_queue)) - return 0; + return; br = list_first_entry(&btrn->input_queue, struct btr_buffer_reference, node); btr_pushdown_br(br, btrn); - return 1; } -/* Return true if this node has no children. */ -bool btr_no_children(struct btr_node *btrn) +/* + * Find out whether a node is a leaf node. + * + * \param btrn The node to check. + * + * \return True if this node has no children. False otherwise. + */ +static bool btr_no_children(struct btr_node *btrn) { return list_empty(&btrn->children); } +/** + * Find out whether a node is an orphan node. + * + * \param btrn The buffer tree node. + * + * \return True if \a btrn has no parent. + * + * This function will always return true for the root node. However in case + * nodes have been removed from the tree, other nodes may become orphans too. + */ bool btr_no_parent(struct btr_node *btrn) { return !btrn->parent; } +/** + * Find out whether it is OK to change an input buffer. + * + * \param btrn The buffer tree node to check. + * + * This is used by filters that produce exactly the same amount of output as + * there is input. The amp filter which multiplies each sample by some number + * is an example of such a filter. If there are no other nodes in the buffer + * tree that read the same input stream (i.e. if \a btrn has no siblings), a + * node may modify its input buffer directly and push down the modified buffer + * to its children, thereby avoiding to allocate a possibly large additional + * buffer. + * + * Since the buffer tree may change at any time, this function should be called + * during each post_select call. + * + * \return True if \a btrn has no siblings. + */ bool btr_inplace_ok(struct btr_node *btrn) { if (!btrn->parent) @@ -185,46 +555,133 @@ static inline size_t br_available_bytes(struct btr_buffer_reference *br) return br->btrb->size - br->consumed; } -size_t btr_get_buffer_by_reference(struct btr_buffer_reference *br, char **buf) +static size_t btr_get_buffer_by_reference(struct btr_buffer_reference *br, char **buf) { - *buf = br->btrb->buf + br->consumed; + if (buf) + *buf = br->btrb->buf + br->consumed; return br_available_bytes(br); } /** - * \return zero if the input buffer queue is empty. + * Obtain the next buffer of the input queue of a buffer tree node. + * + * \param btrn The node whose input queue is to be queried. + * \param bufp Result pointer. + * + * \return The number of bytes that can be read from buf. Zero if the input + * buffer queue is empty. In this case the value of \a bufp is undefined. */ size_t btr_next_buffer(struct btr_node *btrn, char **bufp) { struct btr_buffer_reference *br; + char *buf, *result = NULL; + size_t sz, rv = 0; - if (list_empty(&btrn->input_queue)) { - *bufp = NULL; - return 0; + FOR_EACH_BUFFER_REF(br, btrn) { + sz = btr_get_buffer_by_reference(br, &buf); + if (!result) { + result = buf; + rv = sz; + if (!br->btrb->pool) + break; + continue; + } + if (!br->btrb->pool) + break; + if (result + rv != buf) + break; + rv += sz; } - br = list_first_entry(&btrn->input_queue, struct btr_buffer_reference, node); - return btr_get_buffer_by_reference(br, bufp); + if (bufp) + *bufp = result; + return rv; } +/** + * Deallocate the given number of bytes from the input queue. + * + * \param btrn The buffer tree node. + * \param numbytes The number of bytes to be deallocated. + * + * This function must be used to get rid of existing buffer references in the + * node's input queue. If no references to a buffer remain, the underlying + * buffers are either freed (in the non-buffer pool case) or the read head of + * the buffer pool is being advanced. + * + * Note that \a numbytes may be smaller than the buffer size. In this case the + * buffer is not deallocated and subsequent calls to btr_next_buffer() return + * the remaining part of the buffer. + */ void btr_consume(struct btr_node *btrn, size_t numbytes) { - struct btr_buffer_reference *br; + struct btr_buffer_reference *br, *tmp; + size_t sz; - assert(!list_empty(&btrn->input_queue)); - br = list_first_entry(&btrn->input_queue, struct btr_buffer_reference, node); - assert(br->consumed + numbytes <= br->btrb->size); - br->consumed += numbytes; - if (br->consumed == br->btrb->size) - btr_drop_buffer_reference(br); + if (numbytes == 0) + return; + br = get_first_input_br(btrn); + assert(br); + + if (br->wrap_count == 0) { + /* + * No wrap buffer. Drop buffer references whose buffer + * has been fully used. */ + FOR_EACH_BUFFER_REF_SAFE(br, tmp, btrn) { + if (br->consumed + numbytes <= br->btrb->size) { + br->consumed += numbytes; + if (br->consumed == br->btrb->size) + btr_drop_buffer_reference(br); + return; + } + numbytes -= br->btrb->size - br->consumed; + btr_drop_buffer_reference(br); + } + assert(false); + } + /* + * We have a wrap buffer, consume from it. If in total, i.e. including + * previous calls to brt_consume(), less than wrap_count has been + * consumed, there's nothing more we can do. + * + * Otherwise we drop the wrap buffer and consume from subsequent + * buffers of the input queue the correct amount of bytes. This is the + * total number of bytes that have been consumed from the wrap buffer. + */ + PARA_DEBUG_LOG("consuming %zu/%zu bytes from wrap buffer\n", numbytes, + br_available_bytes(br)); + + assert(numbytes <= br_available_bytes(br)); + if (br->consumed + numbytes < br->wrap_count) { + br->consumed += numbytes; + return; + } + PARA_DEBUG_LOG("dropping wrap buffer (%zu bytes)\n", br->btrb->size); + /* get rid of the wrap buffer */ + sz = br->consumed + numbytes; + btr_drop_buffer_reference(br); + return btr_consume(btrn, sz); } -static void flush_input_queue(struct btr_node *btrn) +/** + * Clear the input queue of a buffer tree node. + * + * \param btrn The node whose input queue should be cleared. + */ +void btr_drain(struct btr_node *btrn) { struct btr_buffer_reference *br, *tmp; + FOR_EACH_BUFFER_REF_SAFE(br, tmp, btrn) btr_drop_buffer_reference(br); } +/** + * Free all resources allocated by btr_new_node(). + * + * \param btrn Pointer to a btr node obtained by \ref btr_new_node(). + * + * Like free(3), it is OK to call this with a \p NULL pointer argument. + */ void btr_free_node(struct btr_node *btrn) { if (!btrn) @@ -233,6 +690,17 @@ void btr_free_node(struct btr_node *btrn) free(btrn); } +/** + * Remove a node from a buffer tree. + * + * \param btrn The node to remove. + * + * This makes all child nodes of \a btrn orphans and removes \a btrn from the + * list of children of its parent. Moreover, the input queue of \a btrn is + * flushed if it is not empty. + * + * \sa \ref btr_splice_out_node. + */ void btr_remove_node(struct btr_node *btrn) { struct btr_node *ch; @@ -242,23 +710,50 @@ void btr_remove_node(struct btr_node *btrn) PARA_NOTICE_LOG("removing btr node %s from buffer tree\n", btrn->name); FOR_EACH_CHILD(ch, btrn) ch->parent = NULL; - flush_input_queue(btrn); + btr_drain(btrn); if (btrn->parent) list_del(&btrn->node); } +/** + * Return the amount of available input bytes of a buffer tree node. + * + * \param btrn The node whose input size should be computed. + * + * \return The total number of bytes available in the node's input + * queue. + * + * This simply iterates over all buffer references in the input queue and + * returns the sum of the sizes of all references. + */ size_t btr_get_input_queue_size(struct btr_node *btrn) { struct btr_buffer_reference *br; - size_t size = 0; + size_t size = 0, wrap_consumed = 0; FOR_EACH_BUFFER_REF(br, btrn) { - //PARA_CRIT_LOG("size: %zu\n", size); + if (br->wrap_count != 0) { + wrap_consumed = br->consumed; + continue; + } size += br_available_bytes(br); } + assert(wrap_consumed <= size); + size -= wrap_consumed; return size; } +/** + * Remove a node from the buffer tree, reconnecting parent and children. + * + * \param btrn The node to splice out. + * + * This function is used by buffer tree nodes that do not exist during the + * whole lifetime of the buffer tree. Unlike btr_remove_node(), calling + * btr_splice_out_node() does not split the tree into disconnected components + * but reconnects the buffer tree by making all child nodes of \a btrn children + * of the parent of \a btrn. + */ void btr_splice_out_node(struct btr_node *btrn) { struct btr_node *ch, *tmp; @@ -279,11 +774,14 @@ void btr_splice_out_node(struct btr_node *btrn) } /** - * Return the size of the largest input queue. + * Return number of queued output bytes of a buffer tree node. + * + * \param btrn The node whose output queue size should be computed. * - * Iterates over all children of the given node. + * \return This function iterates over all children of the given node and + * returns the size of the largest input queue. */ -size_t btr_bytes_pending(struct btr_node *btrn) +size_t btr_get_output_queue_size(struct btr_node *btrn) { size_t max_size = 0; struct btr_node *ch; @@ -295,15 +793,20 @@ size_t btr_bytes_pending(struct btr_node *btrn) return max_size; } -int btr_exec(struct btr_node *btrn, const char *command, char **value_result) -{ - if (!btrn) - return -ERRNO_TO_PARA_ERROR(EINVAL); - if (!btrn->execute) - return -ERRNO_TO_PARA_ERROR(ENOTSUP); - return btrn->execute(btrn, command, value_result); -} - +/** + * Execute a inter-node command on a parent node. + * + * \param btrn The node to start looking. + * \param command The command to execute. + * \param value_result Additional arguments and result value. + * + * This function traverses the buffer tree upwards and looks for parent nodes + * of \a btrn that understands \a command. On the first such node the command + * is executed, and the result is stored in \a value_result. + * + * \return \p -ENOTSUP if no parent node of \a btrn understands \a command. + * Otherwise the return value of the command handler is returned. + */ int btr_exec_up(struct btr_node *btrn, const char *command, char **value_result) { int ret; @@ -328,11 +831,119 @@ int btr_exec_up(struct btr_node *btrn, const char *command, char **value_result) return -ERRNO_TO_PARA_ERROR(ENOTSUP); } +/** + * Obtain the context of a buffer node tree. + * + * \param btrn The node whose output queue size should be computed. + * + * \return A pointer to the \a context address specified at node creation time. + * + * \sa btr_new_node(), struct \ref btr_node_description. + */ void *btr_context(struct btr_node *btrn) { return btrn->context; } +static bool need_buffer_pool_merge(struct btr_node *btrn) +{ + struct btr_buffer_reference *br = get_first_input_br(btrn); + + if (!br) + return false; + if (br->wrap_count != 0) + return true; + if (br->btrb->pool) + return true; + return false; +} + +static void merge_input_pool(struct btr_node *btrn, size_t dest_size) +{ + struct btr_buffer_reference *br, *wbr = NULL; + int num_refs; /* including wrap buffer */ + char *buf, *buf1 = NULL, *buf2 = NULL; + size_t sz, sz1 = 0, sz2 = 0, wb_consumed = 0; + + br = get_first_input_br(btrn); + if (!br || br_available_bytes(br) >= dest_size) + return; + num_refs = 0; + FOR_EACH_BUFFER_REF(br, btrn) { + num_refs++; + sz = btr_get_buffer_by_reference(br, &buf); + if (sz == 0) + break; + if (br->wrap_count != 0) { + assert(!wbr); + assert(num_refs == 1); + wbr = br; + if (sz >= dest_size) + return; + wb_consumed = br->consumed; + continue; + } + if (!buf1) { + buf1 = buf; + sz1 = sz; + goto next; + } + if (buf1 + sz1 == buf) { + sz1 += sz; + goto next; + } + if (!buf2) { + buf2 = buf; + sz2 = sz; + goto next; + } + assert(buf2 + sz2 == buf); + sz2 += sz; +next: + if (sz1 + sz2 >= dest_size + wb_consumed) + break; + } + if (!buf2) /* nothing to do */ + return; + assert(buf1 && sz2 > 0); + /* + * If the second buffer is large, we only take the first part of it to + * avoid having to memcpy() huge buffers. + */ + sz2 = PARA_MIN(sz2, (size_t)(64 * 1024)); + if (!wbr) { + /* Make a new wrap buffer combining buf1 and buf2. */ + sz = sz1 + sz2; + buf = para_malloc(sz); + PARA_DEBUG_LOG("merging input buffers: (%p:%zu, %p:%zu) -> %p:%zu\n", + buf1, sz1, buf2, sz2, buf, sz); + memcpy(buf, buf1, sz1); + memcpy(buf + sz1, buf2, sz2); + br = para_calloc(sizeof(*br)); + br->btrb = new_btrb(buf, sz); + br->btrb->refcount = 1; + br->consumed = 0; + /* This is a wrap buffer */ + br->wrap_count = sz1; + para_list_add(&br->node, &btrn->input_queue); + return; + } + /* + * We already have a wrap buffer, but it is too small. It might be + * partially used. + */ + if (wbr->wrap_count == sz1 && wbr->btrb->size >= sz1 + sz2) /* nothing we can do about it */ + return; + sz = sz1 + sz2 - wbr->btrb->size; /* amount of new data */ + PARA_DEBUG_LOG("increasing wrap buffer %zu -> %zu\n", wbr->btrb->size, + wbr->btrb->size + sz); + wbr->btrb->size += sz; + wbr->btrb->buf = para_realloc(wbr->btrb->buf, wbr->btrb->size); + /* copy the new data to the end of the reallocated buffer */ + assert(sz2 >= sz); + memcpy(wbr->btrb->buf + wbr->btrb->size - sz, buf2 + sz2 - sz, sz); +} + /** * Merge the first two input buffers into one. * @@ -360,19 +971,18 @@ static int merge_input(struct btr_node *btrn) if (i == 2) break; } + assert(i == 2); /* make a new btrb that combines the two buffers and a br to it. */ sz = szs[0] + szs[1]; - PARA_DEBUG_LOG("merging input buffers: (%zu, %zu) -> %zu\n", - szs[0], szs[1], sz); buf = para_malloc(sz); - /* TODO: Avoid this memcopy by introducing btr buffer pool. */ + PARA_DEBUG_LOG("%s: memory merging input buffers: (%zu, %zu) -> %zu\n", + btrn->name, szs[0], szs[1], sz); memcpy(buf, bufs[0], szs[0]); memcpy(buf + szs[0], bufs[1], szs[1]); - br = para_malloc(sizeof(*br)); + br = para_calloc(sizeof(*br)); br->btrb = new_btrb(buf, sz); br->btrb->refcount = 1; - br->consumed = 0; /* replace the first two refs by the new one */ btr_drop_buffer_reference(brs[0]); @@ -381,8 +991,24 @@ static int merge_input(struct btr_node *btrn) return 2; } +/** + * Combine input queue buffers. + * + * \param btrn The buffer tree node whose input should be merged. + * \param dest_size Stop merging if a buffer of at least this size exists. + * + * Used to combine as many buffers as needed into a single buffer whose size is + * at least \a dest_size. This function is rather cheap in case the parent node + * uses buffer pools and rather expensive otherwise. + * + * Note that if less than \a dest_size bytes are available in total, this + * function does nothing and subsequent calls to btr_next_buffer() will still + * return a buffer size less than \a dest_size. + */ void btr_merge(struct btr_node *btrn, size_t dest_size) { + if (need_buffer_pool_merge(btrn)) + return merge_input_pool(btrn, dest_size); for (;;) { char *buf; size_t len = btr_next_buffer(btrn, &buf); @@ -394,7 +1020,7 @@ void btr_merge(struct btr_node *btrn, size_t dest_size) } } -bool btr_eof(struct btr_node *btrn) +static bool btr_eof(struct btr_node *btrn) { char *buf; size_t len = btr_next_buffer(btrn, &buf); @@ -402,7 +1028,7 @@ bool btr_eof(struct btr_node *btrn) return (len == 0 && btr_no_parent(btrn)); } -void log_tree_recursively(struct btr_node *btrn, int loglevel, int depth) +static void log_tree_recursively(struct btr_node *btrn, int loglevel, int depth) { struct btr_node *ch; const char spaces[] = " ", *space = spaces + 16 - depth; @@ -414,23 +1040,82 @@ void log_tree_recursively(struct btr_node *btrn, int loglevel, int depth) log_tree_recursively(ch, loglevel, depth + 1); } +/** + * Write the current buffer (sub-)tree to the log. + * + * \param btrn Start logging at this node. + * \param loglevel Set severity with which the tree should be logged. + */ void btr_log_tree(struct btr_node *btrn, int loglevel) { return log_tree_recursively(btrn, loglevel, 0); } +/** + * Find the node with the given name in the buffer tree. + * + * \param name The name of the node to search. + * \param root Where to start the search. + * + * \return A pointer to the node with the given name on success. If \a name is + * \p NULL, the function returns \a root. If there is no node with the given + * name, \p NULL is returned. + */ +struct btr_node *btr_search_node(const char *name, struct btr_node *root) +{ + struct btr_node *ch; + + if (!name) + return root; + if (!strcmp(root->name, name)) + return root; + FOR_EACH_CHILD(ch, root) { + struct btr_node *result = btr_search_node(name, ch); + if (result) + return result; + } + return NULL; +} + /** 640K ought to be enough for everybody ;) */ -#define BTRN_MAX_PENDING (640 * 1024) +#define BTRN_MAX_PENDING (96 * 1024) +/** + * Return the current state of a buffer tree node. + * + * \param btrn The node whose state should be queried. + * \param min_iqs The minimal input queue size. + * \param type The supposed type of \a btrn. + * + * Most users of the buffer tree subsystem call this function from both + * their pre_select and the post_select methods. + * + * \return Negative if an error condition was detected, zero if there + * is nothing to do and positive otherwise. + * + * Examples: + * + * - If a non-root node has no parent and an empty input queue, the function + * returns \p -E_BTR_EOF. Similarly, if a non-leaf node has no children, \p + * -E_BTR_NO_CHILD is returned. + * + * - If less than \a min_iqs many bytes are available in the input queue and no + * EOF condition was detected, the function returns zero. + * + * - If there's plenty of data left in the input queue of the children of \a + * btrn, the function also returns zero in order to bound the memory usage of + * the buffer tree. + */ int btr_node_status(struct btr_node *btrn, size_t min_iqs, enum btr_node_type type) { size_t iqs; + assert(btrn); if (type != BTR_NT_LEAF) { if (btr_no_children(btrn)) return -E_BTR_NO_CHILD; - if (btr_bytes_pending(btrn) > BTRN_MAX_PENDING) + if (btr_get_output_queue_size(btrn) > BTRN_MAX_PENDING) return 0; } if (type != BTR_NT_ROOT) { @@ -445,6 +1130,14 @@ int btr_node_status(struct btr_node *btrn, size_t min_iqs, return 1; } +/** + * Get the time of the first I/O for a buffer tree node. + * + * \param btrn The node whose I/O time should be obtained. + * \param tv Result pointer. + * + * Mainly useful for the time display of para_audiod. + */ void btr_get_node_start(struct btr_node *btrn, struct timeval *tv) { *tv = btrn->start;