]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
0e2f6b8515773ac6c5c8ebb71fed620e7f25692e
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** * \file wmadec_filter.c paraslash's WMA decoder.  */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <math.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <math.h>
26 #include <string.h>
27 #include <regex.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "imdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         struct asf_header_info ahi;
63         struct getbit_context gb;
64         int use_bit_reservoir;
65         int use_variable_block_len;
66         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
67         int use_noise_coding;   ///< true if perceptual noise is added
68         int byte_offset_bits;
69         struct vlc exp_vlc;
70         int exponent_sizes[BLOCK_NB_SIZES];
71         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
72         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
73         int coefs_start;        ///< first coded coef
74         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
75         int exponent_high_sizes[BLOCK_NB_SIZES];
76         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
77         struct vlc hgain_vlc;
78
79         /* coded values in high bands */
80         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
82
83         /* there are two possible tables for spectral coefficients */
84         struct vlc coef_vlc[2];
85         uint16_t *run_table[2];
86         uint16_t *level_table[2];
87         uint16_t *int_table[2];
88         const struct coef_vlc_table *coef_vlcs[2];
89         /* frame info */
90         int frame_len;          ///< frame length in samples
91         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
92         int nb_block_sizes;     ///< number of block sizes
93         /* block info */
94         int reset_block_lengths;
95         int block_len_bits;     ///< log2 of current block length
96         int next_block_len_bits;        ///< log2 of next block length
97         int prev_block_len_bits;        ///< log2 of prev block length
98         int block_len;          ///< block length in samples
99         int block_pos;          ///< current position in frame
100         uint8_t ms_stereo;      ///< true if mid/side stereo mode
101         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
102         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
103         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
104         float max_exponent[MAX_CHANNELS];
105         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
106         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
107         float output[BLOCK_MAX_SIZE * 2];
108         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
109         float *windows[BLOCK_NB_SIZES];
110         /* output buffer for one frame and the last for IMDCT windowing */
111         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
112         /* last frame info */
113         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
114         int last_bitoffset;
115         int last_superframe_len;
116         float noise_table[NOISE_TAB_SIZE];
117         int noise_index;
118         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
119         /* lsp_to_curve tables */
120         float lsp_cos_table[BLOCK_MAX_SIZE];
121         float lsp_pow_e_table[256];
122         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
123         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
124 };
125
126 #define EXPVLCBITS 8
127 #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
128
129 #define HGAINVLCBITS 9
130 #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
131
132 #define VLCBITS 9
133 #define VLCMAX ((22+VLCBITS-1)/VLCBITS)
134
135 static int wmadec_cleanup(struct private_wmadec_data *s)
136 {
137         int i;
138
139         for (i = 0; i < s->nb_block_sizes; i++)
140                 imdct_end(s->mdct_ctx[i]);
141
142         if (s->use_exp_vlc)
143                 free_vlc(&s->exp_vlc);
144         if (s->use_noise_coding)
145                 free_vlc(&s->hgain_vlc);
146         for (i = 0; i < 2; i++) {
147                 free_vlc(&s->coef_vlc[i]);
148                 free(s->run_table[i]);
149                 free(s->level_table[i]);
150                 free(s->int_table[i]);
151         }
152         return 0;
153 }
154
155 /* XXX: use same run/length optimization as mpeg decoders */
156 //FIXME maybe split decode / encode or pass flag
157 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
158                 uint16_t **plevel_table, uint16_t **pint_table,
159                 const struct coef_vlc_table *vlc_table)
160 {
161         int n = vlc_table->n;
162         const uint8_t *table_bits = vlc_table->huffbits;
163         const uint32_t *table_codes = vlc_table->huffcodes;
164         const uint16_t *levels_table = vlc_table->levels;
165         uint16_t *run_table, *level_table, *int_table;
166         int i, l, j, k, level;
167
168         init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4);
169
170         run_table = para_malloc(n * sizeof (uint16_t));
171         level_table = para_malloc(n * sizeof (uint16_t));
172         int_table = para_malloc(n * sizeof (uint16_t));
173         i = 2;
174         level = 1;
175         k = 0;
176         while (i < n) {
177                 int_table[k] = i;
178                 l = levels_table[k++];
179                 for (j = 0; j < l; j++) {
180                         run_table[i] = j;
181                         level_table[i] = level;
182                         i++;
183                 }
184                 level++;
185         }
186         *prun_table = run_table;
187         *plevel_table = level_table;
188         *pint_table = int_table;
189 }
190
191 /* compute the scale factor band sizes for each MDCT block size */
192 static void compute_scale_factor_band_sizes(struct private_wmadec_data *s,
193         float high_freq)
194 {
195         struct asf_header_info *ahi = &s->ahi;
196         int a, b, pos, lpos, k, block_len, i, j, n;
197         const uint8_t *table;
198
199         s->coefs_start = 0;
200         for (k = 0; k < s->nb_block_sizes; k++) {
201                 block_len = s->frame_len >> k;
202
203                 table = NULL;
204                 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
205                 if (a < 3) {
206                         if (ahi->sample_rate >= 44100)
207                                 table = exponent_band_44100[a];
208                         else if (ahi->sample_rate >= 32000)
209                                 table = exponent_band_32000[a];
210                         else if (ahi->sample_rate >= 22050)
211                                 table = exponent_band_22050[a];
212                 }
213                 if (table) {
214                         n = *table++;
215                         for (i = 0; i < n; i++)
216                                 s->exponent_bands[k][i] = table[i];
217                         s->exponent_sizes[k] = n;
218                 } else {
219                         j = 0;
220                         lpos = 0;
221                         for (i = 0; i < 25; i++) {
222                                 a = wma_critical_freqs[i];
223                                 b = ahi->sample_rate;
224                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
225                                 pos <<= 2;
226                                 if (pos > block_len)
227                                         pos = block_len;
228                                 if (pos > lpos)
229                                         s->exponent_bands[k][j++] = pos - lpos;
230                                 if (pos >= block_len)
231                                         break;
232                                 lpos = pos;
233                         }
234                         s->exponent_sizes[k] = j;
235                 }
236
237                 /* max number of coefs */
238                 s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
239                 /* high freq computation */
240                 s->high_band_start[k] = (int) ((block_len * 2 * high_freq)
241                         / ahi->sample_rate + 0.5);
242                 n = s->exponent_sizes[k];
243                 j = 0;
244                 pos = 0;
245                 for (i = 0; i < n; i++) {
246                         int start, end;
247                         start = pos;
248                         pos += s->exponent_bands[k][i];
249                         end = pos;
250                         if (start < s->high_band_start[k])
251                                 start = s->high_band_start[k];
252                         if (end > s->coefs_end[k])
253                                 end = s->coefs_end[k];
254                         if (end > start)
255                                 s->exponent_high_bands[k][j++] = end - start;
256                 }
257                 s->exponent_high_sizes[k] = j;
258         }
259 }
260
261 static int wma_init(struct private_wmadec_data *s, int flags2, struct asf_header_info *ahi)
262 {
263         int i;
264         float bps1, high_freq;
265         volatile float bps;
266         int sample_rate1;
267         int coef_vlc_table;
268
269         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
270                 || ahi->channels <= 0 || ahi->channels > 8
271                 || ahi->bit_rate <= 0)
272                 return -E_WMA_BAD_PARAMS;
273
274         /* compute MDCT block size */
275         if (ahi->sample_rate <= 16000) {
276                 s->frame_len_bits = 9;
277         } else if (ahi->sample_rate <= 22050) {
278                 s->frame_len_bits = 10;
279         } else {
280                 s->frame_len_bits = 11;
281         }
282         s->frame_len = 1 << s->frame_len_bits;
283         if (s->use_variable_block_len) {
284                 int nb_max, nb;
285                 nb = ((flags2 >> 3) & 3) + 1;
286                 if ((ahi->bit_rate / ahi->channels) >= 32000)
287                         nb += 2;
288                 nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
289                 if (nb > nb_max)
290                         nb = nb_max;
291                 s->nb_block_sizes = nb + 1;
292         } else {
293                 s->nb_block_sizes = 1;
294         }
295
296         /* init rate dependent parameters */
297         s->use_noise_coding = 1;
298         high_freq = ahi->sample_rate * 0.5;
299
300         /* wma2 rates are normalized */
301         sample_rate1 = ahi->sample_rate;
302         if (sample_rate1 >= 44100)
303                 sample_rate1 = 44100;
304         else if (sample_rate1 >= 22050)
305                 sample_rate1 = 22050;
306         else if (sample_rate1 >= 16000)
307                 sample_rate1 = 16000;
308         else if (sample_rate1 >= 11025)
309                 sample_rate1 = 11025;
310         else if (sample_rate1 >= 8000)
311                 sample_rate1 = 8000;
312
313         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
314         s->byte_offset_bits = wma_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
315         /*
316          * Compute high frequency value and choose if noise coding should be
317          * activated.
318          */
319         bps1 = bps;
320         if (ahi->channels == 2)
321                 bps1 = bps * 1.6;
322         if (sample_rate1 == 44100) {
323                 if (bps1 >= 0.61)
324                         s->use_noise_coding = 0;
325                 else
326                         high_freq = high_freq * 0.4;
327         } else if (sample_rate1 == 22050) {
328                 if (bps1 >= 1.16)
329                         s->use_noise_coding = 0;
330                 else if (bps1 >= 0.72)
331                         high_freq = high_freq * 0.7;
332                 else
333                         high_freq = high_freq * 0.6;
334         } else if (sample_rate1 == 16000) {
335                 if (bps > 0.5)
336                         high_freq = high_freq * 0.5;
337                 else
338                         high_freq = high_freq * 0.3;
339         } else if (sample_rate1 == 11025) {
340                 high_freq = high_freq * 0.7;
341         } else if (sample_rate1 == 8000) {
342                 if (bps <= 0.625) {
343                         high_freq = high_freq * 0.5;
344                 } else if (bps > 0.75) {
345                         s->use_noise_coding = 0;
346                 } else {
347                         high_freq = high_freq * 0.65;
348                 }
349         } else {
350                 if (bps >= 0.8) {
351                         high_freq = high_freq * 0.75;
352                 } else if (bps >= 0.6) {
353                         high_freq = high_freq * 0.6;
354                 } else {
355                         high_freq = high_freq * 0.5;
356                 }
357         }
358         PARA_INFO_LOG("channels=%d sample_rate=%d "
359                 "bitrate=%d block_align=%d\n",
360                 ahi->channels, ahi->sample_rate,
361                 ahi->bit_rate, ahi->block_align);
362         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
363                 "high_freq=%f bitoffset=%d\n",
364                 s->frame_len, bps, bps1,
365                 high_freq, s->byte_offset_bits);
366         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
367                 s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
368
369         compute_scale_factor_band_sizes(s, high_freq);
370         /* init MDCT windows : simple sinus window */
371         for (i = 0; i < s->nb_block_sizes; i++) {
372                 int n;
373                 n = 1 << (s->frame_len_bits - i);
374                 sine_window_init(ff_sine_windows[s->frame_len_bits - i - 7], n);
375                 s->windows[i] = ff_sine_windows[s->frame_len_bits - i - 7];
376         }
377
378         s->reset_block_lengths = 1;
379
380         if (s->use_noise_coding) {
381                 /* init the noise generator */
382                 if (s->use_exp_vlc)
383                         s->noise_mult = 0.02;
384                 else
385                         s->noise_mult = 0.04;
386
387                 {
388                         unsigned int seed;
389                         float norm;
390                         seed = 1;
391                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
392                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
393                                 seed = seed * 314159 + 1;
394                                 s->noise_table[i] = (float) ((int) seed) * norm;
395                         }
396                 }
397         }
398
399         /* choose the VLC tables for the coefficients */
400         coef_vlc_table = 2;
401         if (ahi->sample_rate >= 32000) {
402                 if (bps1 < 0.72)
403                         coef_vlc_table = 0;
404                 else if (bps1 < 1.16)
405                         coef_vlc_table = 1;
406         }
407         s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
408         s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
409         init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
410                 &s->int_table[0], s->coef_vlcs[0]);
411         init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
412                 &s->int_table[1], s->coef_vlcs[1]);
413         return 0;
414 }
415
416 static void wma_lsp_to_curve_init(struct private_wmadec_data *s, int frame_len)
417 {
418         float wdel, a, b;
419         int i, e, m;
420
421         wdel = M_PI / frame_len;
422         for (i = 0; i < frame_len; i++)
423                 s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
424
425         /* tables for x^-0.25 computation */
426         for (i = 0; i < 256; i++) {
427                 e = i - 126;
428                 s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
429         }
430
431         /* These two tables are needed to avoid two operations in pow_m1_4. */
432         b = 1.0;
433         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
434                 m = (1 << LSP_POW_BITS) + i;
435                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
436                 a = pow(a, -0.25);
437                 s->lsp_pow_m_table1[i] = 2 * a - b;
438                 s->lsp_pow_m_table2[i] = b - a;
439                 b = a;
440         }
441 }
442
443 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
444 {
445         struct private_wmadec_data *s;
446         int ret, i;
447
448         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
449         s = para_calloc(sizeof(*s));
450         ret = read_asf_header(initial_buf, len, &s->ahi);
451         if (ret <= 0) {
452                 free(s);
453                 return ret;
454         }
455
456         s->use_exp_vlc = s->ahi.flags2 & 0x0001;
457         s->use_bit_reservoir = s->ahi.flags2 & 0x0002;
458         s->use_variable_block_len = s->ahi.flags2 & 0x0004;
459
460         ret = wma_init(s, s->ahi.flags2, &s->ahi);
461         if (ret < 0)
462                 return ret;
463         /* init MDCT */
464         for (i = 0; i < s->nb_block_sizes; i++) {
465                 ret = imdct_init(s->frame_len_bits - i + 1, 1, &s->mdct_ctx[i]);
466                 if (ret < 0)
467                         return ret;
468         }
469         if (s->use_noise_coding) {
470                 PARA_INFO_LOG("using noise coding\n");
471                 init_vlc(&s->hgain_vlc, HGAINVLCBITS,
472                         sizeof (ff_wma_hgain_huffbits), ff_wma_hgain_huffbits,
473                         1, 1, ff_wma_hgain_huffcodes, 2, 2);
474         }
475
476         if (s->use_exp_vlc) {
477                 PARA_INFO_LOG("using exp_vlc\n");
478                 init_vlc(&s->exp_vlc, EXPVLCBITS,
479                 sizeof (ff_wma_scale_huffbits), ff_wma_scale_huffbits,
480                 1, 1, ff_wma_scale_huffcodes, 4, 4);
481         } else {
482                 PARA_INFO_LOG("using curve\n");
483                 wma_lsp_to_curve_init(s, s->frame_len);
484         }
485         *result = s;
486         return s->ahi.header_len;
487 }
488
489 /**
490  * compute x^-0.25 with an exponent and mantissa table. We use linear
491  * interpolation to reduce the mantissa table size at a small speed
492  * expense (linear interpolation approximately doubles the number of
493  * bits of precision).
494  */
495 static inline float pow_m1_4(struct private_wmadec_data *s, float x)
496 {
497         union {
498                 float f;
499                 unsigned int v;
500         } u, t;
501         unsigned int e, m;
502         float a, b;
503
504         u.f = x;
505         e = u.v >> 23;
506         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
507         /* build interpolation scale: 1 <= t < 2. */
508         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
509         a = s->lsp_pow_m_table1[m];
510         b = s->lsp_pow_m_table2[m];
511         return s->lsp_pow_e_table[e] * (a + b * t.f);
512 }
513
514 static void wma_lsp_to_curve(struct private_wmadec_data *s,
515                 float *out, float *val_max_ptr, int n, float *lsp)
516 {
517         int i, j;
518         float p, q, w, v, val_max;
519
520         val_max = 0;
521         for (i = 0; i < n; i++) {
522                 p = 0.5f;
523                 q = 0.5f;
524                 w = s->lsp_cos_table[i];
525                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
526                         q *= w - lsp[j - 1];
527                         p *= w - lsp[j];
528                 }
529                 p *= p * (2.0f - w);
530                 q *= q * (2.0f + w);
531                 v = p + q;
532                 v = pow_m1_4(s, v);
533                 if (v > val_max)
534                         val_max = v;
535                 out[i] = v;
536         }
537         *val_max_ptr = val_max;
538 }
539
540 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
541 static void decode_exp_lsp(struct private_wmadec_data *s, int ch)
542 {
543         float lsp_coefs[NB_LSP_COEFS];
544         int val, i;
545
546         for (i = 0; i < NB_LSP_COEFS; i++) {
547                 if (i == 0 || i >= 8)
548                         val = get_bits(&s->gb, 3);
549                 else
550                         val = get_bits(&s->gb, 4);
551                 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
552         }
553
554         wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
555                          s->block_len, lsp_coefs);
556 }
557
558 /*
559  * Parse a vlc code, faster then get_vlc().
560  *
561  * \param bits The number of bits which will be read at once, must be
562  * identical to nb_bits in init_vlc()
563  *
564  * \param max_depth The number of times bits bits must be read to completely
565  * read the longest vlc code = (max_vlc_length + bits - 1) / bits.
566  */
567 static int get_vlc2(struct getbit_context *s, VLC_TYPE(*table)[2],
568                 int bits, int max_depth)
569 {
570         int code;
571
572         OPEN_READER(re, s)
573         UPDATE_CACHE(re, s)
574         GET_VLC(code, re, s, table, bits, max_depth)
575         CLOSE_READER(re, s)
576         return code;
577 }
578
579 /* Decode exponents coded with VLC codes. */
580 static int decode_exp_vlc(struct private_wmadec_data *s, int ch)
581 {
582         int last_exp, n, code;
583         const uint16_t *ptr, *band_ptr;
584         float v, *q, max_scale, *q_end;
585
586         band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
587         ptr = band_ptr;
588         q = s->exponents[ch];
589         q_end = q + s->block_len;
590         max_scale = 0;
591         last_exp = 36;
592
593         while (q < q_end) {
594                 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
595                 if (code < 0)
596                         return -1;
597                 /* NOTE: this offset is the same as MPEG4 AAC ! */
598                 last_exp += code - 60;
599                 /* XXX: use a table */
600                 v = pow(10, last_exp * (1.0 / 16.0));
601                 if (v > max_scale)
602                         max_scale = v;
603                 n = *ptr++;
604                 do {
605                         *q++ = v;
606                 } while (--n);
607         }
608         s->max_exponent[ch] = max_scale;
609         return 0;
610 }
611
612 static void vector_fmul_add(float *dst, const float *src0, const float *src1,
613                 const float *src2, int src3, int len, int step)
614 {
615         int i;
616         for (i = 0; i < len; i++)
617                 dst[i * step] = src0[i] * src1[i] + src2[i] + src3;
618 }
619
620 static void vector_fmul_reverse_c(float *dst, const float *src0,
621                 const float *src1, int len)
622 {
623         int i;
624         src1 += len - 1;
625         for (i = 0; i < len; i++)
626                 dst[i] = src0[i] * src1[-i];
627 }
628
629 /**
630  * Apply MDCT window and add into output.
631  *
632  * We ensure that when the windows overlap their squared sum
633  * is always 1 (MDCT reconstruction rule).
634  */
635 static void wma_window(struct private_wmadec_data *s, float *out)
636 {
637         float *in = s->output;
638         int block_len, bsize, n;
639
640         /* left part */
641         if (s->block_len_bits <= s->prev_block_len_bits) {
642                 block_len = s->block_len;
643                 bsize = s->frame_len_bits - s->block_len_bits;
644
645                 vector_fmul_add(out, in, s->windows[bsize],
646                                          out, 0, block_len, 1);
647
648         } else {
649                 block_len = 1 << s->prev_block_len_bits;
650                 n = (s->block_len - block_len) / 2;
651                 bsize = s->frame_len_bits - s->prev_block_len_bits;
652
653                 vector_fmul_add(out + n, in + n, s->windows[bsize],
654                                          out + n, 0, block_len, 1);
655
656                 memcpy(out + n + block_len, in + n + block_len,
657                        n * sizeof (float));
658         }
659
660         out += s->block_len;
661         in += s->block_len;
662
663         /* right part */
664         if (s->block_len_bits <= s->next_block_len_bits) {
665                 block_len = s->block_len;
666                 bsize = s->frame_len_bits - s->block_len_bits;
667
668                 vector_fmul_reverse_c(out, in, s->windows[bsize], block_len);
669
670         } else {
671                 block_len = 1 << s->next_block_len_bits;
672                 n = (s->block_len - block_len) / 2;
673                 bsize = s->frame_len_bits - s->next_block_len_bits;
674
675                 memcpy(out, in, n * sizeof (float));
676
677                 vector_fmul_reverse_c(out + n, in + n, s->windows[bsize],
678                                       block_len);
679
680                 memset(out + n + block_len, 0, n * sizeof (float));
681         }
682 }
683
684 static int wma_total_gain_to_bits(int total_gain)
685 {
686         if (total_gain < 15)
687                 return 13;
688         else if (total_gain < 32)
689                 return 12;
690         else if (total_gain < 40)
691                 return 11;
692         else if (total_gain < 45)
693                 return 10;
694         else
695                 return 9;
696 }
697
698 /**
699  * @return 0 if OK. 1 if last block of frame. return -1 if
700  * unrecorrable error.
701  */
702 static int wma_decode_block(struct private_wmadec_data *s)
703 {
704         int n, v, ch, code, bsize;
705         int coef_nb_bits, total_gain;
706         int nb_coefs[MAX_CHANNELS];
707         float mdct_norm;
708
709         /* compute current block length */
710         if (s->use_variable_block_len) {
711                 n = wma_log2(s->nb_block_sizes - 1) + 1;
712
713                 if (s->reset_block_lengths) {
714                         s->reset_block_lengths = 0;
715                         v = get_bits(&s->gb, n);
716                         if (v >= s->nb_block_sizes)
717                                 return -1;
718                         s->prev_block_len_bits = s->frame_len_bits - v;
719                         v = get_bits(&s->gb, n);
720                         if (v >= s->nb_block_sizes)
721                                 return -1;
722                         s->block_len_bits = s->frame_len_bits - v;
723                 } else {
724                         /* update block lengths */
725                         s->prev_block_len_bits = s->block_len_bits;
726                         s->block_len_bits = s->next_block_len_bits;
727                 }
728                 v = get_bits(&s->gb, n);
729                 if (v >= s->nb_block_sizes)
730                         return -1;
731                 s->next_block_len_bits = s->frame_len_bits - v;
732         } else {
733                 /* fixed block len */
734                 s->next_block_len_bits = s->frame_len_bits;
735                 s->prev_block_len_bits = s->frame_len_bits;
736                 s->block_len_bits = s->frame_len_bits;
737         }
738
739         /* now check if the block length is coherent with the frame length */
740         s->block_len = 1 << s->block_len_bits;
741         if ((s->block_pos + s->block_len) > s->frame_len)
742                 return -E_INCOHERENT_BLOCK_LEN;
743
744         if (s->ahi.channels == 2) {
745                 s->ms_stereo = get_bits1(&s->gb);
746         }
747         v = 0;
748         for (ch = 0; ch < s->ahi.channels; ch++) {
749                 int a = get_bits1(&s->gb);
750                 s->channel_coded[ch] = a;
751                 v |= a;
752         }
753
754         bsize = s->frame_len_bits - s->block_len_bits;
755
756         /* if no channel coded, no need to go further */
757         /* XXX: fix potential framing problems */
758         if (!v)
759                 goto next;
760
761         /* read total gain and extract corresponding number of bits for
762            coef escape coding */
763         total_gain = 1;
764         for (;;) {
765                 int a = get_bits(&s->gb, 7);
766                 total_gain += a;
767                 if (a != 127)
768                         break;
769         }
770
771         coef_nb_bits = wma_total_gain_to_bits(total_gain);
772
773         /* compute number of coefficients */
774         n = s->coefs_end[bsize] - s->coefs_start;
775         for (ch = 0; ch < s->ahi.channels; ch++)
776                 nb_coefs[ch] = n;
777
778         /* complex coding */
779         if (s->use_noise_coding) {
780
781                 for (ch = 0; ch < s->ahi.channels; ch++) {
782                         if (s->channel_coded[ch]) {
783                                 int i, m, a;
784                                 m = s->exponent_high_sizes[bsize];
785                                 for (i = 0; i < m; i++) {
786                                         a = get_bits1(&s->gb);
787                                         s->high_band_coded[ch][i] = a;
788                                         /* if noise coding, the coefficients are not transmitted */
789                                         if (a)
790                                                 nb_coefs[ch] -=
791                                                     s->
792                                                     exponent_high_bands[bsize]
793                                                     [i];
794                                 }
795                         }
796                 }
797                 for (ch = 0; ch < s->ahi.channels; ch++) {
798                         if (s->channel_coded[ch]) {
799                                 int i, val;
800
801                                 n = s->exponent_high_sizes[bsize];
802                                 val = (int) 0x80000000;
803                                 for (i = 0; i < n; i++) {
804                                         if (s->high_band_coded[ch][i]) {
805                                                 if (val == (int) 0x80000000) {
806                                                         val =
807                                                             get_bits(&s->gb,
808                                                                      7) - 19;
809                                                 } else {
810                                                         code =
811                                                             get_vlc2(&s->gb,
812                                                                      s->
813                                                                      hgain_vlc.
814                                                                      table,
815                                                                      HGAINVLCBITS,
816                                                                      HGAINMAX);
817                                                         if (code < 0)
818                                                                 return -1;
819                                                         val += code - 18;
820                                                 }
821                                                 s->high_band_values[ch][i] =
822                                                     val;
823                                         }
824                                 }
825                         }
826                 }
827         }
828
829         /* exponents can be reused in short blocks. */
830         if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb)) {
831                 for (ch = 0; ch < s->ahi.channels; ch++) {
832                         if (s->channel_coded[ch]) {
833                                 if (s->use_exp_vlc) {
834                                         if (decode_exp_vlc(s, ch) < 0)
835                                                 return -1;
836                                 } else {
837                                         decode_exp_lsp(s, ch);
838                                 }
839                                 s->exponents_bsize[ch] = bsize;
840                         }
841                 }
842         }
843
844         /* parse spectral coefficients : just RLE encoding */
845         for (ch = 0; ch < s->ahi.channels; ch++) {
846                 if (s->channel_coded[ch]) {
847                         struct vlc *coef_vlc;
848                         int level, run, sign, tindex;
849                         int16_t *ptr, *eptr;
850                         const uint16_t *level_table, *run_table;
851
852                         /* special VLC tables are used for ms stereo because
853                            there is potentially less energy there */
854                         tindex = (ch == 1 && s->ms_stereo);
855                         coef_vlc = &s->coef_vlc[tindex];
856                         run_table = s->run_table[tindex];
857                         level_table = s->level_table[tindex];
858                         /* XXX: optimize */
859                         ptr = &s->coefs1[ch][0];
860                         eptr = ptr + nb_coefs[ch];
861                         memset(ptr, 0, s->block_len * sizeof(int16_t));
862                         for (;;) {
863                                 code =
864                                     get_vlc2(&s->gb, coef_vlc->table, VLCBITS,
865                                              VLCMAX);
866                                 if (code < 0)
867                                         return -1;
868                                 if (code == 1) {
869                                         /* EOB */
870                                         break;
871                                 } else if (code == 0) {
872                                         /* escape */
873                                         level = get_bits(&s->gb, coef_nb_bits);
874                                         /* NOTE: this is rather suboptimal. reading
875                                            block_len_bits would be better */
876                                         run =
877                                             get_bits(&s->gb, s->frame_len_bits);
878                                 } else {
879                                         /* normal code */
880                                         run = run_table[code];
881                                         level = level_table[code];
882                                 }
883                                 sign = get_bits1(&s->gb);
884                                 if (!sign)
885                                         level = -level;
886                                 ptr += run;
887                                 if (ptr >= eptr) {
888                                         PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
889                                         break;
890                                 }
891                                 *ptr++ = level;
892                                 /* NOTE: EOB can be omitted */
893                                 if (ptr >= eptr)
894                                         break;
895                         }
896                 }
897         }
898
899         /* normalize */
900         {
901                 int n4 = s->block_len / 2;
902                 mdct_norm = 1.0 / (float) n4;
903         }
904
905         /* finally compute the MDCT coefficients */
906         for (ch = 0; ch < s->ahi.channels; ch++) {
907                 if (s->channel_coded[ch]) {
908                         int16_t *coefs1;
909                         float *coefs, *exponents, mult, mult1, noise;
910                         int i, j, n1, last_high_band, esize;
911                         float exp_power[HIGH_BAND_MAX_SIZE];
912
913                         coefs1 = s->coefs1[ch];
914                         exponents = s->exponents[ch];
915                         esize = s->exponents_bsize[ch];
916                         mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
917                         mult *= mdct_norm;
918                         coefs = s->coefs[ch];
919                         if (s->use_noise_coding) {
920                                 mult1 = mult;
921                                 /* very low freqs : noise */
922                                 for (i = 0; i < s->coefs_start; i++) {
923                                         *coefs++ =
924                                             s->noise_table[s->noise_index] *
925                                             exponents[i << bsize >> esize] *
926                                             mult1;
927                                         s->noise_index =
928                                             (s->noise_index +
929                                              1) & (NOISE_TAB_SIZE - 1);
930                                 }
931
932                                 n1 = s->exponent_high_sizes[bsize];
933
934                                 /* compute power of high bands */
935                                 exponents = s->exponents[ch] +
936                                     (s->high_band_start[bsize] << bsize);
937                                 last_high_band = 0;     /* avoid warning */
938                                 for (j = 0; j < n1; j++) {
939                                         n = s->exponent_high_bands[s->
940                                                                    frame_len_bits
941                                                                    -
942                                                                    s->
943                                                                    block_len_bits]
944                                             [j];
945                                         if (s->high_band_coded[ch][j]) {
946                                                 float e2, val;
947                                                 e2 = 0;
948                                                 for (i = 0; i < n; i++) {
949                                                         val = exponents[i << bsize
950                                                                       >> esize];
951                                                         e2 += val * val;
952                                                 }
953                                                 exp_power[j] = e2 / n;
954                                                 last_high_band = j;
955                                         }
956                                         exponents += n << bsize;
957                                 }
958
959                                 /* main freqs and high freqs */
960                                 exponents =
961                                     s->exponents[ch] +
962                                     (s->coefs_start << bsize);
963                                 for (j = -1; j < n1; j++) {
964                                         if (j < 0) {
965                                                 n = s->high_band_start[bsize] -
966                                                     s->coefs_start;
967                                         } else {
968                                                 n = s->exponent_high_bands[s->
969                                                                            frame_len_bits
970                                                                            -
971                                                                            s->
972                                                                            block_len_bits]
973                                                     [j];
974                                         }
975                                         if (j >= 0 && s->high_band_coded[ch][j]) {
976                                                 /* use noise with specified power */
977                                                 mult1 =
978                                                     sqrt(exp_power[j] /
979                                                          exp_power
980                                                          [last_high_band]);
981                                                 /* XXX: use a table */
982                                                 mult1 =
983                                                     mult1 * pow(10,
984                                                                 s->
985                                                                 high_band_values
986                                                                 [ch][j] * 0.05);
987                                                 mult1 =
988                                                     mult1 /
989                                                     (s->max_exponent[ch] *
990                                                      s->noise_mult);
991                                                 mult1 *= mdct_norm;
992                                                 for (i = 0; i < n; i++) {
993                                                         noise =
994                                                             s->noise_table[s->
995                                                                            noise_index];
996                                                         s->noise_index =
997                                                             (s->noise_index +
998                                                              1) &
999                                                             (NOISE_TAB_SIZE -
1000                                                              1);
1001                                                         *coefs++ =
1002                                                             noise *
1003                                                             exponents[i << bsize
1004                                                                       >> esize]
1005                                                             * mult1;
1006                                                 }
1007                                                 exponents += n << bsize;
1008                                         } else {
1009                                                 /* coded values + small noise */
1010                                                 for (i = 0; i < n; i++) {
1011                                                         noise =
1012                                                             s->noise_table[s->
1013                                                                            noise_index];
1014                                                         s->noise_index =
1015                                                             (s->noise_index +
1016                                                              1) &
1017                                                             (NOISE_TAB_SIZE -
1018                                                              1);
1019                                                         *coefs++ =
1020                                                             ((*coefs1++) +
1021                                                              noise) *
1022                                                             exponents[i << bsize
1023                                                                       >> esize]
1024                                                             * mult;
1025                                                 }
1026                                                 exponents += n << bsize;
1027                                         }
1028                                 }
1029
1030                                 /* very high freqs : noise */
1031                                 n = s->block_len - s->coefs_end[bsize];
1032                                 mult1 =
1033                                     mult * exponents[((-1 << bsize)) >> esize];
1034                                 for (i = 0; i < n; i++) {
1035                                         *coefs++ =
1036                                             s->noise_table[s->noise_index] *
1037                                             mult1;
1038                                         s->noise_index =
1039                                             (s->noise_index +
1040                                              1) & (NOISE_TAB_SIZE - 1);
1041                                 }
1042                         } else {
1043                                 /* XXX: optimize more */
1044                                 for (i = 0; i < s->coefs_start; i++)
1045                                         *coefs++ = 0.0;
1046                                 n = nb_coefs[ch];
1047                                 for (i = 0; i < n; i++) {
1048                                         *coefs++ =
1049                                             coefs1[i] *
1050                                             exponents[i << bsize >> esize] *
1051                                             mult;
1052                                 }
1053                                 n = s->block_len - s->coefs_end[bsize];
1054                                 for (i = 0; i < n; i++)
1055                                         *coefs++ = 0.0;
1056                         }
1057                 }
1058         }
1059
1060         if (s->ms_stereo && s->channel_coded[1]) {
1061                 float a, b;
1062                 int i;
1063
1064                 /*
1065                  * Nominal case for ms stereo: we do it before mdct.
1066                  *
1067                  * No need to optimize this case because it should almost never
1068                  * happen.
1069                  */
1070                 if (!s->channel_coded[0]) {
1071                         PARA_NOTICE_LOG("rare ms-stereo\n");
1072                         memset(s->coefs[0], 0, sizeof(float) * s->block_len);
1073                         s->channel_coded[0] = 1;
1074                 }
1075                 for (i = 0; i < s->block_len; i++) {
1076                         a = s->coefs[0][i];
1077                         b = s->coefs[1][i];
1078                         s->coefs[0][i] = a + b;
1079                         s->coefs[1][i] = a - b;
1080                 }
1081         }
1082
1083 next:
1084         for (ch = 0; ch < s->ahi.channels; ch++) {
1085                 int n4, index;
1086
1087                 n = s->block_len;
1088                 n4 = s->block_len / 2;
1089                 if (s->channel_coded[ch])
1090                         imdct(s->mdct_ctx[bsize], s->output, s->coefs[ch]);
1091                 else if (!(s->ms_stereo && ch == 1))
1092                         memset(s->output, 0, sizeof (s->output));
1093
1094                 /* multiply by the window and add in the frame */
1095                 index = (s->frame_len / 2) + s->block_pos - n4;
1096                 wma_window(s, &s->frame_out[ch][index]);
1097         }
1098
1099         /* update block number */
1100         s->block_pos += s->block_len;
1101         if (s->block_pos >= s->frame_len)
1102                 return 1;
1103         else
1104                 return 0;
1105 }
1106
1107 /*
1108  * Clip a signed integer value into the -32768,32767 range.
1109  *
1110  * \param a The value to clip.
1111  *
1112  * \return The clipped value.
1113  */
1114 static inline int16_t av_clip_int16(int a)
1115 {
1116         if ((a + 32768) & ~65535)
1117                 return (a >> 31) ^ 32767;
1118         else
1119                 return a;
1120 }
1121
1122 /* Decode a frame of frame_len samples. */
1123 static int wma_decode_frame(struct private_wmadec_data *s, int16_t * samples)
1124 {
1125         int ret, i, n, ch, incr;
1126         int16_t *ptr;
1127         float *iptr;
1128
1129         /* read each block */
1130         s->block_pos = 0;
1131         for (;;) {
1132                 ret = wma_decode_block(s);
1133                 if (ret < 0)
1134                         return -1;
1135                 if (ret)
1136                         break;
1137         }
1138
1139         /* convert frame to integer */
1140         n = s->frame_len;
1141         incr = s->ahi.channels;
1142         for (ch = 0; ch < s->ahi.channels; ch++) {
1143                 ptr = samples + ch;
1144                 iptr = s->frame_out[ch];
1145
1146                 for (i = 0; i < n; i++) {
1147                         *ptr = av_clip_int16(lrintf(*iptr++));
1148                         ptr += incr;
1149                 }
1150                 /* prepare for next block */
1151                 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
1152                         s->frame_len * sizeof (float));
1153         }
1154         return 0;
1155 }
1156
1157 static int wma_decode_superframe(struct private_wmadec_data *s, void *data,
1158                 int *data_size, const uint8_t *buf, int buf_size)
1159 {
1160         int ret, nb_frames, bit_offset, i, pos, len;
1161         uint8_t *q;
1162         int16_t *samples;
1163         static int frame_count;
1164
1165         if (buf_size == 0) {
1166                 s->last_superframe_len = 0;
1167                 return 0;
1168         }
1169         if (buf_size < s->ahi.block_align)
1170                 return 0;
1171         buf_size = s->ahi.block_align;
1172         samples = data;
1173         init_get_bits(&s->gb, buf, buf_size * 8);
1174         if (s->use_bit_reservoir) {
1175                 /* read super frame header */
1176                 skip_bits(&s->gb, 4);   /* super frame index */
1177                 nb_frames = get_bits(&s->gb, 4) - 1;
1178                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1179                 ret = -E_WMA_OUTPUT_SPACE;
1180                 if ((nb_frames + 1) * s->ahi.channels * s->frame_len
1181                                 * sizeof(int16_t) > *data_size)
1182                         goto fail;
1183
1184                 bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
1185
1186                 if (s->last_superframe_len > 0) {
1187                         /* add bit_offset bits to last frame */
1188                         ret = -E_WMA_BAD_SUPERFRAME;
1189                         if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
1190                                         MAX_CODED_SUPERFRAME_SIZE)
1191                                 goto fail;
1192                         q = s->last_superframe + s->last_superframe_len;
1193                         len = bit_offset;
1194                         while (len > 7) {
1195                                 *q++ = get_bits(&s->gb, 8);
1196                                 len -= 8;
1197                         }
1198                         if (len > 0) {
1199                                 *q++ = get_bits(&s->gb, len) << (8 - len);
1200                         }
1201
1202                         /* XXX: bit_offset bits into last frame */
1203                         init_get_bits(&s->gb, s->last_superframe,
1204                                 MAX_CODED_SUPERFRAME_SIZE * 8);
1205                         /* skip unused bits */
1206                         if (s->last_bitoffset > 0)
1207                                 skip_bits(&s->gb, s->last_bitoffset);
1208                         /*
1209                          * This frame is stored in the last superframe and in
1210                          * the current one.
1211                          */
1212                         ret = -E_WMA_DECODE;
1213                         if (wma_decode_frame(s, samples) < 0)
1214                                 goto fail;
1215                         frame_count++;
1216                         samples += s->ahi.channels * s->frame_len;
1217                 }
1218
1219                 /* read each frame starting from bit_offset */
1220                 pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
1221                 init_get_bits(&s->gb, buf + (pos >> 3),
1222                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)) * 8);
1223                 len = pos & 7;
1224                 if (len > 0)
1225                         skip_bits(&s->gb, len);
1226
1227                 s->reset_block_lengths = 1;
1228                 for (i = 0; i < nb_frames; i++) {
1229                         ret = -E_WMA_DECODE;
1230                         if (wma_decode_frame(s, samples) < 0)
1231                                 goto fail;
1232                         frame_count++;
1233                         samples += s->ahi.channels * s->frame_len;
1234                 }
1235
1236                 /* we copy the end of the frame in the last frame buffer */
1237                 pos = get_bits_count(&s->gb) +
1238                         ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
1239                 s->last_bitoffset = pos & 7;
1240                 pos >>= 3;
1241                 len = buf_size - pos;
1242                 ret = -E_WMA_BAD_SUPERFRAME;
1243                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
1244                         goto fail;
1245                 }
1246                 s->last_superframe_len = len;
1247                 memcpy(s->last_superframe, buf + pos, len);
1248         } else {
1249                 PARA_DEBUG_LOG("not using bit reservoir\n");
1250                 ret = -E_WMA_OUTPUT_SPACE;
1251                 if (s->ahi.channels * s->frame_len * sizeof(int16_t) > *data_size)
1252                         goto fail;
1253                 /* single frame decode */
1254                 ret = -E_WMA_DECODE;
1255                 if (wma_decode_frame(s, samples) < 0)
1256                         goto fail;
1257                 frame_count++;
1258                 samples += s->ahi.channels * s->frame_len;
1259         }
1260         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1261                 "outbytes: %d, eaten: %d\n",
1262                 frame_count, s->frame_len, s->block_len,
1263                 (int8_t *) samples - (int8_t *) data, s->ahi.block_align);
1264         *data_size = (int8_t *)samples - (int8_t *)data;
1265         return s->ahi.block_align;
1266 fail:
1267         /* reset the bit reservoir on errors */
1268         s->last_superframe_len = 0;
1269         return ret;
1270 }
1271
1272 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1273                 struct filter_node *fn)
1274 {
1275         int ret, out_size = fn->bufsize - fn->loaded;
1276         struct private_wmadec_data *pwd = fn->private_data;
1277
1278         if (out_size < 128 * 1024)
1279                 return 0;
1280         if (!pwd) {
1281                 ret = wma_decode_init(inbuffer, len, &pwd);
1282                 if (ret <= 0)
1283                         return ret;
1284                 fn->private_data = pwd;
1285                 fn->fc->channels = pwd->ahi.channels;
1286                 fn->fc->samplerate = pwd->ahi.sample_rate;
1287                 return pwd->ahi.header_len;
1288         }
1289         /* skip 31 bytes */
1290         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1291                 return 0;
1292         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1293                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1294                 len - WMA_FRAME_SKIP);
1295         if (ret < 0)
1296                 return ret;
1297         fn->loaded += out_size;
1298         return ret + WMA_FRAME_SKIP;
1299 }
1300
1301 static void wmadec_close(struct filter_node *fn)
1302 {
1303         struct private_wmadec_data *pwd = fn->private_data;
1304         if (!pwd)
1305                 return;
1306         wmadec_cleanup(pwd);
1307         free(fn->buf);
1308         fn->buf = NULL;
1309         free(fn->private_data);
1310         fn->private_data = NULL;
1311 }
1312
1313 static void wmadec_open(struct filter_node *fn)
1314 {
1315         fn->bufsize = 1024 * 1024;
1316         fn->buf = para_malloc(fn->bufsize);
1317         fn->private_data = NULL;
1318         fn->loaded = 0;
1319 }
1320
1321 /**
1322  * The init function of the wma decoder.
1323  *
1324  * \param f Its fields are filled in by the function.
1325  */
1326 void wmadec_filter_init(struct filter *f)
1327 {
1328         f->open = wmadec_open;
1329         f->close = wmadec_close;
1330         f->convert = wmadec_convert;
1331 }